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ABSTRACT
We examine the hypothesis that there exists a simple scaling between the observed velocities
of jets found in young stellar objects (YSOs) and jets found in active galactic nuclei (AGN).
We employ a very simplified physical model of the jet acceleration process. We use time-
dependent, spherically symmetric wind models in Newtonian and relativistic gravitational
fields to ask whether the energy input rates required to produce the jet velocities observed in
YSOs (of approximately 2 × the escape velocity from the central object) can also produce
AGN jet velocities (Lorentz factors of γ ∼ 10). Such a scaling would be expected if there
is a common production mechanism for such jets. We demonstrate that such a scaling does
exist, provided that the energy input process takes place sufficiently deep in the gravitational
potential well, enabling physical use to be made of the speed of light as a limiting velocity,
and provided that the energy released in the accretion process is imparted to a small fraction
of the available accreting material.
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1 I N T RO D U C T I O N

Highly collimated jets are observed in a variety of astrophysical ob-
jects. They have been found in quasars, active galactic nuclei (AGN),
stellar binaries, planetary nebulae, young stellar objects (YSOs) and
young pulsars (Ferrari 1998; Livio 1999; Reipurth & Bally 2001;
Gotthelf 2001). However, despite a large theoretical effort, there is
still no agreement as to the mechanisms that give rise to the accel-
eration and to the collimation of these jets (Blandford 1993, 2000,
2002; Pringle 1993; Ferrari 1998; Livio 1999). In this paper we shall
restrict our discussion mainly to jets in AGN and in YSOs, although
our findings will of course have relevance to other areas. In both
AGN and YSOs, inflow of matter is thought to be occurring through
an accretion disc, and it is this process that is thought to power
the jets. Also in these objects, the absence of substantial thermal
emission implies that the jets are not simple hydrodynamic flows,
powered by thermal pressure (discussed, for example, by Blandford
& Rees 1974; Königl 1982). For this reason it is usually assumed
that the acceleration mechanism is associated with magnetic fields.
Because the first collimated jets to be discovered were the relativis-
tic radio jets from galactic nuclei, presumably powered by accretion
on to the central black hole (Rees 1984), all the early models of jets
involved the generation of jets from a central black hole (Ferrari
1998). Indeed, the frequently invoked Blandford–Znajek mecha-
nism (Blandford & Znajek 1977) for such jet formation requires the
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tapping of rotational energy from a rapidly spinning black hole. It is
clear, however, that such exotic processes are of little relevance to
the generation of jets around young stellar objects. This leaves jet
theorists with a dilemma. Do we argue that the jet generation mech-
anisms in AGN and YSOs are unrelated, and that all the various jet
formation models put forward so far are correct when applied to
the right object? Or can we apply Occam’s razor, and argue that all
jets are produced by fundamentally the same mechanism, and that
essentially the same theory can be applied in both cases, when the
appropriate scalings are applied (Königl 1986; Pringle 1993; Livio
1997, 1999)?

The jet acceleration process by a spinning disc is often envis-
aged as being a result of centrifugal acceleration of disc material
by large-scale poloidal field lines threading the disc (Blandford &
Payne 1982; Pudritz & Norman 1986). This idea is exemplified by
the magnetic wind solution of Blandford & Payne (1982), and has
been demonstrated in a number of numerical simulations (Ouyed
& Pudritz 1997, 1999; Ouyed, Pudritz & Stone 1997; Kudoh,
Matsumoto & Shibata 1998; Koide et al. 2000). It appears to be
a fairly generic observed property of collimated jets that the jet
velocities are comparable to the escape velocities from the central
gravitating objects. In the YSO jets, the intrinsic jet velocity is hard
to measure, because in order to see the jet it needs to have interacted
with some of the surrounding material, and so to have been slowed to
some extent. Thus it is difficult to measure the core of the jet directly.
Typically the jet velocities at various part of the flow are inferred
by modelling the velocity structures in the neighbourhood of HH
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objects (which are basically shocks within the jet) and from the ob-
served proper motions of the HH objects, which of course give lower
limits to the jet velocity (Reipurth & Bally 2001). Such consider-
ations indicate that typical YSO jet velocities are in the range vjet

∼ 300–500 km s−1 (Eislöffel & Mundt 1998; Micono et al. 1998;
Hartigan et al. 2001; Bally et al. 2002a,b; Pyo et al. 2002; Reipurth
et al. 2002) compared with the escape velocity from a typical young
star (mass 1 M�, radius 5 R�; Tout, Livio & Bonnell 1999) of
vesc ∼ 270 km s−1. The AGN jets are relativistic, appropriate for
a velocity of escape from close to a black hole, and appear obser-
vationally to have relativistic gamma-factors of around γ jet ∼ 5–10
(Urry & Padovani 1995; Biretta, Sparks & Macchetto 1999), al-
though arguments for higher values (γ jet ∼ 10–20) have been made
on theoretical grounds (Ghisellini & Celotti 2001). It is clear from
this that scale-free models for driving outflows from discs, such as
the model of Blandford & Payne (1982), are lacking in the basic
respect that the observed disc-launched jets appear to know of the
scale associated with, and thus presumably to be launched from,
their very central regions (Königl 1986; Pringle 1993; Livio 1997).
In addition, it now seems unlikely that accretion discs are able to
drag in the large-scale poloidal fields assumed in the models to
thread the inner disc regions (Lubow, Papaloizou & Pringle 1994).
This has led to a number of recent suggestions that jet accelera-
tion, and perhaps collimation, can be a result of locally generated,
small-scale, perhaps tangled, magnetic fields (Tout & Pringle 1996;
Turner, Bodenheimer & Rózyczka 1999; Heinz & Begelman 2000;
Kudoh, Matsumoto & Shibata 2002; Li 2002; Williams 2002).

Bearing this in mind, we set out here to address one specific
question, which is: are the acceleration mechanisms for the jets
the same in both AGN and YSOs? Given the uncertainties of the
jet acceleration process itself, we approach the problem in a rather
generic and abstract manner. Since we are only concerned here with
the acceleration process, and not the jet collimation, we consider the
driving of a spherically symmetric outflow by the injection of energy
into the gas at a fixed radius close to the central object.1 This, in
general terms, must be the basis of any jet acceleration mechanism.
And, since the final jet velocities are directly related to the size
of the central object, it follows that the acceleration process must
be reasonably well localized in that vicinity. We treat the gas in a
simple manner as having a purely thermal pressure, P, and internal
energy, u, and a ratio of specific heats γ , which we shall take to
be γ = 4/3. The exact value of γ is not critical to our arguments,
provided that γ < 5/3 so that the outflow becomes supersonic. We
note, however, that taking γ = 4/3 is, in fact, appropriate to the
case of an optically thick radiation-pressure-dominated flow, and to
the case in which the dominant pressure within the gas is caused
by a tangled magnetic field (e.g. Heinz & Begelman 2000). Thus
we feel that such a treatment should allow us to draw some general
conclusions.

If the jet acceleration mechanism is the same for both YSOs
and AGN, then the same (appropriately scaled) energy input rate
should account for the jet velocities in both sets of objects. Thus,
for example, we ask whether the same energy input rate gives rise to
a final jet velocity vjet ∼ 2 vesc in the non-relativistic case and γ jet ∼ 7
in the relativistic case. With this in mind, we undertake the following
computations. In Section 2, we consider non-relativistic outflows,
relevant to YSOs. In Section 3, we consider relativistic outflows,

1 Note that we could equivalently consider an injection of momentum rather
than energy. This might add physical reality at the expense of complexity,
and here we choose to remain with our simplified abstract approach.

from compact relativistic objects, relevant to AGN. In both cases
we start from a steady configuration, in hydrostatic equilibrium,
and inject energy into the gas at a steady rate over a small volume
close to the inner radius. We follow the time evolution of the gas
as it expands. Once the expansion has proceeded to a large enough
radius, we match the solution on to a steady wind solution in order to
estimate the final outflow velocity. We then plot the final jet velocity
as a function of the (dimensionless) energy input rate (heating rate)
for both the relativistic and non-relativistic cases.

In Section 4, we present our results and conclusions.

2 N O N - R E L AT I V I S T I C ( Y S O ) J E T S

2.1 Fluid equations

For YSO jets we expect the gravitational field to be well approxi-
mated by a non-relativistic (Newtonian) description. In one (radial)
dimension the equations describing such a fluid including the effects
of energy input are expressed by the conservation of mass,

∂ρ

∂t
+ vr ∂ρ

∂r
+ ρ

r 2

∂

∂r
(r 2vr ) = 0, (1)

momentum,

∂vr
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+ vr ∂vr

∂r
+ 1
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+ G M

r 2
= 0, (2)

and energy,

∂(ρu)

∂t
+ vr ∂(ρu)
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+
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r 2

)
∂

∂r
(r 2vr ) = ρ	, (3)

where ρ, vr, P and u are the fluid density, radial velocity, pressure
and internal energy per unit mass, respectively, M is the mass of the
gravitating object (in this case the central star) and

	 = dQ

dt
= T

ds

dt
(4)

is the heat energy input per unit mass per unit time (where T and s
are the temperature and specific entropy, respectively). The equation
set is closed by the equation of state for a perfect gas in the form

P = (γ − 1)ρu. (5)

2.1.1 Scaling

To solve (1)–(5) numerically we scale the variables in terms of a
typical length, mass and time-scale. These we choose to be the in-
ner radius of the gas reservoir [L] = R∗, the mass of the gravitating
body [M] = M∗ and the dynamical time-scale at the inner radius
(r = R∗), [τ ] = (GM∗/R3

∗)−1/2. In these units GM = 1 and the den-
sity, pressure, velocity and internal energy, respectively, have units
of density, [ρ] = M∗/R3

∗, pressure, [P] = M∗/(R∗τ 2), circular ve-
locity at R∗, [v] = √

G M∗/R∗ and gravitational potential at R∗,
[u] = GM∗/R∗. Note that the net heating rate per unit mass 	 is
therefore given in units of gravitational potential energy, GM∗/R∗,
per dynamical time-scale at R∗, (GM∗/R3

∗)−1/2. We point out that
this scaling is simply to ensure that the numerical solution is of the
order of unity and that when comparing the results with the rela-
tivistic simulations we scale the solution in terms of dimensionless
variables.

2.2 Numerical solution

We solve (1)–(5) in a physically intuitive way using a staggered grid
where the fluid velocity is defined on the half grid points, whereas
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the density, pressure, internal energy and heating rate are specified
on the integer points. This allows for physically appropriate bound-
ary conditions and allows us to treat the different terms in a physical
way by applying upwind differencing to the advective terms but
using centred differencing on the gradient terms. The scheme is
summarized later in Fig. A1 with the discretized form of the equa-
tions given in Appendix A. The staggered grid means that only three
boundary conditions are required, as shown later in Fig. A1. We set
v = 0 at the inner boundary and the density and internal energy
equal to their initial values (effectively zero) at the outer boundary.

2.3 Initial conditions

The form of the initial conditions is not particularly crucial to the
problem, as the wind eventually reaches a quasi-steady state that
is independent of the initial setup. What the initial conditions do
affect is the time taken to reach this steady state (by determining
how much mass must initially be heated in the wind). We proceed by
setting up a body of gas (loosely ‘an atmosphere’) above the ‘star’
(or rather, an unspecified source of gravity) initially in hydrostatic
equilibrium, such that v = 0 everywhere and

dP

dr
= − G Mρ

r 2
. (6)

The pressure is related to the density by a polytropic equation of
state

P = Kργ , (7)

where K is some constant. Combining these two conditions we ob-
tain an equation for the density gradient as a function of radius

dρ(r )

dr
= −ρ(r )−(γ−2)

γ K

G M

r 2
. (8)

Integrating this equation from r to some upper bound R∞ we obtain

ρ(r ) =
[

γ − 1

γ K

(
G M

r
− G M

R∞

)]1/(γ−1)

. (9)

To ensure that pressure and density are finite everywhere (for nu-
merical stability) we set R∞ = ∞. The density is then given as
a simple function of radius where it remains to specify the poly-
tropic constant K. In scaled units we choose K = (γ − 1)/γ such

Figure 1. The initial conditions for the non-relativistic case. We plot profiles of density, pressure and internal energy per unit mass (or temperature) as functions
of radius. The quantities here are dimensionless and the units are as described in Section 2.1.1.

that ρ(R∗) = 1 (i.e. the central density equals the mean density of
the gravitating body – note that we neglect the self-gravity of the
gas itself. Choosing K effectively determines the amount of mass
present in the atmosphere and thus the strength of the shock front
that propagates into the ambient medium (in terms of how much
mass is swept up by this front).

We set the initial pressure distribution using (7). If we do this,
however, the slight numerical imbalance of pressure and gravity
results in a small spurious response in the initial conditions if we
evolve the equations with zero heating. In the non-relativistic case
the spurious velocity is kept to an acceptably small level by the
use of a logarithmic radial grid (thus increasing the resolution in
the inner regions). In the relativistic case, however, this slight de-
parture from numerical hydrostatic equilibrium is more significant.
This response is therefore eliminated by solving for the pressure
gradient numerically using the same differencing that is contained
in the evolution scheme. That is, we solve from the outer boundary
condition P(rmax) = Kρ(rmax)γ according to

Pi−1 = Pi − (ri − ri−1)
ρi−1/2

r 2
i−1/2

. (10)

Solving for the pressure in this manner reduces any spurious re-
sponse in the initial conditions to below the round-off error. The
internal energy is then given from (5). The pressure calculated us-
ing (10) is essentially indistinguishable from that found using (7) (�
P/P ∼ 10−5). The initial conditions calculated using equations (9),
(10) and (5) are shown in Fig. 1. We use a logarithmic grid with 1001
radial grid points, setting the outer boundary at r/R∗ = 103. Using
a higher spatial resolution does not affect the simulation results.

2.3.1 Heating profile

The choice of the shape of the heating profile 	(r) is fairly ar-
bitrary since we wish simply to make a comparison between the
non-relativistic and relativistic results. We choose to heat the wind
in a spherical shell of fixed width using a linearly increasing and
then decreasing heating rate, symmetric about some heating radius
r heat which we place at r = 2.1R∗. The heating profile is spread over
a radial zone of width 2R∗ (that is, the heating zone extends from
r = 1.1 R∗ to 3.1 R∗) (see Fig. 2). We choose a heating profile of
this form such that it is narrow enough to be associated with a par-
ticular radius of heating (necessary since we are looking for scaling
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Figure 2. Results of a typical non-relativistic simulation at time t = 1000 (where units of time are the dynamical time at the innermost radius,
√

R3∗/G M).
Quantities shown are the Mach number (v/cs), velocity, heating rate (	), internal energy per unit mass (u ≡ utherm), log(density) and log(pressure).

laws) whilst being wide enough to avoid the need for high spatial
resolution or complicated algorithms (necessary if the heat input
zone is too narrow). The important parameter is thus the location
of the heating with respect to the Schwarzschild radius, so long as
the heating profiles are the same in both the relativistic and non-
relativistic cases. Provided that the heating profile is narrow enough
to be associated with a particular radius and wide enough to avoid
numerical problems, our results do not depend on the actual shape
of the profile we choose.

2.4 Results

The results of a typical non-relativistic simulation with a moderate
heating rate are shown in Fig. 2 at t = 1001 (where t has units of
the dynamical time at the inner radius). We observe the effect of
the heating propagating outwards in the atmosphere in the form of a
shock front. After several hundred dynamical times the wind struc-
ture approaches a steady state in that there is only a small change of
the overall wind structure caused by the shock continuing to propa-
gate outwards into the surrounding medium. The small disturbance
propagating well ahead of the main shock is a transient resulting
from the response of the atmosphere to the instantaneous switch-
on of the heating. The velocity of the gas begins to asymptote to a
constant value as the shock propagates outwards. Plotting the mass
outflow rate Ṁ = 4πr 2ρv and the Bernoulli energy E = 1/2v2 +
ρu + P − GM/r as a function of radius (Fig. 3), we see that indeed

the wind structure is eventually close to that of a steady wind above
the heating zone (i.e. Ṁ and E ∼ constant). It is thus computa-
tionally inefficient and impractical to compute the time-dependent
solution for long enough to determine an accurate velocity as
r → ∞ when the wind will continue to have a steady structure.
Instead we find the steady wind solution for a given amount of en-
ergy input to the wind corresponding to the energy plotted in Fig. 3
(top panel).

2.5 Steady wind solution

Non-relativistic, steady-state (∂/∂t = 0) winds with energy input
have been well studied by many authors, and the equations describ-
ing them can be found in Lamers & Cassinelli (1999), who credit
the original work to Holzer & Axford (1970). The reader is thus
referred to Lamers & Cassinelli (1999) for details of the derivation.
As in the usual Bondi–Parker (Bondi 1952; Parker 1958) wind so-
lution with no heat input, we set ∂/∂t = 0 in (1)–(5) and combine
these equations into one equation for the Mach number M2 = v2/c2

s

as a function of radius, given by

dM2

dr
= − M2(2 + (γ − 1)M2)

2(M2 − 1)[e(r ) + G M/r ]

×
[

(1 + M2γ )
dQ

dr
+ G M

r 2

(5 − 3γ )

(γ − 1)
− 4e(r )

r

]
, (11)
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Figure 3. Bernoulli energy E = 1/2v2 + ρu + P − GM/r (top) and mass outflow rate Ṁ = 4πr2ρv (bottom) in the time-dependent wind solution at t =
1000. The profiles are approximately constant over the region between the two circles. The sample point used to match this flow to the appropriate steady-state
solution is indicated by a cross.

where dQ/dr is the local heating gradient and e(r) is the Bernoulli
energy that is specified by integrating the Bernoulli equation

de(r )

dr
= d

dr

(
1

2
v2 + ρu + P − G M

r

)
= dQ

dr
, (12)

to give

e(r ) = e(r∞) − Q(r )

= e(r∞) −
∫ r∞

r

dQ

dr
,

(13)

where Q(r) is the total energy input to the wind. Since we are in-
terested in the terminal velocity of the outflow we choose a point
above the heating shell where the energy has reached its steady-
state value (i.e. where the energy is constant in Fig. 3, top panel)
and integrate outwards using the energy and Mach number at this
point to solve (11) as an initial-value problem. Note that, in fact,
the terminal velocity is determined by the (constant) value of the
Bernoulli energy above the heating zone since as r → ∞, e(r ) →
1/2v2. However, we compute the steady wind profiles both inwards
and outwards to show the consistency between the time-dependent
solution and the steady-state version.

In order to perform the inward integration, we must determine the
energy at every point for our steady solution by subtracting the heat
input from the steady-state energy as we integrate inwards through
the heating shell (13). To determine this, however, we must also
determine the local (steady-state) heating gradient dQ/dr , which is
related to the (time-dependent) heating rate 	 by setting ∂/∂t = 0
in the time-dependent version, i.e.

	 = dQ

dt
= ∂Q

∂t
+ v

dQ

dr
= v

dQ

dr
. (14)

We therefore calculate dQ/dr from the time-dependent solution
using

dQ

dr
= 	(r )

v(r )
, (15)

where v(r) is the wind velocity at each point in the heating shell
from the time-dependent solution. The problem with this is that at

the inner edge of the heating shell the heating rate is finite while the
velocity is very close to zero, resulting in a slight overestimate of
the total energy input near the inner edge of the shell in the steady
wind solution. Care must also be taken in integrating through the
singular point in equation (11) at M2 = 1. Most authors (e.g. Lamers
& Cassinelli 1999) solve the steady wind equations starting from
this point but for our purposes it is better to start the integration
outside of the heating shell where the energy is well determined.
We integrate through the critical point using a first-order Taylor
expansion and appropriate limit(s), although this introduces a small
discrepancy between the steady-state and time-dependent results in
this region (Fig. 4).

Having determined the energy and heating gradient at each point
in the wind we integrate (11) both inwards and outwards from the
chosen point above the heating shell using a fourth-order Runge–
Kutta integrator (scaling 11) to the units described in Section 2.1.1).
The velocity profile is then given by v2 = M2c2

s , where

c2
s (r ) = 2(γ − 1)

2 + M2(r )(γ − 1)

[
e(r ) + G M

r

]
. (16)

The resulting steady wind solution is shown in Fig. 4 along with the
time-dependent solution. The two profiles are in excellent agree-
ment, proving the validity of our time-dependent numerical solu-
tion and the assumption that the wind is in a steady state. The steady
solution thus provides an accurate estimate of the velocity at arbi-
trarily large radii (although as pointed out previously this is set by
the value of the steady-state Bernoulli energy).

2.6 Terminal wind velocities as a function of heating rate

Using the steady wind extrapolation of the time-dependent solu-
tion, we can determine the relationship between the heating rate
and the terminal wind velocities. In order to make a useful com-
parison between the heating rates used in both the Newtonian and
the relativistic regimes, we need to define a local canonical heat-
ing rate 	c(r ) valid in both sets of regimes. In dimensional terms
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Figure 4. Steady wind Mach number (top panel) and velocity (centre panel) profiles are compared with the time-dependent solution (plotted every 100
dynamical times). There is a small discrepancy between the two solutions where we have taken the limit in approaching the singular point at M = 1, but an
otherwise excellent agreement between the two solutions.

the heating rate 	(r) corresponds to an input energy per unit mass
per unit time. Thus we need to define the local canonical heating
rate as

	c(r ) = �E

�t
, (17)

for some relevant energy �E and some relevant time-scale �t.
There are clearly many different ways in which we might define

a canonical heating rate. We find, however, that our results are not
sensitive to the particular choice we make. We shall make use of
a definition that draws on the physical processes we expect to be
behind the jet acceleration process. Even though the processes by
which this occurs are still obscure, we expect the energy for the jet to
be provided fundamentally by liberation of energy in a rotating flow.
Thus, with this physical motivation in mind, we take the canonical
energy per unit mass, �E, to be the energy released locally by
bringing to rest a particle of unit mass that is orbiting in a circular
orbit at radius r. In the Newtonian regime this is simply the kinetic
energy of a circular orbit

�E = 1

2
v2

φ = G M

2r
. (18)

(An alternative possibility, for example, would be to take �E to be
the energy released by dropping a particle from infinity and bringing
it to rest at radius r, which would correspond to the escape energy
from that radius, GM/r .) By similar reasoning, we take the canonical
time-scale on which the energy is released to be the orbital time-
scale at radius r, that is �t = �−1

0 , where

�0 = (G M/r 3)1/2. (19)

Using this, we are now in a position to define a local canonical
heating rate as

	c(r ) = �E × �0 = (G M)3/2

2r 5/2
. (20)

For intercomparison of our various wind computations both in the
Newtonian and in the relativistic regimes, we now use the canonical

heating rate derived above to define a dimensionless heating rate
for each wind computation. Because heat is added over a range of
radii, we need to define the dimensionless heating rate 〈	〉 as an
appropriate volume average. We shall define

〈	〉 =
∫ r2

r1
	r 2 dr

	c(rmax)
∫ r2

r1
r 2 dr

, (21)

where rmax is the radius at which the heating rate 	(r) takes its
maximum value and r 1 and r 2 are the lower and upper bounds of
the heating shell, respectively.

The relation between this average dimensionless heating rate and
the terminal wind velocity is shown in Fig. 5. The wind velocities
are plotted in units of the escape velocity vesc at R∗ and solutions are
computed for wind velocities of up to ∼3vesc. The important point
in the present analysis is that the heating rate can be meaningfully
compared with the relativistic results (see below).

3 R E L AT I V I S T I C J E T S

Having determined the heating rates required to produce the ob-
served velocities in YSO jets we wish to perform exactly the same
calculation within a relativistic framework. We proceed in precisely
the same manner as in the non-relativistic case. We adopt the usual
convention that Greek indices run over the four dimensions 0, 1, 2,
3, while Latin indices run over the three spatial dimensions 1, 2, 3.
Repeated indices imply a summation and a semicolon refers to the
covariant derivative. The density ρ refers to the rest mass density
only, i.e. ρ = nm0, where n is the number density of baryons and
m0 is the mass per baryon.

3.1 Fluid equations

The equations describing a relativistic fluid are derived from the
conservation of baryon number,

(ρUµ);µ = 0, (22)
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Figure 5. Terminal wind velocities plotted as a function of the average dimensionless heating rate 〈	〉. Wind velocities are plotted in units of the escape
velocity at the inner radius (i.e. r = R∗ = 1), vesc = (2GM/R∗)1/2. We compute solutions corresponding to velocities typically observed in YSO jets (with a
fairly generous upper limit of v/vesc ∼ 3).

the conservation of energy–momentum projected along a direction
perpendicular to the four-velocity Uµ (which gives the equation of
motion),

hµαT αν
;ν = (gµα + UµUα)T αν

;ν = 0, (23)

and projected in the direction of the four-velocity (which gives the
energy equation),

UαT αν
;ν = 0. (24)

Here the quantity T µν is the energy–momentum tensor, which for a
perfect fluid is given by

c2T µν = ρhUµU ν + Pgµν, (25)

where h is the specific enthalpy,

h = c2 + u + P

ρ
= c2 + γ P

(γ − 1)ρ
. (26)

As in the non-relativistic case u is the internal energy per unit mass,
P is the gas pressure and we have used the equation of state given
by equation (5). The energy equation may also be derived from
the first law of thermodynamics using equation (22), which is a
more convenient way of deriving an energy equation in terms of
the internal energy (rather than the total energy) and in this case
ensures that the meaning of the heating term is clear. The metric
tensor is given by the Schwarzschild (exterior) solution to Einstein’s
equations, that is

ds2 = −c2 dτ 2

= −
(

1 − 2G M

c2r

)
c2 dt2 +

(
1 − 2G M

c2r

)−1

dr 2

+r 2(dθ2 + sin2 θ dφ2). (27)

We consider radial flow such that U θ = Uφ = 0. The four-velocity
is normalized such that

UµUµ = −c2, (28)

and we define

U t ≡ dt

dτ
=

(
1 − 2G M

c2r

)−1 [(
1 − 2G M

c2r

)
+ (Ur )2

c2

]1/2

,

(29)
which we denote as

U t = �

α2
, (30)

where for convenience we set

� =
[(

1 − 2G M

c2r

)
+ (Ur )2

c2

]1/2

, (31)

and

α2 =
(

1 − 2G M

c2r

)
. (32)

Note that while α corresponds to the lapse function in the 3 + 1
formulation of general relativity, the quantity � is not the Lorentz
factor of the gas (which we denote as W) as it is usually defined in
numerical relativity (e.g. Banyuls et al. 1997), but is related to it by
W = �/α. From (29) we also have the relation

∂U t

∂t
= Ur

α2�c2

∂Ur

∂t
. (33)

From (22)–(24) using (25), (27), (29) and (33) we thus derive the
continuity equation,

∂ρ

∂t
+ vr ∂ρ

∂r
+ α2ρ

�

[
1

r 2

∂

∂r
(r 2Ur ) + Ur

α2�c2

∂Ur

∂t

]
= 0, (34)

the equation of motion,

∂Ur

∂t
+ vr ∂Ur

∂r
+ �α2c2

ρh

∂P

∂r
+ Ur

ρh

∂P

∂t
+ α2

�

G M

r 2
= 0, (35)

and the internal energy equation,

∂(ρu)

∂t
+ vr ∂(ρu)

∂r
+ α2

�
(P + ρu)

[
1

r 2

∂

∂r
(r 2Ur ) + Ur

α2�c2

∂Ur

∂t

]

= α2

�
ρ	, (36)
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where

vr ≡ Ur

U t
≡ dr

dt
(37)

is the velocity in the coordinate basis. We define the heating rate per
unit mass as

	 ≡ T
ds

dτ
, (38)

where T is the temperature, s is the specific entropy and dτ refers to
the local proper time interval (	 is therefore a local rate of energy
input, caused by local physics). A comparison of (34)–(36) with
their non-relativistic counterparts (1)–(3) shows that they reduce to
the non-relativistic expressions in the limit as c → ∞, and to special
relativity as M → 0.

The ‘source terms’ containing time derivatives of U r and P are
then eliminated between the three equations using the equation of
state (5) to relate pressure and internal energy. Substituting for pres-
sure in (36) and substituting this into (35) we obtain the equation of
motion in terms of known variables,

∂Ur

∂t
+ vr

X

(
1 − γ P

ρh

)
∂Ur

∂r

= − c2α4

ρh�X

∂P

∂r
− α2

�X

G M

r 2
+ vr

X

γ P

ρh

2Ur

r
− vr

h X
(γ − 1)	,

(39)

where for convenience we define

X ≡ 1 −
(

γ P

ρh

)
Ur Ur

�2c2
, (40)

and we have expanded the (1/r 2)∂/∂r (r 2Ur ) terms in order to com-
bine the spatial derivatives of U r into one term. We then substitute
(39) into (34) and (36) to obtain equations for the density,

∂ρ

∂t
+ vr ∂ρ

∂r
= −α2

�

[
ρ A − vr

h�X

∂P

∂r
− Ur Ur

�2c2 X

(γ − 1)

h
ρ	

]
,

(41)

and internal energy,

∂(ρu)

∂t
+ vr

(
1 − γ P

ρh

α2

�2 X

)
∂(ρu)

∂r

= −α2

�

[
(P + ρu)A −

(
1 + Ur Ur

�2c2 X

γ P

ρh

)
ρ	

]
,

(42)

where for convenience we have defined

A ≡
[

1 − Ur Ur

�2c2 X

(
1 − γ P

ρh

)]
∂Ur

∂r

+
[

1 + Ur Ur

�2c2 X

(
γ P

ρh

)]
2Ur

r
− Ur

�2c2 X

G M

r 2
. (43)

From the solution specifying U r we calculate the velocity mea-
sured by an observer at rest with respect to the time slice (referred
to as Eulerian observers), which is given by

v̄r = Ur

αU t
= vr

α
, (44)

since there are no off-diagonal terms (i.e. zero shift vector) in the
Schwarzschild solution. For these observers the Lorentz factor is
given by

W =
(

1 − v̄r v̄r

c2

)−1/2

, (45)

where v̄r v̄r = grr v̄
r v̄r , such that Ur = W v̄r .

3.2 Scaling

The usual practice in numerical relativity is to scale in so-called
geometric units such that G = M = c = 1. In these units the length-
scale would be the geometric radius GM/c2 and the velocity would
have units of c. Instead for the current problem, we adopt a scaling
analogous to that of the non-relativistic case, i.e. we choose the
length-scale to be the radius of the central object, R∗, where R∗ is
given as some multiple of the geometric radius, i.e.

[L] = R∗ = n
G M∗

c2
, (46)

with n � 2.0. The mass scale is again the central object mass
[M] = M∗ and the time-scale is given by

[τ ] =
(

G M∗
R3∗

)−1/2

= n3/2 G M∗
c3

. (47)

In these units, velocity is measured in units of [v] = n−1/2c (or
equivalently c2 = n). The scaled equations are thus given simply by
setting G = M = 1 and c2 = n everywhere.

This scaling ensures that the relativistic terms tend to zero when
c (or n) is large and that the numerical values of ρ, ρu and U r

are of the order of unity. We thus specify the degree to which the
gravity/gas dynamics is relativistic by specifying the value of n (i.e.
the proximity of the innermost radius, and thus the heating, to the
Schwarzschild radius, RSch = 2GM/c2). We compute solutions cor-
responding to gas very close to a black hole (highly relativistic, n =
2.0, or R∗ = RSch), neutron star (moderately relativistic, n = 5, or
R∗ = RNS = 5GM/c2, which is equivalent to heating further out
and over a wider region around a black hole) and white dwarf/non-
relativistic star (essentially non-relativistic, n = 5000 or R∗ =
2500 RSch). Note that in the highly relativistic case although we scale
the solution to n = 2.0 such that the mass, length and time-scales
(and therefore the units of heating rate, energy, etc.) correspond to
those at r = RSch, our numerical grid cannot begin at R∗ as it does
in the other cases. We therefore set the lower bound on the radial
grid to slightly below the heating shell (typically r = 1.01R∗ where
the heating begins at 1.1R∗). Note that the above scaling is merely
to ensure that the numerical solution is of the order of unity, since
we scale in terms of dimensionless variables to compare with the
non-relativistic solution.

3.3 Numerical solution

In order to solve the relativistic fluid equations numerically we use a
method analogous to that used in the non-relativistic case (Fig. A1).
That is, we first compute U r on the staggered (half) grid and use this
to solve for ρ and ρu on the integer grid points. Again the advective
terms are discretized using upwind differences (where the ‘upwind-
edness’ is determined from the sign of the coordinate velocity vr)
and other derivatives are calculated using centred differences. As
in the non-relativistic case, where a centred difference is used, the
quantities multiplying the derivative are interpolated on to the half
grid points if necessary. In equation (41) we evaluate the ∂P/∂r
term using upwind differences.

3.4 Initial conditions

We determine initial conditions for the relativistic case by setting
U r = 0 and ∂/∂t = 0 in (39), from which we have

dP

dr
= −ρh

c2

G M

r 2

(
1 − 2G M

c2r

)−1

. (48)
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The pressure is thus calculated as a function of ρ, u and P [where
P = (γ − 1)ρ u]. We solve (48) using the same assumptions as in
the non-relativistic case (Section 2.3), i.e. an adiabatic atmosphere
such that

P = Kργ . (49)

We therefore have

dρ

dr
= − 1

γ Kα2

[
ρ(2−γ ) + γ Kρ

c2(γ − 1)

]
G M

r 2
, (50)

which we solve using a first-order (Euler) discretization to obtain
a density profile. The pressure may then be calculated using (49);
however, to ensure that hydrostatic equilibrium is enforced numer-
ically we solve (48) using the same discretization as in the fluid
equations, integrating inwards from the outer boundary condition
P(rmax) = Kρ(rmax)γ . However, in this case the pressure gradient
also depends on the pressure, so we use the pressure calculated from
(49) to calculate the initial value of the specific enthalpy h and iter-
ate the solution until converged [(Pn+1 − Pn)/Pn < 10−10]. In the
black hole case the resulting pressure differs from that found using
(49) by �P/P ∼ 10−2. We choose K such that the central density
is of the order of unity – typically we use K = 10γ /(γ − 1) in the
black hole case. Note that changing K simply changes the amount of
matter present in the atmosphere but does not affect the temperature
scaling and does not affect the final results (although it significantly
affects the integration time since it determines the strength of the
shock front and the amount of mass to be accelerated).

Initial conditions calculated in this manner for the black hole
(R∗/RSch = n/2 = 1.0) and neutron star (R∗/RSch = 2.5) atmo-
spheres are shown in Fig. 6. The initial setup reduces to that of
Fig. 1 in the non-relativistic limit when the same value of K is used.
We set the outer boundary at r/R∗ = 104, using 1335 radial grid
points (again on a logarithmic grid).

3.5 Results

The results of a typical (n = 2.0) relativistic simulation are shown in
Fig. 7 at t = 1000. Again we observe that the wind structure reaches
a quasi-steady state, with the velocity approaching a steady value at

Figure 6. The initial conditions for the gas reservoir for the relativistic cases of a neutron star (dashed line) (R∗/RSch = 2.5) and black hole (solid line)
(R∗/RSch = 1.0). Note, however, that the innermost radius is at r = 1.01R∗ in the latter case. We plot profiles of internal energy per unit mass (or temperature),
density and pressure, as functions of radius. These quantities are given in units of GM/R∗, M/R3∗ and M∗/(R∗ t2∗), respectively. Note that steeper gradients
are required to hold the gas in hydrostatic equilibrium as the gravitational field becomes more relativistic. The black hole reservoir is of lower density than the
neutron star version because of the choice of the polytropic constant (chosen such that the central density is of the order of unity).

large radii. Note that because the steady-state density is higher than
that of the surrounding medium no wide shock front is observed.

Plotting the mass outflow rate Ṁ = 4πr 2ρUr and the relativistic
Bernoulli energy E rel = 1/2�2 h2/c2 − 1 /2c2 (see, e.g., Shapiro &
Teukolsky 1983) as a function of radius (Fig. 8), we see that indeed
the structure approaches that of a steady (relativistic) wind (that
is, the energy and Ṁ profiles are flat above the heating zone). We
may thus apply a relativistic steady wind solution with this Bernoulli
energy as an initial value to determine the final velocity and Lorentz
factor as r → ∞. Note that we cannot apply a non-relativistic steady
wind solution because although the gravity is non-relativistic, the
outflow velocities are not. As in the non-relativistic case, the final
wind velocity is determined by the steady Bernoulli energy, since
in this case as r → ∞, E rel → 1/2[(U r)2 − c2].

3.6 Steady wind solution

Relativistic, steady-state (∂/∂t = 0) winds were first studied
by Michel (1972) and extended to include energy deposition by
Flammang (1982). The problem has recently received attention
in the context of neutrino-driven winds in gamma-ray burst mod-
els by Pruet, Fuller & Cardall (2001) and Thompson, Burrows &
Meyer (2001). We proceed in a manner analogous to that of the
non-relativistic solution. Setting ∂/∂t = 0 the continuity (22) and
momentum (23) equations become

1

ρ

∂ρ

∂r
+ 1

Ur

∂Ur

∂r
+ 2

r
= 0 (51)

Ur ∂Ur

∂r
+ �2c2

ρh

∂P

∂r
+ G M

r 2
= 0, (52)

where (51) is equivalent to

r 2ρUr = constant. (53)

Combining (52) and (51) we obtain

1

Ur

[
(Ur )2 − c2�2c2

s

hγ

]
∂Ur

∂r
= − c2�2

hγ

dc2
s

dr
+ c2�2

hγ

2c2
s

r
− G M

r 2
,

(54)
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Figure 7. Results of a typical black hole relativistic simulation at t = 1000 (where units of time are the dynamical time at the central object). Quantities shown
are the Mach number (v/cs), velocity for Eulerian observers (v̄r ), heating rate (	), internal energy per unit mass (u ≡ utherm), log(density) and log(pressure).
Units of velocity are such that c = √

2 and as in the non-relativistic case energy has units of GM/R∗.

Figure 8. The relativistic Bernoulli energy E rel = 1 /2� h/c2 − 1/2c2(top) and mass outflow rate Ṁ = 4πr2ρUr (bottom) in the time-dependent relativistic
wind solution with a reasonably high heating rate are shown as functions of radius at time t = 1000. In order to match this solution to a steady outflow solution,
the Bernoulli energy is assumed to be constant over the region indicated by the two circles, and the steady wind solution is computed using initial values at the
point indicated by a cross.
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where c2
s = γ P/ρ and (U r)2 ≡ UrUr. From the first law of thermo-

dynamics and (52) we derive the relativistic Bernoulli equation in
the form

d

dr

(
1

2

�2h2

c2

)
= h�2

c2

dQ

dr
, (55)

such that both sides reduce to their non-relativistic expressions as
c → ∞. The quantity dQ/dr is the local heating gradient as in the
non-relativistic case. Expanding this equation we find

dc2
s

dr
= (γ − 1)

{
dQ

dr
− h

c2�2

d

dr

[
1

2
(Ur )2

]
− h

c2�2

G M

r 2

}
.

(56)

Combining (56) and (54) and manipulating terms, we obtain an
equation for (U r)2,

d

dr
(Ur )2 = 2(Ur )2[

(Ur )2 − c2�2c2
s

/
h
]

×
[

c2�2

h

2c2
s

r
− (γ − 1)

c2�

h

(
�

dQ

dr

)
− G M

r 2

]
,

(57)

where c2
s and h = c2 + c2

s /(γ − 1) are given functions of known
variables by integration of the Bernoulli equation (55), in the form

d

dr
(�h) = �

dQ

dr
, (58)

to ensure that h does not appear in the heating term on the right-hand
side. The integration is then

e(r ) = �h = e(r∞) −
∫ r∞

r

(
�

dQ

dr

)
dr, (59)

and hence

h = e(r )

�
, c2

s = (γ − 1)(h − c2). (60)

Figure 9. The radial profiles of the steady wind r-component of four-velocity U r (top panel) and of the velocity for Eulerian observers v̄r (centre panel) are
compared with the time-dependent solution (plotted every 100 dynamical times) for a typical relativistic calculation for the black hole (n = 2.0) case. Units are
such that c = √

2 on the velocity plots. Note the excellent agreement between the two solutions.

The ‘heating gradient’, �dQ/dr , is calculated from the time-
dependent solution using

�
dQ

dr
(r ) = α(r )	(r )

v̄r (r )
, (61)

since

	 ≡ T
ds

dτ
≡ dQ

dτ
= U t

(
∂Q

∂t
+ vr dQ

dr

)
, (62)

where τ is the proper time and U t =�/α2. The velocity profile for an
Eulerian observer is then calculated using (44) and the final Lorentz
factor W ∞ using equation (45). As in the non-relativistic case we
choose a starting point for the integration above the heating shell
and integrate outwards from this point using a fourth-order Runge–
Kutta integrator in order to determine the terminal Lorentz factor.
The inward integration (and thus the determination of the steady-
state heating gradient �dQ/dr ) is computed only for consistency.
We integrate through the singular point in equation (57) by taking a
low-order integration with larger steps as this point is approached.

The solution calculated using (57) is shown in Fig. 9 plotted
against the evolving time-dependent solution. The profiles are in
excellent agreement, verifying the accuracy of the relativistic cal-
culation and showing that the wind may indeed be described by the
steady-state solution.

3.7 Terminal wind velocities and Lorentz factors
as a function of heating rate

In order to compare the relativistic results with those in the Newto-
nian regime, we define the local canonical heating rate in a similar
manner to the non-relativistic case, that is

	c(r ) = �E

�t
, (63)

for some relevant energy �E and some relevant time-scale �t. As
in Section 2.6 we take the canonical energy per unit mass, �E, to be
the energy released locally by bringing to rest a particle of unit mass
that is orbiting in a circular orbit at radius r. For a particle orbiting
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in the Schwarzschild metric this is the difference, �E, between
the energy constants (defined by the timelike Killing vector) of a
circular geodesic at radius r, and a radial geodesic with zero velocity
at radius r. This implies (see, for example, Schutz 1990, Chapter 11)

�E/c2 = 1 − 2G M/rc2

(1 − 3G M/rc2)1/2
− (1 − 2G M/rc2)1/2. (64)

In the Newtonian limit, this reduces to the expected value �E =
1/2v2

φ = GM/2r . We again take the canonical time-scale on which
the energy is released to be the orbital time-scale at radius r as
measured by a local stationary observer. For a circular geodesic in
the Schwarzschild metric, the azimuthal velocity is given in terms
of coordinate time, t, by

dφ/dt = � = (G M/r 3)1/2. (65)

This is the same expression as for the angular velocity of an orbiting
particle in the Newtonian limit. However, in terms of the proper time,
τ , of a local stationary observer we have, from the metric,

dτ/dt = (1 − 2G M/rc2)1/2, (66)

and thus dφ/dτ = �0, where

�2
0 = G M

r 3

(
1 − 2G M

rc2

)−1

. (67)

Using this, the local canonical heating rate is therefore given by

	c = �E × �0. (68)

In the Newtonian limit, r �2GM/c2, this becomes as expected	c �
(GM)3/2/2r 5/2. As in the non-relativistic case we use the canonical
heating rate derived above to define a dimensionless heating rate
〈	〉 as an appropriate volume average using equation (21).

The final Lorentz factor of the wind plotted as a function of this
dimensionless heating rate is given in the bottom panel of Fig. 10 in
the highly relativistic (black hole), moderately relativistic (neutron
star, equivalent to a broader heating shell further away from a black
hole) and non-relativistic (white dwarf) cases.

We would also like to make a meaningful comparison of the
final wind velocities in units of the escape velocity from the star.
Note that we cannot simply compare the scaled velocities since we
are in effect introducing a ‘speed limit’ in the relativistic solution
such that the (scaled) relativistic velocity will always be slower
than in the equivalent non-relativistic solution. However, we can
compare the velocity for observers along the worldline of a particle
in the wind (i.e. observers with proper time interval dτ ), U r =
dr/dτ (i.e. the r component of the four-velocity, which in special
relativity is given by U r = γ vr, where γ is the Lorentz factor).
Scaling this in units of the (Newtonian) escape velocity from the
central object (2GM/R∗)1/2 we can make a useful comparison with
the non-relativistic results. This velocity is plotted in the top panel
of Fig. 10 against the dimensionless heating rate.

4 D I S C U S S I O N A N D C O N C L U S I O N S

We have considered the input of energy at the base of an initially
hydrostatic atmosphere as a simple model for the acceleration of
an outflow or jet. The problem is inherently a time-dependent one,
because the flow velocity at the base of the atmosphere is zero. Suf-
ficiently large energy input rates give rise to supersonic outflows.
We are, of course, unable to compute the outflow for an infinite time,
and thus cannot directly measure the terminal outflow speed. How-
ever, we make use of the fact that if the mass in the atmosphere is
sufficiently large compared with the mass outflow rate, then at large

Figure 10. The terminal r-component of four-velocity U r (top panel) and
Lorentz factor (bottom panel) of the wind in the non-relativistic (◦, solid),
white dwarf (×, dot-dashed), neutron star (+, dotted) and black hole (∗,
dashed) cases, is plotted as a function of the dimensionless heating rate
defined in Section 2.6. The top panel may be compared with Fig. 5 in the
non-relativistic case.

radii the outflow approximates to a steady state (with constant mass
flux). We thus match our time-dependent solutions on to steady-state
outflow solutions at large radii and thus determine the terminal ve-
locities for the outflows. We then compute how the terminal velocity
of the outflow varies as a function of the (dimensionless) heating
rate in both Newtonian and relativistic gravitational potentials. The
results are shown in Figs 5 and 10.

In the top half of Fig. 10 we note that dimensionless energy (or
momentum) imparted to the outflow at a given value of the dimen-
sionless heating rate is larger in the relativistic regime. This comes
about simply because a particular element of gas cannot escape from
the zone in which the heating is occurring with a velocity that ex-
ceeds the speed of light. Thus a gas element that is accelerated to
relativistic energies in the heating zone spends longer in the heating
zone than one that is not. Indeed, from Fig. 10, we see that, once the
outflows become relativistic, the energy per unit mass in the outflow
(proportional to γ ) is proportional to the dimensionless heating rate
〈	〉. This comes about because each fluid element spends the same
time in the heating zone, because it travels through the zone at a
velocity ∼c.

From Fig. 5 we see that a dimensionless heating rate of 〈	〉 �
17 gives rise to a terminal outflow velocity of vjet � 2 vesc in a
Newtonian potential. From Fig. 10, we see that for the same heating
rate, the ‘neutron star’ wind, for which the heating rate peaks at ap-
proximately 5.2RSch becomes mildly relativistic (γ jet ∼ 2), whereas
the ‘black hole’ wind, for which the heating rate peaks at approx-
imately 2.1RSch, leads to an outflow with γ jet � 11. Similarly, a
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dimensionless heating rate of 〈	〉 � 55 gives rise to a terminal ve-
locity of vjet � 3vesc in the Newtonian case, to an outflow with γ jet

∼ 4 in the mildly relativistic case, and to an outflow with γ jet � 31
in the strongly relativistic case. We have noted above that although
the exact numerical values here do depend slightly on the exact def-
inition of the dimensionless heating rate, the basic results remain
unchanged. For example, using the Newtonian dimensionless heat-
ing rate (Section 2.6) in the strongly relativistic case gives a Lorentz
factor of γ jet � 5 for the rate that corresponds to vjet � 2 vesc in the
non-relativistic case.

We caution that the above analysis does not demonstrate that
the model we use provides an adequate description of the physics
involved in the acceleration process (for example, the jet en-
ergy might be initially mainly in electromagnetic form – Poynting
flux – and only later the converted to kinetic energy of baryons) or
that there is no intrinsic difference between the jet outflows caused
by the relativistic nature of the AGN jets (for example, the AGN
jets might be mainly in the form of a pair plasma and therefore
lighter). And we note that it is evident that more detailed physi-
cal models need to be developed before further conclusions can be
drawn. Nevertheless, we suggest that the generic nature of our anal-
ysis might give some insight into the physical processes involved in
the acceleration of jets.

Thus we conclude, on the basis of the rather simplified physical
model we have employed in our analysis, that it is not unreason-
able to argue that the jets in AGN are simply scaled up, relativistic
versions of the jets in YSOs, and that the intrinsic jet acceleration
mechanism is indeed the same in both the AGN and the YSO con-
texts. In making this analogy, again on the basis of our simplified
model for the acceleration process, we find that two further physical
conditions must hold. First, we find that the energy input process,
which leads to the acceleration of the outflow, takes place deep
in the (relativistic) gravitational well for the AGN case (∼2RSch).
What this means physically is that in this way it is possible to make
use of the limiting velocity, c, to ensure that relativistic fluid ele-
ments remain relatively longer in the energy input zone compared
with their non-relativistic counterparts. Secondly, we find that the
required dimensionless heating rate is much larger than unity. The
physical implication of this is that the available energy released in
the accretion process must be imparted to a small fraction of the
available accreting material.
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A P P E N D I X A : D I S C R E T I Z AT I O N S C H E M E
F O R N O N - R E L AT I V I S T I C E QUAT I O N S

The discretization scheme for the non-relativistic fluid equations is
summarized in Fig. A1. Fluxes are calculated on the half grid points
while the other terms are calculated on the integer points. We solve
(1)–(5) in the following manner: the numerical equations are solved
first for velocity on the half grid points (dropping the superscript r
for convenience),
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Figure A1. Schematic diagram of the numerical method: the density and internal energy are defined on the integer points while the velocity is calculated on
the half points. The solution requires one inner boundary condition on v and two outer boundary conditions for ρ and ρu. Updated velocities (vn+1) are used to
calculate ρn+1 and ρun+1. The scheme allows centred differencing on terms involving staggered quantities (top panel) while upwind differencing is used on
the advective terms (bottom panel).
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where the superscript n refers to the nth time-step and the subscript
i refers to ith grid point (vi+1/2, ρi+1/2 thus being points on the
staggered velocity grid). The quantity ρi+1/2 is calculated using
linear interpolation between the grid points, i.e. ρi+1/2 = 1/2(ρi +
ρi+1). We then solve for the density and internal energy on the integer
grid points using the updated velocity,
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and similarly,
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where �t = tn+1 − tn and the time-step is regulated according to
the Courant condition

�t <
min(�r )

max(|v|) + max(cs)
, (A4)

where cs is the adiabatic speed of sound in the gas given by c2
s =

γ P/ρ. We typically set �t to half of this value.
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