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Abstract: This paper presents splash, a publicly available interactive visualisation tool for Smoothed Particle
Hydrodynamics (SPH) simulations. Visualisation of SPH data is more complicated than for grid-based codes
because the data are defined on a set of irregular points and therefore requires a mapping procedure to a two
dimensional pixel array. This means that, in practise, many authors simply produce particle plots which offer
a rather crude representation of the simulation output. Here we describe the techniques and algorithms which
are utilised in splash in order to provide the user with a fast, interactive and meaningful visualisation of one,
two and three dimensional SPH results.
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1 Introduction

Smoothed Particle Hydrodynamics (SPH, for recent
reviews see Price 2004; Monaghan 2005) is a Lagrangian
particle method for solving the equations of fluid dynam-
ics. It has found widespread use in astrophysics due to
the ability to simulate complicated three dimensional flow
geometries and free surfaces with relative ease and the nat-
ural coupling with N-body techniques for self-gravitating
problems. For example, SPH is used widely for simula-
tions of cosmological structure formation (e.g. Frenk et al.
1999; Springel 2005), for problems related to star (e.g.
Bate et al. 2003) and planet (e.g. Mayer et al. 2002) forma-
tion and in simulating astrophysical accretion discs (e.g.
Smith et al. 2007) and stellar collisions (e.g. Freitag &
Benz 2005; Dale & Davies 2006) and publicly-available
SPH codes such as gadget-2 by Springel (2005) have
found widespread application.

However, visualisation of SPH data is not a straightfor-
ward process, since the data are defined on a set of moving
points which follow the fluid motion and derivatives
are evaluated by interpolation from neighbouring points
weighted by a smoothing kernel. In practise many authors
simply present particle plots which are a rather crude rep-
resentation of the data. For example the widely used and
publicly available tipsy1 visualisation tool, though written
for N-body simulations, is often used for SPH visualisa-
tion where the only procedure possible is to colour the
particles according to the value of a scalar field such as
density.

A faithful visualisation of SPH data is much more com-
plicated than for grid-based fluid codes since, for a smooth

1 http://www-hpcc.astro.washington.edu/tools/tipsy/
tipsy.html

representation, a mapping procedure from the particles to
a two dimensional array of pixels is required. Using com-
mercial visualisation packages (e.g. idl) for this procedure
is often inefficient because, for example, they require sim-
ply interpolating to a 3D grid first rather than mapping
directly from the particles to the two dimensional pixel
array required for a particular visualisation. Also, given
that interpolation lies at the heart of SPH, consistency sug-
gests use of the same interpolation algorithms as part of
the visualisation procedure. Because fluid particles in SPH
preserve their identity, there are also certain visualisation
procedures which are possible which cannot be used in an
Eulerian context, such as tracing the history of a portion of
the flow via its component particles and tracking of par-
ticular objects. These aspects of SPH visualisation give
strong motivation for a dedicated software tool designed
to visualise SPH data using SPH algorithms. This paper
presents the software design and algorithms implemented
in exactly such a tool, which we have called ‘splash’.

splash differs from other visualisation tools because it
is designed specifically for SPH visualisation and works
both interactively and non-interactively (see the discus-
sion relating to the software design below). For example
ifrit2 is a publicly-available tool written to visualise ioni-
sation fronts in cosmological simulations (including those
using particles) but allows only an interactive visualisa-
tion and lacks many of the features of splash such as
the ability to visualise in one, two and three dimensions,
to select and hide particles and to track portions of the
flow across multiple dump files. splash allows plotting to
both interactive and non-interactive devices allowing both
a mouse-click driven visualisation as well as a ‘pipeline’

2 http://home.fnal.gov/∼gnedin/IFRIT/
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mode for producing the same visualisation from a series
of dump files (without the need for any kind of scripting).
Similarly splotch3 is a raytracing utility to visualise SPH
simulations in a manner similar to the ‘surface rendering’
technique implemented in splash (see Section 3.2) but
does not allow other visualisation techniques and does
not have any interactive capabilities.

Other publicly available tools such as supermongo and
gnuplot implement primitive plotting functionality at a
much lower level and would require a script of similar
length to the splash source code to achieve similar func-
tionality in terms of visualising SPH data (equivalent to
splash’s use of the pgplot library for actually plotting
the results of the rendering operations). splash can also
be used to visualise remotely from the same location as
the data are produced (e.g. on a remote supercomputing
facility), installation on which is straightforward since the
only requirement is a fortran compiler which can also
be used to compiler the pgplot libraries. Using a commer-
cial package, this would not always be possible because
it would require the remote facility to have the appropri-
ate license (this in particular applies to idl). Furthermore
many visualisation tools require some form of scripting
to achieve the desired functionality (in idl’s case, to the
level of an entire programming language). Since splash is
specifically tailored to visualise SPH simulations with set-
tings changed via a series of command-line based menus,
no scripting is required even for complicated tasks such
as producing a sequence of plots from multiple dump files
(either interactively or non-interactively).

The paper is organised as follows: In Section 2 we dis-
cuss the basic requirements driving the software design
and present the design in detail; in Section 3 we discuss
the basic methods for visualising SPH data and how these
are incorporated into splash and in Section 4 we discuss
the details of the interpolation algorithms implemented.
Some additional features are described in Section 5 and
the code’s performance and memory usage are described
in Section 6. A summary is given in Section 7.

2 Software Design

The basic requirements I set for an SPH visualisation tool
(based largely on my own experience of performing SPH
simulations) were the following:

1. Capable of producing sufficiently annotated, appro-
priately labelled figures suitable for inclusion in
research papers.

2. Capable of producing a sequence of images for
making animations.

3. Capable of reading data directly from binary code
dumps from users’ SPH codes.

4. Visualisation of SPH data in 1, 2 and 3 dimensions.
5. Algorithms should be consistent with the basic SPH

method.

3 http://dipastro.pd.astro.it/∼cosmo/Splotch/

6. Should be easy to apply the same visualisation to
different dump files (either interactively or non-
interactively).

7. Visualisation of both scalar and vector fields defined
on the particles.

8. Visualisation should be interactive so the user can
rapidly understand the data and find the best repre-
sentation.

9. Remote visualisation capability, since simulation data
are often produced remotely on supercomputing facil-
ities from which data transfer is awkward and time-
consuming.

10. Written in a programming language familiar to users.

splash is a program designed to meet these basic
visualisation requirements in the most efficient manner
possible. Each of the above requirements have strongly
constrained the software design. For example the require-
ment that the visualisation be interactive means that simple
but inefficient procedures such as interpolating from the
particles to a 3D grid before using standard grid-based
visualisation techniques cannot be utilised.

The basic software design which achieves all of the
above is outlined in Figure 1. The code (written in
fortran 90) is built around a command-line menu struc-
ture (designed so as to meet the requirement for remote
visualisation) with the actual plotting performed via
the pgplot graphics subroutine library4 (thus satisfy-
ing the requirements for production of figures for papers
via the postscript device drivers; for movies via bitmap
device drivers such as PNG and GIF; for interactivity via
interactive devices such as the X-windows driver). The use
of a graphics library not only facilitates the easy reproduc-
tion of the same plots on different devices but also means
that splash can be focussed on the data-input and manip-
ulation side of the visualisation procedure rather than the
implementation of primitive plotting functionality.

Plot settings are changed either non-interactively via a
series of sub-menus accessed on the command line from
the main menu; or interactively using the mouse and/or
pressing particular keystrokes with the cursor in the plot-
ting window (this is the ‘interactive mode’ indicated in
Figure 1).

Rather than requiring the user to convert data to an
intermediate format (e.g. ascii files), data are read directly
from the binary code dump files – this is a crucial require-
ment for rapid visualisation and makes for significantly
reduced disk space requirements (since no intermediate
storage is required), which can be a major constraint on
many systems for simulations involving �106 particles.
The filenames are read from the command line, making
it easy to read all files from a simulation by using wild-
cards (e.g. ‘splash dump*’). Read routines are supplied
for several widely used SPH codes (e.g. gadget, Springel
2005; vine, Wetzstein in preparation; and Matthew Bate’s
SPH code, Bate 1995). Optionally, a further set of derived

4 http://www.astro.caltech.edu/∼tjp/pgplot
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Figure 1 Basic software design.

quantities can be calculated from the data read. For a
typical SPH data set this would include the radius, the
magnitude of all vector quantities and the entropy. These
quantities appear as ‘extra columns’ as if they had been
read from the dump file.

The first file listed on the command line is read on
entry (see Figure 1) and this determines the basic param-
eters used for the visualisation such as the number of data
columns, column labels and unit settings where appro-
priate. The data are then listed by column in the main
menu, where the column number corresponds to the posi-
tion of a variable in the data read. This means that any
two parameters can be plotted against one another (for
example density versus x would be plotted by typing 6
for the y-axis and 1 for the x-axis assuming column 1
contains the particle x-position and column 6 contains the
density). Where two of these columns correspond to par-
ticle coordinates we refer to this as a ‘coordinate plot’
which (provided particle masses, density and smoothing
lengths have been read from the dump file) can be plotted
either as particle plots or with a third quantity ‘rendered’
to a pixel array. Thus, for example, a plot of density in a
two dimensional domain is a plot of y versus x with den-
sity rendered. If vector quantities are present in the data
(specified in the data read corresponding to that particular
data format) a fourth quantity can also be plotted over the
rendered plot in the form of an arrow plot. In 3D these
plots can either be projection (using all particles) or cross

section plots (using only particles contributing to a slice
positioned in the third coordinate direction). Similarly two
dimensional ‘rendered’ plots are either plots using all of
the particles or line plots tracing an oblique cross sec-
tion through the computational domain. The interpolation
procedures used to map from the particle data to a ren-
dered image are described below and the algorithms are
presented in Section 4.

The plotting is directed to a particular device via a
pgplot prompt. For interactive devices, the program then
enters ‘interactive mode’, where the user can manipulate
the data interactively either using the mouse (to zoom,
change colour bar limits, select and colour particles and
move legend positions) or via keystrokes pressed in the
plot window, giving access to a wide range of options such
as rotating the particles, moving the 3D observer, adapting
plot limits, plotting smoothing circles, labelling particles,
changing the colour scheme, adjusting the length of arrows
on vector plots, setting up animation sequences, find-
ing the gradient of a line and (most importantly) moving
forwards and backwards through timesteps. For example
pressing the space bar moves forwards to the next dump
file, whereupon the same plot is repeated (and repeatedly
pressing the spacebar produces a crude ‘animation’depen-
dent of course, on the speed at which data can be read from
disk and plotted). This is indicated by the loop in Figure 1
which proceeds from interactive mode via the data read
back to the ‘plot’ step and finally returning to interactive
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mode. Where no data read is required the plot is simply
re-plotted with the changed settings (perhaps recalculating
the interpolation to pixels where necessary).

A key feature facilitating the easy production of anima-
tions is that, when plotting is directed to a non-interactive
device, the plotting cycles automatically through all of
the dump files on the command line. This is indicated
by the loop in Figure 1 proceeding from the ‘plot’ step
back to the data read (if the device is non-interactive) and
returning plot the same figure for the next dump file with
settings unchanged.

The settings for a particular plot can be saved to disk
by pressing ‘s’ from the main menu (see Figure 1). This
saves a file in the current working directory containing
(in fortran 90 NAMELIST format) all of the current
plot settings. This file is then read automatically on the
next invocation of splash such that plot settings can be
restored. A ‘full save’ (implemented by pressing ‘S’ from
the main menu) saves both the plot settings and the current
minimum and maximum limits set for each column (in a
simple two-column ascii file), so that exactly the same
plot can be reproduced on the next invocation of splash.
Additional files are also saved where physical units have
been applied to the data columns or animation sequences
have been set.

The plot settings are structured into fortran 90 mod-
ules which contain the parameters which may be changed
via a particular submenu together with the subroutine
implementing the submenu itself. Each settings module
contains it’s own namelist for those parameters which
should be saved to disk. Thus the ‘save’ operation simply
saves all of the namelists in order into a single file. This
structure means that, for the programmer, it is a straight-
forward task to add additional menu options affecting
particular plotting functions (e.g. settings related to vec-
tor plots are changed in a ‘vector plot options’ submenu
and both the settings and the submenu are contained in the
same fortran 90 module. This module is then used only
in the subroutines which implement the plotting of vector
plots, so any parameters changed via options in the vector
submenu will be automatically available near where they
will be used to make plotting decisions and automatically
saved to the defaults file, provided they have been added
to the namelist).

3 Plot Types

The ‘central engine’ of the visualisation procedure is
encapsulated in the ‘plot’ step in Figure 1. An expanded
outline of this step is shown in Figure 2. There are essen-
tially two types of plots: particle plots or rendered plots,
where a further rendered plot of vector arrows can be plot-
ted on top of either of these. The procedure for each of
these is described in turn below. Note that transforma-
tions such as log, rotation, 3D perspective and change of
co-ordinate systems are applied to the particle data prior
to calling any interpolation routines.

present

Interpolate
to pixels

Interpolate
to pixels

Return Vector plot

Yes

No

If non-SPH
particles

Apply transforms
e.g. rotate, 3D perspective
log10, coordinate system

Render?

No

Pixel plotParticle plot

Particle dataEntry

Yes

Vector plot?

Figure 2 The plotting pipeline.

3.1 Particle Plots

If rendering is not being used (i.e. the plot is not a coor-
dinate plot or no third quantity has been selected), the
plot can simply proceed by plotting the particle positions
directly on the plotting device (Figure 2), using markers
which can be chosen dependent on the particle types (set
via the submenus accessed from the main menu, see Fig-
ure 1). A simple particle plot example is shown in the top
panel of Figure 3. Particle colours can be changed in a
variety of ways. For example, selecting particles with the
mouse and pressing keys 1–9 whilst in interactive mode
colours the selected particles with colours corresponding
to the respective pgplot colour indices. Since colours allo-
cated to particles are retained in all subsequent plots, this
can be used to select ranges of a particular parameter (e.g.
by selecting particles on a density-versus-x plot) with the
colours still appearing on a different plot (e.g. a coordi-
nate plot of y versus x). Similarly particles can be coloured
using data from a dump corresponding to the initial condi-
tions and, provided particles retain their identity between
dumps, the same particles will still appear coloured when
plotted in subsequent dumps.

Particles can also be coloured according to the value of
a particular quantity by setting an option which renders via
particle colours instead of interpolating to pixels, although
the latter method (see below) is strongly preferred as a
method of visualisation. However there are circumstances
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Figure 3 Top panel:A simple particle plot produced from a 2D sim-
ulation simply by plotting all of the particle positions. Middle panel:
The same data but plotted with data rendered to a pixel array instead
of plotting particles. Bottom panel: with a vector plot additionally
overlaid (in this case showing the magnetic field in the simulation).

where it may be desirable to see the actual values of a
quantity on the particles themselves.

Where the ‘cross section’ option has been set from the
menu, particles are plotted in a thin slice of finite (although

Figure 4 Visualisation of a large scale star cluster formation cal-
culation (Price & Bate 2007) via a 3D rendered plot showing the
density integrated through the z-direction.

user-adjustable) thickness around the user-defined cross
section slice position.

3.2 Rendered Plots

‘Rendered’ or ‘pixel’ plots proceed in a similar manner
to particle plots but with an intermediate step where the
particle data are interpolated to the two-dimensional pixel
array corresponding to the viewing surface (Figure 2). In
3D rendered plots are either projections (integration along
the line of sight), cross section slices or surface rendered
plots (see Section 4.3.3). In 2D the plot can either be a
projection (a straight interpolation to a 2D pixel array) or
a cross section (a 1D line plot drawn arbitrarily through
the 2D domain). Rendered plots do not apply in the case
of 1D data. An example of a 2D rendered plot is shown in
the middle panel of Figure 3, where the same data shown
in the particle plot (top panel) has been used. Note the
striking difference between the visualisation using pixels
compared to the raw particle plot (this kind of plot is often
used as a representation of the density field). One of the
goals of splash is to make visualisation of SPH data in
this manner a straightforward task for the user.

A slight complication here is that often simulations con-
tain particles of multiple types, some SPH (e.g. different
types of gas particle) and some non-SPH (e.g. sink or
N-body particles). In this case the interpolation is per-
formed using all of the available SPH particles, provided
plotting of that type has been turned on via the submenu
options. Particles of non-SPH types can optionally be plot-
ted on top of rendered plots (e.g. sink particles appear on
top of a rendered plot of gas density). This is indicated
by the dashed pathway in Figure 2. An example of a three
dimensional rendered projection (i.e. showing in this case
column density) of a large scale star formation calculation
(similar to that described in Bate et al. 2003) is shown
in Figure 4, where additionally a sink particle has been
plotted over the rendered array.

One further type of rendering is available in splash
for three dimensional data, which we refer to as ‘sur-
face rendering’ (the algorithm is described in Section
4.3.3, below). This type of rendering provides an ‘optically
thick’ view of the particles (as opposed to the ‘optically
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Figure 5 Visualisation of a neutron star merger calculation (Price & Rosswog 2006) via a 3D surface rendered plot showing the temperature
on a ‘surface of last scattering’. The top panel shows results near the start of the simulation using all of the particles, whereas in the bottom
panel only particles below the mid-plane have been used in the interpolation, producing a ‘cut-away’ effect.

thin’ view provided by the column integrated render-
ing), showing the value of a particular parameter on the
‘surface of last scattering’, determined by a user-defined
opacity which is proportional to the particle density.

Generally this type of visualisation works best for simula-
tions where there is a well-defined surface and/or the range
of densities in the simulation is not too high. An example
is shown in Figure 5 showing gas temperature during the
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merger of two neutron stars similar to those described in
Price & Rosswog (2006). The top panel shows a surface
rendering near the start of the simulation where all of the
particles have been used in the interpolation. The bottom
panel shows a similar plot but where only particles below
the midplane have been used in the calculation, giving a
‘cut-away’ effect.

3.3 Vector Plots

Vector quantities are visualised using arrow plots,
although more advanced visualisations may be possible
in future. Whilst in principle an arrow could be plotted for
each SPH particle with length proportional to the value of
the vector on that particular particle, these type of plots
quickly become cluttered when large numbers of particles
are used in the simulation. Thus vector plots in splash are
implemented by first interpolating each component of the
vector quantity to the two-dimensional pixel array corre-
sponding to the viewing surface, where in 3D the plot can
be an integration of each component along the line of sight
or where vector arrows are plotted in a cross section slice
(depending on whether cross sections or projections have
been selected in the menu options, also affecting rendered
plots).

An example of a vector plot is shown in the lower panel
of Figure 3 where the arrows are shown overlaid on the
rendered plot of density (otherwise identical to the middle
panel). A preliminary feature has also been implemented
whereby streamlines can be calculated for the interpolated
vector field and plotted as contours (instead of plotting
arrows). As presently implemented (see Section 4.2.4)
this works quite well when the vector field is smooth but
gives poor results where the field has strong gradients.
A strongly desirable feature for future implementation
would be an algorithm for tracing three dimensional field
lines through SPH particle data.

4 Interpolation Algorithms

4.1 SPH Interpolation

The heart of the SPH method (see e.g. Monaghan 1992;
Price 2004; Monaghan 2005 for reviews) is the following
identity for an arbitrary function A(r) defined on spatial
coordinates r:

A(r) =
∫

A(r′)δ(|r − r′|)dr′, (1)

where δ is the Dirac delta function. This integral is approx-
imated in SPH by replacing the delta function with a
smooth function W with finite characteristic width h

which reduces to a delta function in the limit h → 0, giving
the SPH ‘integral interpolant’ in the form

A(r) =
∫

A(r′)W(|r − r′|, h)dr′ + O(h2), (2)

where the error in the representation ofA is of orderh2 pro-
vided the kernel function W is even and the kernel function

is normalised such that the volume integral of the kernel
is unity. This integral is discretised onto the particles by
replacing the integral with a summation over neighbour-
ing particles and replacing the mass element ρdr′ with the
neighbouring particle mass m, i.e.

A(r) ≈
N∑

j=1

mj

ρj

AjW(|r − rj|, h), (3)

where the subscript j refers to a quantity defined on parti-
cle j. The expression given above is the SPH ‘summation
interpolant’, forming the basis of the SPH approach and
therefore the basis of the interpolation algorithms used
in splash for SPH visualisation. A normalised version of
this interpolant is achieved by dividing the result by the
interpolation of unity, given by

1 ≈
N∑

j=1

mj

ρj

W(|r − rj|, h). (4)

Many different forms are possible for the smoothing
kernel W , but the most commonly used is the cubic spline
kernel (see Monaghan 1992):

W(r, h) = σ

hν




1 − 3
2q2 + 3

4q3, 0 ≤ q < 1;
1
4 (2 − q)3, 1 ≤ q < 2;
0 q ≥ 2

(5)

where q = |ra − rb|/h, ν is the number of spatial dimen-
sions and the normalisation constant σν is given by
σ1 = 2/3, σ2 = 10/(7π) and σ3 = 1/π. This kernel satis-
fies the basic requirements that it is Gaussian-like and has
smooth first derivatives which tend smoothly to zero as
q → 2 and is zero beyond q = 2. The quantity h is the
smoothing length, which in most astrophysical applica-
tions is a spatially variable quantity set in such a way as
either to fix (either exactly or approximately) the num-
ber of nearest neighbours (Hernquist & Katz 1989; Benz
et al. 1990), or via an analytic relation to the (number) den-
sity (Monaghan 2002; Springel & Hernquist 2002; Price &
Monaghan 2007).

By default the interpolations used in splash are non-
normalised. The reason for this is that, at a free surface
the normalised interpolation (that is, using Equation 3
and dividing the result by Equation 4) looks odd, whereas
an interpolation using Equation (3) falls away smoothly.
An example is shown in Figure 6 which shows a cross
section slice of density from a three dimensional neutron
star merger calculation (Price & Rosswog 2006). The top
panel shows the results using a non-normalised interpo-
lation whereas the bottom panel shows the results when
the interpolated array is normalised (by dividing by the
interpolation of unity). The normalised interpolation per-
forms poorly at the edges, where the effects of individual
particle smoothing spheres are visible. However, using a
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Figure 6 Cross section slice of density (and velocity arrows) in a neutron star merger calculation (Price & Rosswog 2006) showing the
difference between non-normalised (top) and normalised (bottom) interpolation. Normalised interpolation is turned off by default as it produces
spurious effects due to individual particles at free surfaces (bottom panel).

normalised interpolation improves the accuracy of volume
rendered quantities on the pixels by removing effects due
to the particle distribution. Thus it is recommended that
a normalised interpolation should always be used if there
are no free surfaces.

To avoid round-off error in interpolation calculations
(done in single precision), we write the summation inter-
polant in the simpler form:

A(r) ≈
N∑

j=1

wjAjW(r/h). (6)
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where wj is the dimensionless weight given by

wj ≡ mj

ρjh
ν
j

, (7)

where ν is the number of spatial dimensions and W refers
to the dimensionless part of the kernel function, such that

W(|r − rj|, h) = 1

hν
W(r/h), (8)

(i.e. we have incorporated the 1/hν part of the usual kernel
definition into the weight).

With this definition a normalised interpolation is
given by

A(r) ≈
∑N

j=1 wjAjW(r/h)∑N
j=1 wjW(r/h)

. (9)

As an interesting aside, it is worth noting that the usual
formula for varying the smoothing length in SPH codes is
given by

h = η

(
m

ρ

)1/ν

, (10)

where η is a constant and ν refers to the number of spatial
dimensions. Enforcing this relation rigourously (e.g. as
in Springel & Hernquist 2002; Price & Monaghan 2004,
2007) thus corresponds to using constant weights (Equa-
tion 7) in the interpolation with the value related to the
parameter η. Thus strictly, only knowledge of the (con-
stant) weight value and the smoothing length is required
for interpolation of any quantity in these codes.

4.2 Rendering of 2D Data

4.2.1 Interpolation to Pixels

Rendering of 2D data involves a straightforward appli-
cation of Equation (6) to the interpolation of data from
the particles to a two dimensional grid of pixels. Thus we
have

A(x, y) =
∑

j

wjAjW(r/h), (11)

where

r =
√

(x − xj)2 + (y − yj)2, (12)

the summation is over contributing particles and we take
the smoothing length as

h = max(hj, �/2), (13)

that is, the maximum of the particle smoothing length and
half of the pixel width (the latter thus being used gen-
erally only when few pixels are used in the interpolated
plot). The interpolation is performed as a ‘scatter’ opera-
tion from the particles, that is, for each particle b, we find
the range of pixels to which the particle should contribute

Figure 7 Interpolation of 2D data: for each particle we perform a
loop over the pixels (in x and y) to which it contributes, adding the
contribution from that particle to the pixel array.

(x1, y1)

2hi (x2, y2)

i

Figure 8 Computation of a one dimensional cross section through
2D data. Each particle contributes to a sequence of pixels along the
section of the cross-section line (if any) that intersects the smoothing
circle.

(in both x and y) and add the contribution from particle b

to all of those pixels. Note that this is much more efficient
than attempting to perform the summation over particles
in Equation (11) for every pixel. The procedure is illus-
trated in Figure 7 and examples of 2D interpolation are
shown in Figure 3.

4.2.2 Cross Sections of 2D Data

The cross-sectioning algorithm for 2D data (giving a
1D line) is completely general and can be used for arbitrary
oblique (or straight) cross sections. The cross section is
defined by two points (x1, y1) and (x2, y2) through which
the line should pass. These points are converted to give
the usual equation for a line

y = mx + c. (14)
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Figure 9 Example of a one dimensional cross-section through 2D data, in this case showing the pressure distribution along a y = 0.3125 cut
through a high resolution version of the simulation shown in Figure 3.

This line is then divided evenly into pixels to which the
particles may contribute. The contributions along this line
from the particles is computed as follows: For each parti-
cle, the points at which the cross section line intersects the
smoothing circle are calculated (illustrated in Figure 8).
The smoothing circle of particle i is defined by the equation

(x − xi)
2 + (y − yi)

2 = (2h)2. (15)

The x-coordinates of the points of intersection are the
solutions to the quadratic equation

(1 + m2)x2 + 2(m(c − yi) − xi)x + (x2
i

+ y2
i − 2cyi + c2 − (2h)2) = 0. (16)

For particles which do not contribute to the cross section
line, the determinant is negative. For the particles that do,
it is then a simple matter of looping over the pixels which
lie between the two points of intersection, calculating the
contribution to each pixel using the 1D SPH summation
interpolant, i.e.

A(x) =
∑

j

wjAjW(|x − xj|/hj). (17)

An example of a 1D cross section through 2D data is
shown in Figure 9. In principle a similar method could be
used for oblique cross sections through 3D data. In this
case we would need to find the intersection between the
smoothing sphere and the cross section plane. However in
3D it is simpler just to rotate the particles first and then
take a straight cross section as described above.

4.2.3 2D Vector Plots

Vector plots of 2D data are produced by interpolating
the x- and y-components of the vector separately to the
pixel array, which are then used to plot an array of arrows
centred on the pixels, with length proportional to the vector
magnitude. Each component is interpolated exactly as for

scalar 2D data, i.e.

Ax(x, y) =
∑

j

wjAx,jW(r/h), (18)

Ay(x, y) =
∑

j

wjAy,jW(r/h), (19)

r =
√

(x − xj)2 + (y− yj)2, (20)

h = max(hj, �/2). (21)

The main difference between interpolation for vector plots
and that used for rendered plots is that far fewer pixels
are used for the arrow plots (otherwise arrows become
indistinguishable). Thus in general the interpolation for
vector plots is more like a smoothing procedure rather
than an interpolation (i.e. there are far more particles than
pixels). Since we only calculate distances to the centres of
pixel cells, this is where the minimum smoothing length
given by Equation (21) becomes particularly important in
providing a smooth representation of the data.An example
of a 2D vector plot is shown in the lower panel of Figure 3.

4.2.4 Streamlines

For a two dimensional vector map, streamlines (‘field-
lines’) of the vector field can be plotted by integrating the
vector field to find the stream function, contours of which
provide the field lines. The stream function is given by

�(x, y) =
∫

vx(x, y)dy −
∫

vy(x, y)dx, (22)

such that

vx = ∂�

∂y
, (23)

vy = −∂�

∂x
. (24)

In splash we compute the integral based on the inter-
polated velocity field on the pixel array using a simple
trapezoidal-rule integration. As presently implemented,
this procedure works quite well when the vector field
is smooth but performs poorly where there are strong
gradients present.
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4.3 Rendering of 3D Data

In three dimensions we must take either a projection
through the whole domain or a cross section slice.

4.3.1 Projections (Line-of-Sight Integration)

In the projection case we wish to obtain an integral of
the rendered quantity along the line of sight. We begin
with the 3D SPH summation interpolant in the form

A(x, y, z) =
∑

j

mj

Aj

ρj

W(x−xj, y−yj, z−zj, hj), (25)

whereW is the usual (3D) cubic spline kernel Equation (5).
Taking the integral of both sides along the line of sight
(assumed to be along the z axis) we have
∫

A(x, y, z)dz

=
∑

j

mj

Aj

ρj

∫
W(x − xj, y − yj, z − zj, hj)dz. (26)

This shows that the line-of-sight integration for three
dimensions can be written as a two dimensional
interpolation

A(x, y) =
∫

A(x, y, z)dz

=
∑

j

mj

Aj

ρj

Y(x − xj, y − yj, hj), (27)

where the 2D kernel (denoted Y ) is the 3D kernel
integrated through one spatial dimension, i.e.

Y(x, y) =
∫

W(x, y, z)dz. (28)

For practical purposes we write Y in the form

Y(rxy, h) = 1

h2
F(qxy), (29)

where qxy = rxy/h and F(qxy) is the dimensionless 2D
kernel given by

F(qxy) =
∫ (R2−q2

xy)
1/2

−(R2−q2
xy)

1/2
W(q)dqz, (30)

where qz = z/h, q2 = q2
xy + q2

z , R is the kernel radius (=2
for the cubic spline) and W is the usual dimensionless
kernel function for the cubic spline, i.e.

W(q) = 1

π




1 − 3
2q2 + 3

4q3, 0 ≤ q < 1;
1
4 (2 − q)3, 1 ≤ q < 2;
0 q ≥ 2.

(31)

The integral (30) is not (obviously) tractable analytically
(apart from at qxy = 0). However it is straightforward to
perform this integration numerically (for all qxy from

Figure 10 Computation of a two dimensional cross section through
3D data: each particle contributes to pixels in the cross section plane
that lie within the smoothing sphere.

0 → 2) and store the results in a table for the interpola-
tion calculation. This is the method adopted in splash. An
alternative would be to use a different kernel in the visu-
alisation for which the above integral can be calculated
analytically.

As previously, to avoid problems with round-off error
we use the dimensionless weights defined in Equation (7),
thus writing the final interpolant (as implemented in the
code) in the form

A(x, y) =
∫

Adz =
∑

j

wjhjAjF(rxy/h), (32)

where as previously we take

h = max(hj, �/2). (33)

An example of a 3D column-integrated plot is shown in
Figure 4, showing the results of a large scale star clus-
ter formation calculation (in this case showing integrated
density, i.e. column density).

In the case of vector quantities each component is
interpolated separately in the form

Ax(x, y) =
∫

Axdz =
∑

j

wjhjAx,jF(rxy/h), (34)

Ay(x, y) =
∫

Aydz =
∑

j

wjhjAy,jF(rxy/h), (35)

where again

h = max(hj, �/2). (36)

This results in a line-of-sight integrated vector map which
can be plotted on top of a rendered plot or as a standalone
plot.

4.3.2 Cross Sections of 3D Data

A cross section can be taken of three dimensional data
by summing the contributions to each pixel in the cross
section plane from all particles within 2h of the plane (Fig-
ure 10). In the implementation used in splash the cross
section is always at a fixed value of the third co-ordinate
(i.e. for xy plots the cross section is in the z direction).
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Oblique cross sections can be taken by rotating the par-
ticles first (the combination of settings can be achieved
easily in splash’s interactive mode by drawing a cross
section plane with the mouse, from which the rotation
angle and slice position are automatically calculated and
the cross section subsequently plotted). The interpolation
for cross sections (e.g. in z) takes the form

A(x, y, z0) =
∑

j

wjAjW(r/h), (37)

where

r =
√

(x − xj)2 + (y − yj)2 + (z0 − zj)2 (38)

h = max(hj, �/2), (39)

and z0 refers to the position of the cross section slice. As
previously, vector plots are achieved by interpolating each
component separately. Examples of 3D cross section plots
are shown in Figure 6 of both scalar and vector fields.

4.3.3 3D Surface Rendering of SPH Data

A further option for visualisation of 3D data is to use
surface rendering (see Section 3.2). The idea is to produce
a visualisation of the surface of a data set by performing a
ray-trace through the SPH particles, with the density distri-
bution giving the optical depth and the rendered quantity
providing the colour. Thus low-density regions will be
transparent whilst high density regions will be opaque.

For a homogeneous medium the transport equation for
a ray traced from 0 → D is

Iν(D) = Iν(0)e−τν(D) + Sν(1 − e−τν(D)), (40)

where Iν is the (frequency dependent) intensity, Sν is the
source function along the ray and τ is the monochromatic
optical depth. The first term in (40) represents absorp-
tion (intensity decreases by e−τ) whilst the second term
represents emission. For example, at large optical depth
(τ → ∞) everything is obscured and all we see is the
source function (i.e. light emitted from D), whereas at
low optical depth τ → 0 the source function contributes
nothing and all we see is the previous intensity I(0).

The optical depth τ is given by

τ(D) =
∫

κρds, (41)

whereρ is the density andκ is the opacity (with dimensions
of ‘cross section per unit mass’).

For SPH visualisation the procedure is as follows. First
of all we sort the particles in ‘z’, where z represents the
distance from the observer to the particle. Then starting
from the furthest particles, we consider the attenuation of
a ray through each particle. Since what we are after is a
final 2D pixel map, what we do in practise is take one ray
for each pixel, but rather than taking a ray at a time (and

looping over particles), we loop over all of the particles
(from back to front), calculating the contribution of that
particle to all rays (‘pixels’) in the final pixel map. The
optical depth through the particle is given by

τ(x, y) = κ

∫
ρdz, (42)

where we have assumed that the opacity κ is independent
of z. Using the SPH summation for the density, we have

τ(x, y) = κ
∑

j

mj

∫
W(|r − rj|, h)dz, (43)

giving just a summation involving the SPH kernel inte-
grated through one spatial dimension, which is the same
as is used in the 3D projections (see 4.3.1 for details of how
we compute this). All that remains is to adjust κ appropri-
ately to give the desired surface position. In splash an
approximate value for κ is computed according to

κ = πh̄2

(m̄Y(0)d)
, (44)

where h̄ and m̄ are estimates for the average smooth-
ing length and particle mass, calculated from the current
(fixed) plot limits according to h̄ = 0.5(hmin + hmax) (sim-
ilarly for m̄, the important aspect here is that these values
do not change between dump files and can be restored
from saved settings) and Y(0) is the value of the integrated
kernel function (Section 4.3.1) at the origin. The dimen-
sionless parameter d is then a user defined value giving
approximately the surface depth in terms of ‘number of
smoothing lengths’.

Actually, rather than computing the sum in Equa-
tion (43) for the whole ray, we consider just the attenuation
of the ray through one particle at a time, using the optical
depth for that particle alone. Looping over each particle,
we calculate the contribution to all rays (pixels) within the
kernel radius 2h. That is we have, for each particle

I(x, y) = I0(x, y)e−τi(x,y) + Si(1 − e−τi(x,y)), (45)

where Si is the source function (discussed below) and the
optical depth through the particle’s reach is

τi(x, y) = κmiY(x − xi, y − yi, h), (46)

where Y is the integrated kernel function as in Section
4.3.1.

In the computation of the surface rendering, there are
two ways of proceeding. The first option is to assign each
particle an actual red, green and blue colour correspond-
ing to the particle’s value of the rendered quantity (i.e.
from the colour table). The source function then consists
of a red, green and blue intensity Si(r), Si(g), Si(b). Then
we would add up (i.e. using Equation 45) the intensities in
each colour (red, green and blue) to get final red, green and
blue values at each pixel. The effect of this is to ‘blend’
colours (so a red plus blue would make purple), which
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d

zOBS – z 

Figure 11 3D perspective: Objects at a distance d from the
observer appear with unit magnification, whereas objects further
away appear progressively smaller depending on their distance from
the observer.

is more like what happens in a real gas, but is meaning-
less in the sense that the colours produced may no longer
correspond to those in the colour table.

The alternative is to use a ‘monochromatic’ intensity,
that is where the source function Si for each particle is just
the value of the rendered quantity at the particle location.
Alongside this a ‘total’ optical depth is computed along
each ray. Again, we add up the intensities according to
Equation (40), but now there is only a single value of I for
each pixel, which corresponds to a final ‘ray-averaged’
value of the rendered quantity. The pixel map can then
be rendered in the usual manner using the ray-averaged
values (which represent the values of the rendered quan-
tity at the ‘last scattering surface’). The only complication
here is that we must make the particles optically thin to
the background. Thus the final colours must be faded to
the background colour (i.e. black) according to the total
optical depth computed for each pixel. The latter method
is the one used in splash. However here we run into a
limitation of the pgplot libraries, namely that the devices
are limited to 256 colours, whereas we require 256 colours
also at various degrees of blackness. Thus at present a non-
faded version is returned to the pgplot device whilst a full
(faded) version is written directly as a .ppm file (although
without axes and annotation). This is one of the limita-
tions that would make it desirable to change the back-end
graphics library in future.

An example of 3D surface rendering is shown in Fig-
ure 5, showing temperature in a simulation of the merger
of two neutron stars.

4.4 Rotation and 3D Perspective

Added perspective can be given to 3D plots by rotating the
particles (‘parallel projection’) or using a depth-dependent
3D perspective (that is, so that objects further away appear
smaller). For SPH visualisation it is straightforward to
apply these transformations to the particle positions prior
to the interpolation procedure. The algorithm for 3D
perspective is described below.

4.4.1 3D Perspective

3D perspective (illustrated in Figure 11) is defined by
two parameters: a distance to the observer (which we will
call zOBS) and a distance between the observer and a screen

placed in front of the observer (which we will call d). The
transformation from usual x and y to screen x′ and y′ is
then given by

x′ = x ∗ d/(zOBS − z),

y′ = y ∗ d/(zOBS − z). (47)

This means that objects at the distance d will have unit
magnification, objects closer than the screen will appear
larger (points diverge) and objects further away will appear
smaller (points converge). The splash default is a 1/10
reduction at the typical distance of the object (i.e. observer
is placed at a distance of 10 times object size with distance
to screen of 1 times object size). splash sets this as default
using the current ‘z’ plot limits as the ‘object size’.

When using 3D perspective on interpolated plots the
smoothing lengths of the particles are also modified by
the 3D perspective, although the smoothing length used
to give the z length scale on integrated plots (Equation 32)
remains unchanged.

5 Other Useful Techniques

5.1 Fast Particle Plotting

Without using hardware graphics rendering, plotting large
numbers of particles to the screen can be quite slow
(certainly too slow for interactive work) and produces
unnecessarily large files on vector plotting devices (e.g.
postscript). Whilst one of the prime motivations behind
splash is to remove the need for raw particle plots as a
poor man’s SPH visualisation, plots showing correlations
between certain variables or radial profiles can still require
projected plots of large numbers of particles.

splash uses a simple trick to speed up this kind of
plotting by dividing the plot surface into an array of pix-
els (typically 500 × 500) and plotting up to a maximum
of two particles in each cell. This results in a substantial
speed increase with almost no loss in visible information.
Note that upon zooming the same criterion is applied to
the zoomed-in view surface, so the effective resolution is
increased appropriately.

5.2 Accelerated Rendering

The slowest of the rendering techniques is the calcula-
tion of a 3D projection through particles (Section 4.3.1)
and the 3D surface rendering (Section 4.3.3) since they
both involve contributions from all of the particles in the
simulation, not just a subset. The former has the advantage
that it can be easily parallelised (done so using OpenMP in
splash) whilst the latter is more complicated to implement
in parallel (since for the surface rendering the contri-
butions at each z must be added in order). However a
simple optimisation can be applied in both cases by tak-
ing advantage of the spherical symmetry of the kernel
function.

For example, considering the interpolation to the pixels
shown in Figure 7 it is apparent that, provided we assume
that the particle lies in the centre of the pixel which con-
tains it, that the contribution to each quarter of the domain
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will be the same. Thus we can perform the interpolation
to the top quarter of pixels only and copy the result to
the remaining three quarters, providing an in-principle
speedup of 4 for particles contributing to large numbers
of pixels. The caveat is the assumption that the particle
lies in the centre of the pixel. In practise the optimisa-
tion works well (that is, the results are visually identical
to the non-optimised version) except where the particles
are regularly distributed in the domain (e.g. on a lattice in
the initial conditions), in which case the shift in the par-
ticle positions can produce unwanted grid patterns in the
interpolation. For this reason the ‘accelerated rendering’
option is off by default but can be turned on by the user.

6 Performance and Memory Usage

As discussed above, the slowest rendering techniques
used in splash are the calculation of a 3D projection
through particles and the 3D surface rendering. However,
even these are sufficiently fast to be performed interac-
tively. The algorithmic cost of the interpolation scales like
Npart × N2

pix, where Npix is the number of pixels to which
each particular particle contributes. Thus larger images are
more expensive. In splash the default number of pixels is
set quite low (i.e. 200 × 200), with the idea being that a
smaller number of pixels can be used for interactive work
with the final step in producing the finished image to use
a larger number of pixels.

Whilst it is difficult to give precise timings (because the
exact time taken for the rendering depends, amongst other
things, on how many pixels each particle contributes to
and thus how clustered the data are), splash is easily able
to handle very large data sets interactively in reasonable
times. For example, producing a rendered projection of
column density from a three dimensional simulation con-
taining 135 million particles to a 600 × 600-pixel image
takes approximately 55 seconds on a single processor
of our local supercomputer. Using the (shared-memory)
parallel version on 8 cores of the same machine takes
approximately 12 seconds. Similarly a 100 million par-
ticle simulation of a galactic disc takes approximately 26
seconds to render to a 1000 × 1000-pixel image on a sin-
gle processor and around 7 seconds on 8 cores. Using the
accelerated rendering technique described above (Section
5.2) results in a factor of 2–3 speedup on these timings.
Surface rendering is somewhat slower – approximately a
factor of two more expensive than a column-integrated
projection and currently not implemented in parallel.
However the surface rendering technique is also not as
widely applicable to different types of simulation.

In terms of memory use, by default splash reads
into memory an entire dump file, converted to a two-
dimensional single precision array (where the dimensions
are the number of particles times the number of columns).
Thus for a typical ‘full dump file’ from a simulation of
106 particles with 10 quantities (x, y, z, vx, vy, vz, parti-
cle mass, smoothing length, density and thermal energy)
this would require approximately 40 MB of storage (and

hence 400 MB for 107 particles, 4 GB for 108 particles,
etc.). Additionally a 4-byte integer colour index is stored
for each particle and temporary memory is allocated for
the two dimensional pixel array which is rendered to the
screen, the size of which depends on the number of pix-
els chosen by the user (for example a 1000 × 1000 image
would require a further 4 MB). A low-memory mode for
large data sets where memory is only allocated for those
columns actually required to make a particular plot is
currently being implemented (though applicable only to
binary formats where data columns can be read indepen-
dently). In this mode the data are re-read from disk every
time a different plot is made (e.g. when plotting a z–x pro-
jection of column density instead of an x–y projection).
Also plotting functionality which requires additional stor-
age (such as particle colouring) will eventually be disabled
in this mode.

For smaller data sets, splash can also be set to ‘buffer’
all of the dumpfiles into memory, thus with memory
requirements similar to the above times the number of
dump files buffered. This provides a faster visualisation
across multiple files for small data sets (since data do not
have to be read from disk), provided sufficient memory is
available.

For applications involving of the order of 106 particles
(typical of many current SPH simulations), the slowest
part of movie-making (i.e. applying the same visualisation
to a series of data files) is reading the data from disk. To
speed up the visualisation in this case splash flags whether
or not each particular column is required for the image
being produced. For data reads where columns can be read
independently (including that for the gadget code) this is
then used to read only the required subsection of the data
from the dump file, resulting in a much faster data read.

7 Summary/Roadmap

In this paper we have presented splash, a software tool
for the visualisation of data from astrophysical SPH simu-
lations. The program is fully interactive, reads data direct
from code dumps and can be used to visualise both scalar
and vector SPH data in one, two and three dimensions
both to the screen and also to a variety of plotting devices
provided by the pgplot graphics library. The software is
designed to provide the user with a rapid feel for the output
of a simulation and a variety of efficiently-implemented
visualisation techniques unique to SPH with which to rep-
resent the results. There are many other features of splash
not discussed in this paper which we leave the reader to
discover for themselves (and are described in the splash
userguide). These include:

• setting of animation sequences between frames in a
movie;

• exact solutions to common test problems (e.g. hydro-
dynamic shock tubes, Sedov blast wave);

• transformation to different coordinate systems (e.g.
cylindrical, spherical and toroidal coordinates);
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• particle tracking limits;
• multiple plots per page (appropriately tiled where so

desired);
• calculation of quantities not dumped.

Development of and improvements to the algorithms
in splash continues apace, particularly as a result of user
feedback which has already helped to improve certain
aspects of the program substantially. In terms of future
developments, most notable is the absence of a routine
for plotting stream/field lines through 3D SPH data and it
would be highly desirable to be able to do this efficiently
directly from the particles (rather than highly inefficiently
via interpolation to a 3D grid).

Secondly in several places splash has outgrown the
capacities of the pgplot graphics library. There are now
several other graphics libraries layered on similar inter-
faces to pgplot (e.g. plplot and s2plot, Barnes et al.
2006) and migrating the back-end library to one of these
would not represent a formidable challenge. A more chal-
lenging alternative would be to move directly to openGL
rendering, primarily for the speedup but also for the ease
with which complicated 3D graphics can be manipu-
lated. However the difficulty with at least the last two of
these (openGL and s2plot) at present is that inherent
in the splash design is also the ability to produce, non-
interactively, appropriately annotated graphics for use in
research papers. Similarly the visualisation should apply
as easily to a series of dump files (non-interactively) as it
does to a single file (interactively or not).

In summary, splash is an efficient and capable soft-
ware package which makes the visualisation of SPH data
a straightforward and enjoyable task for the user. splash
is publicly available5 and is released under the terms of
the Gnu General Public Licence.

5 http://www.astro.ex.ac.uk/people/dprice/splash/
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