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Abstract The natural sea surface temperature (SST) vari-

ability in the global oceans is evaluated in simulations of the

Climate Model Intercomparison Project Phase 3 (CMIP3) and

CMIP5 models. In this evaluation, we examine how well the

spatial structure of the SST variability matches between the

observations and simulations on the basis of their leading

empirical orthogonal functions-modes. Here we focus on the

high-pass filter monthly mean time scales and the longer

5 years running mean time scales. We will compare the

models and observations against simple null hypotheses, such

as isotropic diffusion (red noise) or a slab ocean model, to

illustrate the models skill in simulating realistic patterns of

variability. Some models show good skill in simulating the

observed spatial structure of the SST variability in the tropical

domains and less so in the extra-tropical domains. However,

most models show substantial deviations from the observa-

tions and from each other in most domains and particularly in

the North Atlantic and Southern Ocean on the longer (5 years

running mean) time scale. In many cases the simple spatial red

noise null hypothesis is closer to the observed structure than

most models, despite the fact that the observed SST variability

shows significant deviations from this simple spatial red noise

null hypothesis. The CMIP models tend to largely overesti-

mate the effective spatial number degrees of freedom and

simulate too strongly localized patterns of SST variability at

the wrong locations with structures that are different from the

observed. However, the CMIP5 ensemble shows some

improvement over the CMIP3 ensemble, mostly in the tropi-

cal domains. Further, the spatial structure of the SST modes of

the CMIP3 and CMIP5 super ensemble is more realistic than

any single model, if the relative explained variances of these

modes are scaled by the observed eigenvalues.

Keywords CMIP � Climate variability � Model

evaluation � Eigenvalue projection

1 Introduction

The Coupled Model Intercomparison Project (CMIP) pre-

sents a highly valued resource to the climate science

research for the understanding of natural variability and

future climate change (Meehl et al. 2007; Taylor et al.

2012). However, the models of CMIP are different in their

structures and physical parameterizations and have shown

significant disagreement and uncertainties on their perfor-

mance (e.g. Gleckler et al. 2008; Jamison and Kravtsov

2010). The aim of the study presented here is to evaluate

the CMIP models skill in simulating the natural internal

spatial structure of sea surface temperature (SST) vari-

ability in all major ocean basins (tropical Indo-Pacific,

North Pacific, tropical and North Atlantic and the Southern

Ocean, see Fig. 1 for domain boundaries). This should

guide the climate community in the understanding of nat-

ural modes of SST variability and support the development

of seasonal to decadal forecasting systems.

Previous model evaluations focused on the mean state

climate (Taylor 2001; Boer and Lambert 2001; Murphy

et al. 2004; Gleckler et al. 2008), the general strength of

climate variability (Boer and Lambert 2001; Gleckler et al.

2008) or on some regional aspects of climate variability

(Guilyardi 2006; Zhou et al. 2009; Jamison and Kravtsov
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2010; Xavier et al. 2010). Missing is a model evaluation of

the SST variability on the global scale.

In the study presented here we will base our model evalu-

ation on the comparison of the leading empirical orthogonal

function (EOF) modes of SST variability for the different

major ocean basins in the model simulations and observations.

We will consider the EOF modes of shorter time scales of

monthly mean high-pass filtered variability and on longer time

scales of 5 years low-pass filtered SST to get some under-

standing of how the evaluation may change with different time

scales. The method of comparing EOF-modes is based on the

studies of Dommenget (2007) and Bayr and Dommenget

(2014). Similar methods are also discussed in Jolliffe (2002,

chapter 13.5) and Krzanowski (1979). This method allows

quantifying the agreement in the multi-variate spatial structure

of SST variability in a systematic and objective way. An

important aspect in such an evaluation is to put the results of

this relatively abstract and complicated analysis into the per-

spective of some simple null hypotheses, which should help to

guide the researchers in evaluating the significance of the

results. The simple null hypotheses used in this study describe

the spatial structure of SST variability, as they would result

from simplified physical processes such as isotropic diffusion

(red noise) or atmospheric forcings only (slab ocean).

The paper is organized as follows: firstly, Sect. 2 pre-

sents the data and methodology used. Section 3 introduces

the null hypotheses chosen for the evaluation and Sect. 4

shows results of the EOF-mode comparison, which are the

main results of this study. Finally a summary and discus-

sion are provided in Sect. 5.

2 Data and method

2.1 Data

The observed global monthly mean SSTs are taken from

the Hadley Centre Sea Ice and SST data set (HadISST,

referred as ‘‘observations’’ below; Rayner et al. 2003) from

1900 to 1999, and the NOAA Extended Reconstructed sea

surface temperature data set (ERSST, Smith et al. 2008)

was chosen as an auxiliary.

Model simulations are taken from the CMIP3 and

CMIP5 databases (Meehl et al. 2007; Taylor et al. 2012).

Our analysis focuses on the 20th century SST simulations

corresponding to the scenarios of ‘‘20c3m’’ in CMIP3 and

‘‘historical run’’ in CMIP5, respectively. Tables 1 and 2 list

all available simulations for this study.

An output of a simple slab ocean coupled experiment is

also used to compare versus the CMIP models in this study.

The atmospheric component of the model is based on the UK

Meteorological Office Unified Model general circulation

model with HadGEM2 atmospheric physics (Davies et al.

2005; Martin et al. 2010, 2011). For our study the atmospheric

resolution is reduced to N48 (3.75� 9 2.5�). For regions with

all-year open ocean conditions the model is coupled to a

simple slab ocean model (e.g. Washington and Meehl 1984;

Dommenget and Latif 2002; Murphy et al. 2004; Dommenget

2010) and otherwise a SST and sea ice climatology based on

the HadISST data set is prescribed. A flux correction scheme

is used to force the model SST to closely follow the HadISST

SST climatology. We take 500 years output from this simu-

lation and divide the data into five 100-year chunks for the

analysis. Unless otherwise noted we show the mean result of

the five subsamples for the slab ocean data analysis.

All data sets (models and observations) were analysed

for the period 1900–1999, interpolated to a common 2.5�
latitude 9 longitude grid and linearly detrended to remove

the global warming signal prior to the analysis. We used a

high-pass filter (cut off at 5 years) to obtain the high fre-

quency monthly mean SST anomalies (SSTA) for each

model and the observations individually, referred as high

pass below. A 5 years-running mean was also used to get

the low frequency annual mean SSTA on decadal or longer

time scales, referred as low pass below.

In addition to analysing the models individually we also

combined all the CMIP3 and CMIP5 ensembles to super model

data sets to provide a synthesis. The CMIP3 SSTA (computed

for each model individually) were concatenated to generate a

CMIP3 super model with 2300 years of data. Similarly, a

CMIP5 super model with 2300 years of data and a CMIP3 ? 5

with 4600 years of data were also constructed. It has to be

noted here that combining the anomalies of simulations, which

have different modes of variability, will lead to some changes

in the characteristics in the EOF-modes. We will point out

some of these limitations through out the analysis part.

2.2 Comparison of EOF modes

We base our comparison of the spatial structure of SST

variability in different data sets on the comparison of the
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Fig. 1 Illustration of the domain boundaries for the EOF-analyses
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EOF-modes, assuming that the leading EOF-modes give a

good representation of the large-scale SST variability. This

is done by defining the EOF-modes of one data set as the

reference modes and projecting the EOF-modes of the

other data set onto these modes to estimate the amount of

variance that the reference EOF-modes explain in this

projected data set. This concept is based on Dommenget

(2007) and Bayr and Dommenget (2014) and briefly

summarized here:

An EOF eigenvector (mode) of the reference data set A,

E~
A

i and its corresponding eigenvalue (EV) eA
i are compared

with the eigenvector E~
B

j and eigenvalue ej
B of another data

set B by projecting the eigenvectors E~
A

i onto the E~
B

i ,

cij ¼
E~

A

i E~
B

j

E~
A

i

�
�
�

�
�
� E~

B

j

�
�
�

�
�
�

ð1Þ

where cij is the uncentered pattern correlation coefficient

describing the spatial similarity between the two EOF-

patterns. The projected explained variance (PEV) of mode

E~
A

i in data set B, pei
A?B, is estimated by the accumulation

of all eigenvalues of B (Dommenget 2007):

peA!B
i ¼

XN

j¼1

c2
ije

B
j ð2Þ

The value pei
A?B represents the total variance of data set

B that is explained by the reference mode E~
A

i , with N the

number of EOF-modes considered. In this paper N is set to

be 60, which is sufficient to give us stable results.

Increasing N does not change the outcomes in any of the

domains. The pei
A?B values do not need to be monotoni-

cally decrease, as the eA
i do, since an EOF-mode of A may

explain more variance in the data set B than it does in A

and vice versa.

We illustrate this method in a simple example of com-

paring two data sets: In Fig. 2a–f we show the leading EOF

modes of the North Pacific for the observations and the

GFDL-cm2.1 model simulation. We note here that the two

data sets have slightly different leading modes of vari-

ability and that the explained variances of each of these

modes are also slightly different. To compare the overall

spatial structure of variability in the two data sets we

choose the observed EOF-modes as the reference modes

(E~
A

i ) and project the EOF-modes of the GFDL-cm2.1

Table 1 List of CMIP3 models

Number Originating group(s) Country Model

1 Bjerknes Centre for Climate Research Norway BCCR-BCM2.0

2 Canadian Centre for Climate Modelling & Analysis Canada CGCM3.1 (T47)

3 Canadian Centre for Climate Modelling and Analysis Canada CGCM3.1 (T63)

4 Météo-France/Centre National de Recherches Météorologiques France CNRM-CM3

5 CSIRO Atmospheric Research Australia CSIRO-Mk3.0

6 CSIRO Atmospheric Research Australia CSIRO-Mk3.5

7 US Dept. of Commerce/NOAA/Geophysical Fluid Dynamics Laboratory USA GFDL-CM2.0

8 US Department of Commerce/NOAA/Geophysical Fluid Dynamics Laboratory USA GFDL-CM2.1

9 NASA/Goddard Institute for Space Studies USA GISS-AOM

10 NASA/Goddard Institute for Space Studies USA GISS-EH

11 NASA/Goddard Institute for Space Studies USA GISS-ER

12 LASG/Institute of Atmospheric Physics China FGOALS-g1.0

13 Instituto Nazionale di Geofisica e Vulcanologia Italy INGV-SXG

14 Institute for Numerical Mathematics Russia INM-CM3.0

15 Institut Pierre Simon Laplace France IPSL-CM4

16 Center for Climate System Research (The University of Tokyo), National Institute for

Environmental Studies, and Frontier Research Center for Global Change (JAMSTEC)

Japan MIROC3.2 (hires)

17 Center for Climate System Research (The University of Tokyo), National Institute for

Environmental Studies, and Frontier Research Center for Global Change (JAMSTEC)

Japan MIROC3.2 (medres)

18 Max Planck Institute for Meteorology Germany ECHAM5/MPI-OM

19 Meteorological Research Institute Japan MRI-CGCM2.3.2

20 National Center for Atmospheric Research USA CCSM3

21 National Center for Atmospheric Research USA PCM

22 Hadley Centre for Climate Prediction and Research/Met Office UK UKMO-HadCM3

23 Hadley Centre for Climate Prediction and Research/Met Office UK UKMO-HadGEM1
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model simulation (E~
B

i ) onto these modes. Figure 3a shows

the eigenvalues of the observed EOF-modes (ei
A) against

the PEV from the GFDL-cm2.1 model simulation (pei
A?B).

The leading observed mode (EOF-1 in Fig. 2a), for

instance, explains only half as much variance in the GFDL-

cm2.1 model simulation (red line in Fig. 3a) than it does in

the observations (black line in Fig. 3a). In turn, the

observed EOF-10, for instance, mode has more relative

explained variance in the GFDL-cm2.1 simulation.

Therefore, comparing the overall spatial structure of vari-

ability essentially means to estimate how much variance

each of the reference modes explains in both data sets, and

essentially quantify the discrepancy based on the mismatch

of the variances explained.

We further see in this comparison that the explained

variances of the observed leading modes are significantly

less in the GFDL-cm2.1 model simulation. This overall

mismatch (grey band in Fig. 3a) in the explained variances

is quantified by a normalized root-mean-square error

(RMSEEOF) between the ei
A and peA!B

i values:

RMSEEOFðA;BÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PNA

i¼1 peA!B
i � eA

ið Þ2
PNA

i¼1ðeA
i Þ

2

s

ð3Þ

The normalization allows a better comparison of the

RMSEEOF values among different domains with different

sampling uncertainties. Here NA corresponds to the

number of EOF modes considered. The sum RMSEEOF

(A, B) is dominated by the mismatches in the leading

modes between eA and peA!B, as they have larger

uncertainties. Subsequently the uncertainties in EOF 1–3

are what dominates RMSEEOF (A, B). Most of the results

presented in this study are indeed very much the same if

only the first two leading EOFs are considered. However,

in domains with larger effective spatial number degrees of

freedom, Nspatial, (Bretherton et al. 1999) the higher order

modes will also contribute to RMSEEOF (A, B)

significantly.

In our analysis we choose NA equal to Nspatial to provide

a consistent estimate over the whole multi-variate vari-

ability in each domain:

Nspatial ¼
1

P
ðeiÞ2

ð4Þ

Nspatial varies considerably from domain to domain and for

the different time-scales considered (see Fig. 4). For the

domains and time-scales we considered in this analysis

Table 2 List of CMIP5 models

Number Originating group(s) Country Model

1 CSIRO and BOM Australia ACCESS1.0

2 Beijing Climate Center, China Meteorological Administration China BCC-CSM1.1

3 National Center for Atmospheric Research USA CCSM4

4 Météo-France/Centre National de Recherches Météorologiques France CNRM-CM5

5 Canadian Centre for Climate Modelling and Analysis Canada CanESM2

6 Geophysical Fluid Dynamics Laboratory USA GFDL-CM3

7 Geophysical Fluid Dynamics Laboratory USA GFDL-ESM2G

8 Geophysical Fluid Dynamics Laboratory USA GFDL-ESM2M

9 NASA/Goddard Institute for Space Studies USA GISS-E2-H

10 NASA/Goddard Institute for Space Studies USA GISS-E2-R

11 Hadley Centre for Climate Prediction and Research/Met Office UK HadCM3

12 Hadley Centre for Climate Prediction and Research/Met Office UK HadGEM2-CC

13 Hadley Centre for Climate Prediction and Research/Met Office UK HadGEM2-ES

14 Institute for Numerical Mathematics Russia INM-CM4

15 Institut Pierre Simon Laplace France IPSL-CM5A-LR

16 Institut Pierre Simon Laplace France IPSL-CM5A-MR

17 Institut Pierre Simon Laplace France IPSL-CM5B-LR

18 Atmosphere and Ocean Research Institute (The University of Tokyo), National

Institute for Environmental Studies, and Japan Agency for Marine-Earth Science

and Technology

Japan MIROC5

19 Max Planck Institute for Meteorology Germany MPI-ESM-LR

20 Max Planck Institute for Meteorology Germany MPI-ESM-P

21 Meteorological Research Institute Japan MRI-CGCM3

22 Norwegian Climate Centre Norway NorESM1-M

23 Norwegian Climate Centre Norway NorESM1-ME
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Nspatial is between 3 (e.g. North Atlantic longer time scale)

and 50 (e.g. South Ocean shorter time scale).

Figure 3 shows the RMSEEOF values for two examples.

A RMSEEOF value of 100 % corresponds to errors that are as

big as the eigenvalues. Thus, the RMSEEOF value (32 %, see

Fig. 3a) of the GFDL-cm2.1 model relative to the observa-

tions reflects an uncertainty of the leading EOF-modes of

about 32 % of the eigenvalues, which is a substantial

uncertainty. Similarly, the relative smaller RMSEEOF value

(17 %) in Fig. 3b, which represents an uncertainty of about

17 % within the leading modes, suggests less fluctuation and

better matches between the PEV of GFDL-cm2.1 and the

eigenvalues of the CMIP3 ? 5 super model.

3 Formulation of null hypotheses

The comparison of the spatial patterns of SST variability in

different data sets in this study is based on projecting EOF-

modes and estimating the RMSEEOF values. These

RMSEEOF values are quite abstract and it is important to put

these values into perspective with some simple null

hypotheses to understand the significance of these values.

We therefore formulate a number of theoretical reference

null hypotheses: first we estimate the RMSEEOF for sam-

pling uncertainties after North et al. (1982). We then for-

mulate three simple physical models for the spatial patterns

of SST variability: the first is the slab ocean models modes of
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Fig. 2 First three leading EOF patterns of detrended monthly SSTA

in the North Pacific after 5-year high-pass filter for a–c observations

(HadISST); d–f GFDL-cm2.1; g–i: slab ocean experiment; j–l fitted

isotropic diffusion process with inhomogeneous standard deviation

forcing; m–o as in j–l but with homogeneous forcing. The values in

the headings of each panel are the explained variances of each EOF-

mode
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variability. The second and third physical models are based

on the assumption that the spatial patterns of SST variability

are just a reflection of isotropic diffusion with two different

assumptions for the spatial distribution of variances.

3.1 Sampling uncertainties of eigenvalues

North et al. (1982) give the statistical uncertainties of the

eigenvalues ei due to sampling errors:

dei ¼ eið2=NsampleÞ1=2 ð5Þ

where Nsampel is the number of independent samples. In this

study Nspatial is estimated as Nlen/td, while Nlen is the length

of the time series and td is the average e-folding decorre-

lation time based on the first five leading principal com-

ponents (PCs). To maintain consistency, we estimate Nlen

from the shorter time series of the CMIP models rather than

the much longer references. The RMSEEOF for sampling

uncertainties is then

RMSEEOFðdeA
i Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PNA

i¼1ðdeA
i Þ

2

NA

s , ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PNA

i¼1ðeA
i Þ

2

NA

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2

NA
sample

s

ð6Þ

Thus, the RMSEEOF(dei) could be deemed as the confi-

dence level of a data set. If two data sets are just different

stochastic realizations of the same process (have the same

spatial patterns of SST variability), we expect the

RMSEEOF to be in average RMSEEOF(dei).

Figure 5 illustrates an example based on subsampling the

CMIP5 super model. Here we computed the EOF-modes for

the North Pacific for high-pass (5 yesrs) and low-pass (5 years)

SST. For subsampling the CMIP5 super ensemble we split the

data from each model into average chunks with 5 years/

60 months data and concatenated the chunks into the CMIP5

super subsamples. Here, the total number of samples Nlen is set

to be 1,380 (60 * 23) for the high pass and 115 (5 * 23) for the

low pass. For high-pass data analysis the average decorrelation

time of the leading five principal components td = 8.8.

Therefore, we get Nsample = 1,380/8.8 = 156.8. Similarly

Nsample = 115/5.8 = 19.8 for the low-pass analysis.

We note from Fig. 5a, b that the subsamples peA!B
i

values fluctuate around the ei
A values of the CMIP5 super

model, caused here by sampling uncertainties and not by

differences in the physical system. Subsequently, the

RMSEEOF values of the subsamples fluctuate around the

RMSEEOF(dei) (see Fig. 5c). For the 5 years-running mean

SST it seems that the subsamples fluctuate less than

expected by the RMSEEOF(dei), which could indicate that

our subsampling of the models is not quite representative

of the sampling uncertainties in the CMIP5 super model as

they are from the same data sets.

3.2 Slab ocean model

The spatial structure of the SST variability is a result of the

coupled dynamics between atmosphere and oceans. A slab

ocean model coupled to an AGCM (see data section for

model details) estimates the spatial structure of the SST

variability that is caused by the atmosphere only. Com-

pared to a fully CGCM, the slab ocean model only intro-

duces the error of atmospheric simulation without

significant error addition or amplification by the coupling

process or ocean dynamics. It is therefore a good null

hypothesis to evaluate the models: if the spatial structure of

the SST variability agrees better with the slab ocean model

(smaller RMSEEOF) than with a CGCM, this is indicating

that the coupling procedures and ocean dynamics are

causing unrealistic SST patterns.

Figure 2 shows the observed EOF-modes of the high-pass

monthly mean SST variability in the North Pacific in

(a)

(b)

Fig. 3 a Eigenvalue spectrum of the observed leading EOF-modes in

the North Pacific and the PEV values of the GFDL-CM2.1. The bars

mark the sampling uncertainty interval of the eigenvalues after North

et al. (1982) b as a but for the leading EOF-modes of the CMIP3 ? 5

super model in the North Pacific
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comparison with the EOF-modes of the slab ocean simula-

tion, for an example. The EOF-modes of the slab simulation

are already quite realistic, suggesting that much of the large-

scale structure of the SST variability is to first order simulated

in the slab simulation, which is consistent with what has been

found in other studies as well (e.g. Pierce et al. 2001).

3.3 Isotropic diffusion

Cahalan et al. (1996) and Dommenget (2007) used the null

hypothesis of isotropic diffusion to explain the leading EOF-

modes of climate variability. The isotropic diffusion process

leads to EOF-modes that are a hierarchy of multi-poles,
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(d) Tropical Atlantic

0 10 20 30 40 50 60
0

5

10

15

1

2
3
4
5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22
23

1

2
3

45

6

7

8

9

10

11

12

13 14

15

16

17

18

19

20

21

22

23

High Pass (5yrs)

Lo
w

 P
as

s 
(5

yr
s)

(e) Southern Ocean

(20.7)

Fig. 4 Nspatial values for high-

pass and low-pass EOF-analysis

of SSTA in a North Pacific;

b tropical Indian Ocean and

Pacific; c North Atlantic;

d tropical Atlantic; e Southern

Ocean. The black asterisk in e is

out of range with a real ordinate

value of 20.7. The Nspatial values

of all CMIP3 and CMIP5 model

are listed in Supplemental

Table 1
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starting with a monopole (largest scale), followed by a

dipole, and followed by multi-poles with increasing com-

plexity (smaller scales). It essentially represents a spatial red

noise process (Dommenget 2007). Figure 2m–o illustrates

the EOF-modes of isotropic diffusion for the North Pacific

domain. The EOF-modes are pure geometric deconstruc-

tions of the domain not considering any structure in the SST

standard deviation (STDV, Fig. 6), but assuming the same

Nspatial as observed. Thus, the spectrum of the explained

variance of the eigenvalues has a structure similar to what is

observed. We refer to this null hypothesis as H0uniform.

This null hypothesis is further extended by also using

the observed inhomogeneous SST STDV field (see Fig. 6a,

b) and therefore focusing the leading EOF-modes onto

regions where the observed SST STDV is large (see

Dommenget 2007 for details). This concept has also been

applied to study the structure of the Indian Ocean SST

variability, for instance, by Dommenget (2011).

Much of the spatial structure in SST variability is

already highlighted by the spatial structure in the SST

STDV field (see Fig. 6a, b). The regions with large SST

STDV will be the regions where most of the leading

EOF-modes have large variance. Here we can already see

that the SST STDV deviation is different on different

time scales, which will be reflected in slightly or signif-

icantly different SST modes. The CMIP3 and CMIP5

ensembles capture most of the main observed structures

and even the slab ocean simulation captures some of it

(see Fig. 6c–h).

Figure 2j–l illustrates the EOF-modes of isotropic dif-

fusion with observed SST STDV for the North Pacific

domain. The EOF-modes are still a hierarchy of multi-

poles, but now the modes are centred on regions of large

SST STDV (for comparison with STDV of observations

see Fig. 6a). These EOF-modes now have some more

realistic features. We refer to this null hypothesis as

H0STDV. Thus, we list the comparison objects in Fig. 2

essentially from most realistic or complex (observed) to

least or simplest (H0-unifrom), as the modes are becoming

more unrealistic from top to bottom.

4 Comparison of the eigenvalue (EV)-spectrum

In this section we present the main results of this analysis,

which is based on the comparison of the pei
A?B values

(referred as EV-spectrum below) of the SST variability in

different ocean basins. We will define SST variability on

two different time scales to highlight potential differences

in the variability modes.

First we like to illustrate that the EOF-modes in the

high-pass and the low-pass SST variability are indeed
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Fig. 5 Eigenvalue spectrum of

CMIP5 super model and the

PEV of its subsamples in the

North Pacific. The shaded area

marks the uncertainty interval of

the eigenvalues after North et al.

(1982) a high-pass result;

b low-pass result; c RMSEEOF

values of the subsamples in a, b
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different. Figure 7 shows the different EOF-modes struc-

tures on high-pass and low-pass scale in the North Atlantic.

The following is noted here:

• The spatial patterns are quite different between the two

time scales. The high-pass, for instance, reveals three

tri-pole modes from EOF-1 to EOF-3. However, none

of them is strongly related to the leading EOF-modes of

the low-pass modes.

• The eigenvalues of the low-pass modes are much larger

than their counterpart of high-pass ones. Subsequently

Nspatial is much larger for the high-pass SST (Nspatial =

10) than for the low-pass SST (Nspatial = 3). Thus the

high-pass SST has more complex variability modes

than the low-pass SST.

Similar findings can be made for all domains, but the EOF-

modes of the different time scales may be more similar in

the other domains than they are in the North Atlantic.

We start the main analysis with a more comprehensive

discussion of the North Pacific to illustrate the method. We

then compare all model simulations with the observed

EOF-modes for all ocean basins. The analysis is then

repeated by pairwise comparisons of the CMIP model

simulations to evaluate the uncertainties within the model

ensemble members.

4.1 North Pacific

Figure 8 shows the EV-spectrum of the observed high-pass

SSTA in the North Pacific region together with the pro-

jected pei
A?B values for all CMIP models and the four

different null hypotheses references. A few points should

be noted here:

• ERSST is close to the observations (HadISST) as they

are basically the same observed data. The differences

are mostly within the sampling uncertainties. However,

there is some indication that the two data sets are not

totally in agreement.

• All the models and null hypotheses underestimate the

first PC of observations, namely the Pacific decadal

oscillation (PDO) pattern (e.g. Mantua et al. 1997) and

most of the other leading modes.

• The deviations of the individual models from the

observed EV-spectrum are much larger than expected
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Fig. 7 First three leading EOF patterns of observed SSTA in the North Atlantic for a–c after high-pass filter; d–f after low-pass filter

Fig. 8 Eigenvalue spectrum of the observed leading EOF-modes in

the North Pacific as in Fig. 3a, but compared with the PEV values for

all CMIP models, the slab ocean simulations and the isotropic

diffusion null hypotheses. The shaded area marks the uncertainty

interval of the eigenvalues after North et al. (1982)
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by the sampling uncertainties dei. The slab ocean

simulation is closer to the observations than most

models.

• The deviations of H0STDV are about as strong as for

most of the CMIP model simulations. However, the

deviations of H0uniform appear to be larger than those of

most CMIP models. The H0 curves both have a peak at

the EOF-5. This is due to the similarity of the observed

EOF-5 with a basin wide monopole (not shown), which

is the leading mode in isotropic diffusion (both H0STDV

and H0uniform).

The results of the EV-spectrum are quantified by the

RMSEEOF values for the high-pass monthly mean SST as

r = 0.56 r = 0.39

r = 0.56 r = 0.45

(a) (b)

(c) (d)

(e) (f)

Fig. 9 RMSEEOF values

relative to the observations for

high-pass and low-pass EOF-

analysis of a North Pacific;

b tropical Indian Ocean and

Pacific; c North Atlantic;

d tropical Atlantic; e Southern

Ocean; f global summary.

Noting that the axis range in

(f) is different from that in a–

e. Blue numbers are CMIP3

models and red numbers are

CMIP5. Diamonds represents

the average position of the

CMIP models. Blue and red

stars are the results of the

CMIP3 and CMIP5 super

models, respectively. The green

star is the result of the

CMIP3 ? 5 super model scaled

with observed eigenvalues. The

letter ‘‘r’’ shows the correlation

coefficient of the RMSEEOF

values between two time scales

based on models only. The

RMSEEOF values of all CMIP3

and CMIP5 model are listed in

Supplemental Table 2
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shown in Fig. 9a on the x-axis and for the low-pass SST on

the y-axis. In addition to what we have already concluded

above for the high-pass SST modes we should note the

following points:

• The ERSST is close to expected sampling uncertainties

for both time scales. Although, this indicates that the

two observational data sets have good agreements in

this domain, it has to be noted here that the two data

sets contain the same samples (same observations).

Thus, an even better agreement should have been

possible.

• The model errors relative to the observations are in the

range of 30–80 % of the eigenvalues. These errors are

substantial.

• The RMSEEOF values for the different time scales in

Fig. 9a have a mostly linear relationship with a

correlation coefficient 0.6 indicating that in this region

the models show similar performance for high-fre-

quency and low-frequency variability. However, there

are also significant deviations from the linear relation-

ship, which indicates that some models are performing

good on one time scale but not as good on the other

time scale.

• Most models seem better than the H0uniform; however,

half of the models are not as good as the H0STDV

hypothesis.

• The slab ocean simulation is closer to the observations

than most models in the high-pass variability, but is

about average for the low-pass variability.

• The mean position of the CMIP3 models is close to that

of the CMIP5 models, implying similar skill in this

region, but most of the outliers with very large

deviations are in the CMIP3 ensemble.

We pick out a few models to illustrate how the modes of

variability in some models deviate from those observed. In

Fig. 10 we show the leading modes of the two models that

deviate the most (HadCM3 and BCM2.0), the two models

closest to the observations (MRI-CGCM2.3.2 and CCSM4)

and the CMIP3 and CMIP5 super models in the North

Pacific modes comparison. The following is noted here:

• The two models that deviate the most both show

leading EOF-modes that are somewhat different in

structure from the observed. For instance, they tend to

have the negative anomaly centres for the PDO-like

mode (EOF-1) more to the west and more focused on a

small region than in the observed PDO (EOF-1).

Further, the eigenvalues of EOF-1 are much smaller

than observed.

• The two models closest to the observations show leading

EOF-modes that are similar in structure to the observed

and that have similar amount of explained variance.

• The modes of the super models are very similar to

the observed and have very smooth structures with no

strong localized features. They tend to explain less

variance than observed. The reduced variance of the

leading modes relative to the observed, and to what

individual models show, reflects the fact that the

super models are based on ensembles of individual

models that have different localized structures

(modes), which leads to less explained variance of

the leading modes.

4.2 Uncertainties in the SST modes in the global

oceans

The analyses are now extended to all other ocean domains.

To summarize, we also average the results and get the

global summary of the RMSEEOF diagram in Fig. 9f. The

results show a number of interesting aspects. We start the

discussion with a focus on the individual domains, starting

with the tropical Indo-Pacific domain (Fig. 9b):

• On the high-pass time scales the spread in the quality of

the models is very large. Some models are close to the

observed modes, but most models are quite different

from the observed modes. On the low-pass time scale

the skills of models are more similar and many models

are as close to the observed modes as expected from

sampling uncertainties.

• The slab model is quite different from the observed

modes on the high-pass time scale and the longer time

scale. The El Nino dynamics dominate the modes of the

Indo-Pacific domain and these dynamics are not

simulated in the slab model, which may explain why

the slab model is quite different from the observed

modes.

• The simple null hypothesis H0STDV performs better

than most models, but the H0uniform hypothesis clearly

deviates more than most models and is very different

from the observed structure.

• The CMIP3 ensemble has much more outliers, in

particular on the shorter time scale, than the CMIP5

ensemble.

Similar to the North Pacific domain, we picked out a few

models to demonstrate the differences of the modes (Sup-

plemental Fig. 1). The model GISS-AOM that deviates the

most shows no El Nino pattern. The model ECHAM5-MPI-

OM, which is closest to the observed, as well as CMIP

super models all display ENSO pattern and Central-Pacific

El Niño pattern (Kao and Yu 2009) on the leading two

modes, close to the observation.

In the North Atlantic the picture is quite different

(Fig. 9c):
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• The most remarkable feature is that both simple

isotropic diffusion null hypotheses are closer to the

observed modes than most of the CGCM simulations

especially on long-term scale. First of all this is due to

the fact that the observed modes in the North Atlantic

are indeed more similar to the isotropic diffusion null

hypotheses than they are in the Indo-Pacific domain.

But still it indicates that the CGCM simulations have

substantial problems in simulating these simple modes

of variability. This conclusion appears to be quite

different to what Jamison and Kravtsov (2010) con-

clude from their analysis of the leading modes in the

North Atlantic. However, when we evaluate their

Figs. 10–12 we would assume that the quantitative

and objective error values RMSEEOF based on their

analysis results should be similar to ours.

• The agreement with the observed modes is better on the

shorter time scale than on the longer low-pass time
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Fig. 10 Leading EOF-modes as in Fig. 2, but for a selection of model simulations
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scale. This is the opposite of what we see in the Indo-

Pacific domain.

• The slab model performs better than any of the CGCM

simulations on the high-pass time scale and still better

than many models on the longer time scale.

• There is no substantial difference in the performance of

the CMIP3 and CMIP5 ensembles.

Supplemental Fig. 2 again shows several models for

comparison in the North Atlantic. The tropical Atlantic has

again some interesting features (Fig. 9d):

(a) (b)

(c) (d)

(e) (f)

Fig. 11 Mean RMSEEOF values

of pairwise model comparisons

for high-pass and low-pass

EOF-analysis in a North Pacific;

b tropical Indian Ocean and

Pacific; c North Atlantic;

d tropical Atlantic; e Southern

Ocean; f: global summary.

Noting that the blue ‘‘12’’ in

(b) is out of range with a real

abscissa value of 129.4. The

RMSEEOF values of all CMIP3

and CMIP5 model are listed in

Supplemental Table 3
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• Notable is that the CGCM simulations are in average

closer to the observed modes on the longer and also on

the shorter time scales than in any other domain. On the

longer time scale this domain actually seems to be the

only domain where the CGCM simulations are mostly

in agreement with the observed modes.

• The CMIP5 simulations show a clear improvement

over the CMIP3 simulations for the longer time scale,

which is more than in any other domain. This is even

more remarkable considering the already good fit to the

observations in the CMIP3 simulations and also

considering the much better performance than in any

of the other domains.

• The slab model is closer to the observations than most

CGCM simulations on the high-pass (5 years) time

scale, but deviates more than all models on the longer

time scale.

• Both the H0STDV and the H0uniform hypotheses are very

close to the observations on both time scales and closer

than most of the CGCM simulations. This indicates that

knowing the SST STDV field and assuming a multi-

pole deconstruction, as it follows from an isotropic

diffusion process, would already explain most of the

SST variability in this domain.

Supplemental Fig. 3 shows the modes of some models in

this domain. Finally, the Southern Ocean (Fig. 9e):

• This domain shows the overall largest deviations from

the observed modes, with all models disagreeing with

the observations substantially.

• There appears to be no substantial difference between

the CMIP3, CMIP5 and the slab simulations.

• Similar to the North Pacific both isotropic diffusion null

hypotheses are substantially different from the

observed modes on both time scales. However, the

H0STDV hypothesis is closer to the observed modes than

any CGCM simulation on the longer time scale and

closer than most on the shorter time scale.

The Southern Ocean is a special domain for its sparse in situ

observation, which introduces non-negligible uncertainties of

observed reference. The modes comparison (see Supple-

mental Fig. 4) is essentially different to other domains, as we

can’t find too much similarity here between the leading

modes of observed and the CMIP super models especially on

EOF-1. The Southern Ocean is also one of the largest

domains; it involves the more complex extra-tropical

dynamics (larger Nspatial; see Fig. 4) and interactions with sea

ice, which may explain the large disagreement to some part.

The summary of all individual domains (Fig. 9f) shows

the average skill of the models:

• First of all we note that the models skills on the short

and longer time scales are roughly linearly related with

a correlation of 0.6. Models that are close to the

observed modes on the shorter time scale tend to be

close to the observed modes on the longer time scale as

well.

• Basically all models show significant deviations in the

spatial structure from the observed modes. These

deviations are in the order of 50 % of the eigenvalues

on the leading modes. This means they in average

under-/over-estimate some of the leading modes by a

factor of 1.5/0.5, which is a substantial error.

• In the global average some models are clearly much

closer to the observed modes (e.g. the CCSM4 model is

closest) than others and some models substantially

deviate from the observed modes (e.g. all the CMIP3

GISS models). However, the spread in the global

average is not as big as in the individual domains,

indicating that models that have big RMSEEOF in some

domains often have smaller RMSEEOF in other

domains.

• The CMIP5 ensemble appears to be slightly closer to

the observed modes than the CMIP3 ensemble on both

time scales. However, the super model modes are very

similar in their structure and skill relative to the

observed modes.

• The slab simulation is of similar skill on the shorter

time scale, but has less skill than most models on the

longer time scale. Nevertheless, on both time scales the

slab simulation is not consistent with observations

(RMSEEOF is larger than expected by sampling

uncertainties).

• The simple H0STDV hypothesis is in average closer to

the observed modes than any CGCM simulation on the

longer time scale and closer than most simulations on

the shorter time scale. Even the H0uniform hypothesis is

better than many models. This suggests that knowing

the Nspatial, the domain geometry, the SST STDV field

(most importantly) and assuming a modal structure

resulting from isotropic diffusion could already

describe the observed spatial structure of SST variabil-

ity better than most of the CGCM simulations.

The above analysis has shown that the CMIP model

simulations have substantial errors in simulating the

observed spatial structure of SST variability. A closer look

at the leading EOF-modes of the model simulations (not all

shown, but some are shown in Fig. 10 and in the Supple-

mental Figs. 1–4) reveals why the models differ from the

observations:

• First, we see that Nspatial is larger than observed in most

CMIP models and for all domains and on both time

scales (see Fig. 4). It is also larger than in the slab

simulation. This suggests that the simulated leading

modes of variability explain in average less variance
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than observed and are on smaller spatial scales (the

patterns are more localized) than observed. This is also

seen by visual inspection of the leading modes of all the

model simulations (not shown).

• Further, we note that the patterns of the leading modes

in the model simulations are often different from those

observed. They are often quite localized patterns of

scales much smaller than the domain size. The obser-

vations also do have such localized modes, but these

are often at different locations than in the models and

are of different structure and smaller amplitude. Thus,

the models produce a double error: They simulate

significant localized structures at the wrong locations

and with the wrong structure and subsequently miss the

observed localized structures at the right locations and

with the right structure. The isotropic diffusion null

hypotheses and the slab simulation do not have these

localized structures and therefore do not have these

double errors.

Additionally, it is noticeable that the super model

ensembles seem not to perform significantly better than

most of the models. This is quite different from many other

inter-model comparisons (e.g. seasonal forecasting skills or

mean state errors), where the ensemble mean outperforms

the individual models (e.g. Tebaldi and Knutti 2007; Rei-

fen and Toumi 2009; Santer et al. 2009; Knutti et al. 2010).

The modes of variability or the spatial structure of internal

SST variability does not average out to be more realistic in

an ensemble super model. If models have different modes

of variability, then the super model will have all of these

modes, but each with a smaller eigenvalue, which increases

Nspatial of the ensemble super model (see Fig. 4).

However, we can illustrate that the ensemble super

model is indeed containing some useful information that

improves the presentation of the spatial structures of vari-

ability compared to most individual models. If we replace

the eigenvalues of the ensemble super model in Eq. (2)

against observed eigenvalues, they are much closer to the

observed spatial structure than most models. These scaled

values are shown in Fig. 9. Even if we replace the eigen-

values of all models against observed eigenvalues, which

clearly decreases the RMSEEOF values of most models, the

ensemble super models still demonstrate smaller RMSEEOF

values than the majority of the individual models, while the

CMIP5 super model is a bit closer to the observations than

its counterpart of CMIP3 (not shown). It illustrates that the

spatial structure of the leading modes of variability in the

ensemble super model are indeed realistic, but the relative

explained variance of each mode is underestimated by the

ensemble super model due to the artificial diversity in the

individual models.

Finally, we also discuss the similarity in the two dif-

ferent observations:

• For most domains there is a relative good agreement

between the ERSST and the HadISST data sets on both

time scales. This indicates that we have some relative

good confidence in the spatial structure of SST

variability in these domains.

• The best agreement is in the North Atlantic, which

seems to be consistent with the larger database existing

in this relatively well-observed domain.

• Strong disagreement exists in the Southern Ocean.

Here, the spatial structure of the observed SST

variability is very uncertain. On the longer time scale

the uncertainties in the leading modes are in the order

of 40–60 % of the eigenvalues, which is a substantial

uncertainty. Again, this seems to be consistent with the

lag of sufficient observations in this domain.

4.3 Comparison between models

In the above section we evaluated the models against the

observations, which revealed some substantial differences

of the model’s spatial structures in SST variability relative

to the observed. We also noticed that the leading modes of

the CMIP3 ? 5 super model have much smaller explained

variance as the observed modes, illustrating a larger

diversity of modes in the model ensembles relative to the

observed. This indicates that the models have strong dif-

ferences in the spatial structures in SST variability between

each other. These model-to-model differences are quanti-

fied by repeating the above analysis by pairwise compari-

son of the EOF-modes in the CMIP3 and 5 ensembles.

Figure 11 shows the RMSEEOF values as in Fig. 9, but

for the average of all pairwise comparisons between all

CMIP3 and 5 models. Thus, the reference modes in these

comparisons are the EOF-modes from each of the CMIP3

and 5 models. Here small RMSEEOF values suggest small

differences in the spatial structures in SST variability of the

model relative to the spatial structures in SST variability of

all the other models and vice versa for large RMSEEOF

values. The following features are noted in this comparison:

• All models show RMSEEOF values larger than expected

from sampling uncertainties [RMSEEOF(dei)]. Thus, the

models substantially disagree with each other in terms

of the spatial structures in SST variability. The errors

are in the order of 40–60 % of the eigenvalues.

• The largest model internal spread is in the North

Atlantic and the Southern Ocean. This is similar to

what we found in the comparison with the observations.
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• In global average the model-to-model spread is similar

in all models, indicating that there is no model that is

closest to all the other models.

• The CMIP5 models tend to be slightly closer to all the

other models than the CMIP3 models on both time

scales and for all domains.

• In the tropical Indo-Pacific domain several CMIP3

models have substantially larger RMSEEOF values than

most of the other models. This suggests that these

models poorly represent the ENSO pattern and are

indeed quite different from the overall model ensemble

on the monthly mean scale.

5 Summary and discussion

In the study presented here we evaluated the skill of the

CMIP3 and CMIP5 models in simulating the observed

spatial structure of SST variability on interannual and

decadal time scales. This comparison was based on a

quantitative and objective comparison of the leading EOF-

modes in the five major ocean basins (tropical Indo-Pacific,

North Pacific, tropical and North Atlantic and the Southern

Ocean) with the observed EOF-modes and those of sim-

plified null hypotheses. Our main quantitative measures

were the RMSEEOF values, which estimates the disagree-

ment in the leading EOF-modes. Although this considers

all leading EOF-modes up to the Nspatial value of each

domain, it essentially focussed on the two to three leading

EOF-modes. The higher order EOF-modes are considered

as well, they, however, only matter in domains with larger

Nspatial values. The study illustrated a number of interesting

aspects in the skill of the model simulations, but also about

the observed spatial structure of SST variability. For the

observed spatial structure of SST variability we list the

following main findings:

• By comparing the observed modes with those of the

simple isotropic diffusion null hypothesis we can note

that for most domains and both time scales the observed

spatial structure of SST variability is significantly

different from isotropic diffusion. Thus, the observed

modes of variability have non-trivial structure in

particular on the monthly mean time scale in the

tropical Indo-Pacific and Atlantic and on both time

scales in the North Pacific and Southern Ocean. The

longer time scale of the tropical and North Atlantic are,

however, remarkably similar to the simple large-scale

multi-pole modes of the isotropic diffusion process.

• The effective numbers of spatial degrees of freedom

(Nspatial) are between 5 and 10 for most domains on the

monthly mean time scale and smaller (\5) on the

longer 5 years time scale. The Indo-Pacific, which is

the largest domain, has the smallest Nspatial, whereas the

Southern Ocean, which is similar in size to the tropical

Indo-Pacific domain, has the largest Nspatial on both

time scales, marking the most complex spatial structure

in SST variability.

• The comparison of the two observational datasets

suggests that the modes of SST variability are relatively

well known for most domains, but not for the Southern

Ocean. Here the uncertainty in the SST modes is quite

substantial, even in two datasets that contain the same

observations.

We start the summary and discussion of the model

results with some positive findings:

• Some models have a quite realistic spatial structure of

the SST variability in some domains at some time

scales. In particular this is the case on the monthly

mean time scale in the tropical Pacific and also (for

some models) in the North Pacific. On the longer

5 years time scale most models simulate the tropical

Atlantic and Indo-Pacific SST variability with quite

realistic spatial structure. The good performance of

these models in these domains is in particular notable,

as these models also outperform the simple null

hypotheses, suggesting they indeed simulate non-trivial

spatial structure of SST variability.

• The CMIP5 ensemble does show some improvement

over the CMIP3 ensemble. The most significant

improvements are seen in the two tropical domains.

In the tropical Atlantic the CMIP5 ensemble as a whole

is shifted towards more realistic variability on the

longer time scale and in the tropical Indo-Pacific the

CMIP5 ensemble has improved on both time scales, but

mostly by a lag of very ‘bad’ models from CMIP3 and

not by an improvement of the ‘best’ models from

CMIP5.

• The modes of the CMIP3 ? 5 super ensemble have

very realistic spatial structures, but underestimate the

relative importance of each mode, due to the artificial

spread between the individual models contributing to it.

However, if the eigenvalues are scaled by the observed

eigenvalues they are quite close to the observed modes

and overall are closer to the observed spatial structure

than any individual model. Thus the super ensemble of

all the models gives the representation that is closest to

the spatial structure of the observed SST variability, but

only if the eigenvalues are scaled towards the observed.

• The global summary of the RMSEEOF for all domains

in Fig. 9f can be considered the synthesis of the models

skills in simulating natural SST variability. In this

synthesis the CCSM4 turns out to be the best

performing model. The CCSM4 model is performing

relatively well in each individual domain.
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The most important findings of this study are, however,

the substantial limitations that the CMIP3 and CMIP5

model ensembles have in simulating the spatial structure of

SST variability:

• Most CMIP models in most domains on both the

monthly mean and the 5 years running mean time

scales have less skill in simulating the spatial structure

of SST variability than the simple isotropic diffusion

(red noise) null hypothesis H0STDV. And in many cases

they have less skill than the slab ocean simulation. The

tropical Atlantic region is the only region in which the

CMIP ensembles perform equally good as the H0STDV

null hypothesis on the longer time scale.

• The models largely overestimate the effective number of

spatial degrees of freedom (Nspatial) in all domains and in

particular on the shorter time scale. Thus, the models

produce more complex spatial structures in the SST

variability, with more localized smaller scale patterns.

• The models do not only disagree largely with the

observations, but also with each other. The mismatch

between the models is as big as the mismatch with the

observations. The largest uncertainties are in the North

Atlantic and in the Southern Ocean on the longer time

scale. Here, the mismatch between models is larger

than relative to the simple H0STDV null hypothesis.

• Much of the disagreement between the models and the

observations comes from smaller scale patterns. Often

these have different locations, structures and ampli-

tudes in the models relative to the observations or other

models.

The somewhat limited skills in the models, particular in

the extra-tropics, may require some discussion and some

indications are given of what may be some of the problems.

However, it needs to be noted here that this study cannot

give the answer to these problems. Several aspects of this

analysis indicate that the models limited skill is caused by

ocean dynamics, coupling processes and possible error

amplification: The first piece of evidence comes from the

relative good performance of the slab ocean simulation,

which does not simulate any variability caused by ocean

dynamics, but performs more realistic in the simulation of

the shorter time scale in the extra tropical domains than

most CGCM simulations. The most remarkable difference

to the CGCM simulations here is the much more realistic

low Nspatial values in all extra-tropical domains. This may

indicate that the ocean and air-sea interaction simulations

of extra-tropical dynamics cause significant problems (e.g.

Li et al. 2013; Kirtman et al. 2012). In particular, they seem

to generate much more complex small-scale SST vari-

ability that is inconsistent with observations. This is also

related to the second piece of evidence pointing towards

problems in the simulations: The models produce too many

small, localized modes of variability that are at the wrong

positions with the wrong structures. Such modes do neither

exist in the slab ocean simulation nor in the isotropic dif-

fusion null hypotheses.

This kind of climate drift can be easily found in fully

coupled GCMs as the atmospheric, oceanic and coupling

processes could all introduce errors and even amplify the

errors from each other (e.g. Delecluse et al. 1998; Grenier

et al. 2000; Cai et al. 2011; Gupta et al. 2013). Further, this

result seems to be consistent with what we know from the

dynamics of the atmosphere and oceans: Atmospheric

meso-scale internal variability is on a much larger scale

than that of the oceans. Indeed, current state-of-the-art

CGCMs do not resolve oceanic meso-scale dynamics. The

coarse resolution of the ocean models may potentially be

one of the main problems in the CMIP CGCMs (e.g.

Downes and Hogg 2013; Hirota and Takayabu 2013).

However, it also needs to be noted that the CGCMs need to

simulate a correct mean SST climatology in order to sim-

ulate the correct spatial structure of the SST variability

(e.g. Stockdale 1997; Dommenget 2012). In particular in

the extra-tropical domains SST variability is often a

reflection of variability relative to fronts in either the ocean

(e.g. between different gyres) or the atmosphere (e.g. jet

stream). The variability in the position or the strength of

the fronts is a significant part of the extra-tropical SST

variability. CGCMs that simulate the positions of these

fronts incorrectly will not be able to simulate the spatial

structure of SST variability correctly (e.g. Huang et al.

2007; Brayshaw et al. 2008; Deremble et al. 2012). Here,

the slab ocean simulation has a significant advantage, as is

has the right mean SST climatology by construction due to

the use of flux correction terms. Thus is seems reasonable

to assume that the CGCM simulations will improve in the

simulation of the spatial structure of SST variability if they

would operate at a more realistic mean ocean state. This

would in particular benefit seasonal to decadal prediction

schemes in which the assimilation of observed ocean states

is an important aspect of the overall skill of the predictions.
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