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Abstract
The CMIP model simulations show wide spread uncertainties in ENSO statistics and dynamics. In this study, we use the 
concept of the linear recharge oscillator (ReOsc) model to diagnose the ENSO-dynamics in CMIP3 and CMIP5 model 
simulations. The ReOsc model parameters allow us to quantify SST and thermocline damping, SST coupling to thermo-
cline and vice-versa, sensitivity to wind stress and heat flux forcings and separate atmospheric from oceanic processes. Our 
results show that the ENSO-dynamics and their diversity within the CMIP ensemble can be well represented with the linear 
recharge oscillator model diagnostics. We also illustrate that the ENSO dynamics show larger biases relative to observations 
and spread within the models than simple large-scale statistics such as SST standard deviation would suggest. The CMIP 
models underestimate the atmospheric positive and negative feedbacks, they have compensating atmospheric and oceanic 
errors, the thermocline damping is too strong and stochastic noise forcings in models is too weak. The CMIP5 models show 
only marginal improvements relative to CMIP3. The results suggest that models can still be significantly improved and our 
analysis gives directions to what needs to be improved.

Keywords El Nino southern oscillation · ENSO · Ocean and atmospheric dynamics · ENSO dyanmics · El Nino dynamics · 
Coupled general circulation models · CGCM · Model evaluation · Recharge oscillator model · Climate feedbacks · CMIP 
simulations

1 Introduction

El-Nino-Southern Oscillation (ENSO) is the dominant mode 
of interannual climate variability in the tropical Pacific. 
ENSO has its origins in the tropical Pacific but it is known 
to influence the weather all over the world. The dynamics 
that control ENSO are important for global seasonal climate 
predictions, but are also important for long-term global cli-
mate change.

ENSO being a result of complicated dynamical processes 
encompasses several atmospheric and oceanic feedbacks. 
The main linear atmospheric feedbacks are the Bjerknes 

feedbacks (Bjerknes 1969) and the net atmospheric heat flux 
feedback (Zebiak and Cane 1987). The Bjerknes feedbacks 
are essentially a positive feedback loop leading to ENSO 
growth and the net atmospheric heat flux feedback is a nega-
tive feedback. Several conceptual models have been pro-
posed which condense the dynamics of ENSO into simple 
theoretical frame works like the delayed action oscillator 
(Suarez and Schopf 1988), the recharge oscillator (Jin 1997a, 
b) and the further simplified recharge oscillator (Burgers 
et al. 2005). For our analysis, we use the latter and refer to 
it as the ReOsc model henceforth.

State-of-the-art coupled general circulation models 
(CGCMs) are capable of simulating the ENSO dynamics 
albeit with some biases with respect to the observed ENSO 
characteristics. Latif et al. (2001) carried out an intercom-
parison of an ensemble of twenty-four CGCMs in terms of 
performance of the annual mean state, the seasonal cycle and 
the interannual variability and almost all models (even those 
employing flux corrections) exhibited problems in simulating 
the sea surface temperature (SST) climatology. Although our 
understanding of ENSO has improved over the last decades 
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CGCM simulations of the phase 3 and 5 of the Coupled Model 
Intercomparison Project (CMIP3 and CMIP5) still have dif-
ficulties in simulating the climatology of the tropical Pacific, 
this includes the correct intensity and spatial structure of the 
East Pacific cold tongue along the equatorial Pacific (Bellenger 
et al. 2014; Reichler and Kim 2008), mean thermocline depth 
and slope along the equator and the structure of the equatorial 
currents (Brown and Fedorov 2008), mean zonal equatorial 
wind stress (Guilyardi 2006) and meridional extent of the wind 
variability which is important for ENSO phase change (Zelle 
et al. 2005).

Because of the scale of ENSO effects on the weather all 
over the world, changes in dynamics of ENSO in the future is 
an import scientific question that needs to be answered. Olden-
borgh et al. (2005) showed no statistically significant changes 
in amplitude of ENSO variability in the future. Uncertainties 
in the variability being large, they estimated very little influ-
ence of global warming on ENSO. On the other hand, Collins 
et al. (2010) report that global warming may change mean 
climate of the Pacific region, which in turn may modify one 
or more of the physical processes responsible for determin-
ing the characteristics of ENSO. Expected changes would be 
weakening of tropical easterly trade winds, faster warming of 
ocean surface near the equator and more slowly farther away; 
shoaling of the equatorial thermocline along with steeper 
temperature gradients across the thermocline. Change in non-
linear feedbacks like cloud-albedo or thermocline-SST feed-
back could also lead to different ENSO dynamics. However, 
confidence in these findings is undermined by the diversity 
in the model projections. Simulations from different CGCMs 
result into very different future projections of ENSO (Collins 
et al. 2010). Here again the uncertainty in the GCGM simula-
tion of the ENSO dynamics is a limiting factor. The relative 
importance of different processes contributing to the ENSO 
dynamics is different from model to model and different to 
those observed.

The aim of this study is to evaluate the CGCM simulation 
of the CMIP 3 and 5 databases in their performance of ENSO 
dynamics. We will base our analysis on the ReOsc model, 
which has been used in many studies to analyze ENSO dynam-
ics in different ways (Burgers et al. 2005; Frauen and Dom-
menget 2010; Jansen et al. 2009; Levine et al. 2015; Yu et al. 
2016). The ReOsc model being a simplified representation of 
ENSO dynamics, allows us to diagnose the dynamical param-
eters of the ENSO variability from the statistics of the model 
simulations or observations. The advantage of this approach in 
comparison to simple statistical parameters (e.g. SST standard 
deviation, SST pattern) or heat budget analysis (e.g. the BJ-
index from Jin et al. 2006) is that it defines a dynamical frame-
work with only a small numbers of parameters. The dynamical 
framework allows us to determine the sensitivity of ENSO 
statistics to different dynamical parameters. Further, the sim-
plicity of the model allows for a large reduction of complexity 

in the ENSO dynamics. This approach will help us to get from 
model evaluations towards direct model developments by link-
ing error in large-scale statistics with dynamical processes that 
are closer to the processes that are simulated in CGCMs.

This paper is organized as follows. The data sets, model 
and methods used are described in Sect. 2. The statistical 
analysis and test of the ReOsc model skill to represent ENSO 
dynamics is presented in Sect. 3. The main results of this study 
are presented in Sect. 4. It addresses the CMIP model ENSO 
dynamics in terms of ReOsc model parameters along with the 
effect of CMIP model parameter distributions and biases on 
ENSO dynamics. Section 5 presents a dynamical skill (bias) 
score of each CMIP model based on the results of the previous 
sections. The study is concluded with a summary and discus-
sion in Sect. 6.

2  Data, models and methods

For observational data we use the 1950–2014 HadISST1.1 
data (Rayner et al. 2003) for SST and the 1982–2002 BMRC 
20 °C isotherm depths of (Smith 1995) as an estimate for the 
thermocline depth. Since the BMRC 20 °C isotherm depths 
record is much shorter than the SST record we restrict our 
analysis of SST and thermocline depth co-variability to 
1982–2002. The 1979–2014 ERA Interim data set is used for 
estimates of zonal surface wind stress (Dee et al. 2011) and 
the 1984–2004 OA Flux for estimates of surface heat fluxes 
(Yu and Weller 2007).

We analyze model simulations from the CMIP3 and 
CMIP5 databases (Meehl et al. 2007; Taylor et al. 2012). 
For the CMIP3 models we use the “20 cm3” simulations and 
the “historical” scenario for the CMIP5 models for the years 
1900–1999. We used all available models that provide all cli-
mate variables needed for the following analysis. These are 10 
CMIP3 and 29 CMIP5 models; see Table 1.

All analysis is based on monthly mean anomaly time 
series for thermocline depth averaged over the equatorial 
Pacific (130°E–80°W, 5°S–5°N) and NINO3 (150°W–90°W, 
5°S–5°N) SST index and net heat flux, and central Pacific 
(160°E – 140°W, 6°S–6°N) zonal surface wind stress. Monthly 
anomalies are computed by subtracting the mean seasonal 
cycle for each dataset.

The ReOsc model from (Burgers et al. 2005) is given by 
two tendency equations of the NINO3 region SST anomalies, 
T, and equatorial Pacific mean thermocline depth anomalies, h: 

The model parameters a11 and a22 represent the damping 
(or growth rate) of T and h, and the parameters a12 and a21 

(1)

dT(t)

dt
= a11T(t) + a12h(t) + �1

dh(t)

dt
= a21T(t) + a22h(t) + �2



1755An evaluation of ENSO dynamics in CMIP simulations in the framework of the recharge oscillator…

1 3

the coupling between T and h. The two equations are forced 
by stochastic noise terms �1 and �2. The parameters of the 
2-dimensinal model Eq. (1) are estimated for observations and 
also for each CMIP model simulation by multivariate linear 
regressing the monthly mean tendencies of T and h against 
monthly mean T and h, respectively. Following the approach in 
previous studies (Burgers et al. 2005; Frauen and Dommenget 
2012; Jansen et al. 2009). The residual of the linear regression 
fit can be interpreted, as the random noise forcings with the 
standard deviation (stdv) of the residuals being the stdv of the 
noise forcings for the T and h equations (�1 and �2).

The ReOsc model strongly simplifies the ENSO dynamics 
and each of the 4 parameters and the two noise forcing terms 
can be a result of many different physical processes in the 
atmosphere and oceans. To further untangle the complexity 
the parameters, a11 and a21 can be split up into an atmospheric, 
a11A and a21A, and oceanic part, a11O and a21O following the 
approach of Frauen and Dommenget (2010) and Yu et al. 
(2016): 

The atmospheric damping (or growth rate) of T, a11A, 
is effectively a coupling to wind stress and net heat flux 
(Frauen and Dommenget 2010): 

(2)
a11 = a11O + a11A

a21 = a21O + a21A

The coefficient C�T is the linear regression of zonal wind 
stress, �x, in the central Pacific box and NINO3 SST. This 
essentially represents one of the three Bjerknes feedbacks. 
CfT is a linear regression between net atmospheric heat flux 
and SST in the NINO3 region. λ is a positive free coupling 
parameter and � the ocean mixed layer depth following the 
approach of Frauen and Dommenget (2010), which is based 
on the study of Jin et al. (1997a). The atmospheric part of 
the coupling of h to T, a21A, can be expressed as: 

The oceanic parts of the couplings to T, a11O and a21O, 
in Eq. (2) can be estimated as the residuals of a11 and a21 in 
Eq. (2) when a11A and a21A are estimated from Eqs. (3) and 
(4). All parameters values as estimated from observations 
or calculated are listed in Table 2 for an overview. In the 
analysis part the parameters C�T, CfT, a11O and a21O will be 
estimated for the CMIP simulations in the same way as for 
the observations. To reduce the complexity in the analysis 
we assumed � to be the same for all models. The coupling 
parameter λ is fixed for all analysis, as it was estimated in 

(3)a11A = a12�C�T +
CfT

�

(4)a21A =
a22

2
�C�T

Table 1  CMIP3 and CMIP5 models with the corresponding model numbers

No. CMIP3 model No. CMIP3 model

1 CGCM3.1 6 GISS-ER
2 CGCM3.1.T63 7 IPSL-CM4
3 CNRM-CM3 8 MPI-ECHAM5
4 GFDL-CM2.0 9 MRI-CGCM2.3.2
5 GISS-AOM 10 UKMO-HADCM3

No. CMIP5 model No. CMIP5 model

1 ACCESS1-0 16 GISS-E2-R
2 ACCESS1-3 17 GISS-E2-R-CC
3 CCSM4 18 HadCM3
4 CESM1-BGC 19 HadGEM2-CC
5 CESM1-CAM5 20 HadGEM2-ES
6 CESM1-FASTCHEM 21 IPSL-CM5A-MR
7 CESM1-WACCM 22 IPSL-CM5B-LR
8 CNRM-CM5 23 MPI-ESM-LR
9 CSIRO-Mk3-6-0 24 MPI-ESM-MR
10 CanESM2 25 MRI-ESM1
11 FGOALS-g2 26 NorESM1-M
12 GFDL-ESM2G 27 NorESM1-ME
13 GFDL-ESM2M 28 bcc-csm1-1-m
14 GISS-E2-H 29 CMCC-CM
15 GISS-E2-H-CC
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(Frauen and Dommenget 2010) from running CGCM sen-
sitivity studies.

It should be noted here that in model simulations the 
regions of wind-SST or other interactions may be shifted in 
location (e.g. east–west shift), but be otherwise similar to 
observations. This would lead to changes in the estimated 
parameters. We will not discuss such variations due to 
regional shifts, but leave this to future studies.

The ReOsc model Eqs. (1) can be integrated with sto-
chastic noise forcing terms �1 and �2 to generate stochastic 
time series of T and h. We therefore integrated the equations 
with a time step of 24 h and red noise forcing terms �1 and �2. 
The decorrelation time of �1 and �2 is set to 3 days to mimic 
weather fluctuations that effectively results into white noise 
for monthly mean data. Monthly mean stdv of the noise forc-
ings is the stdv as observed or estimated from the CMIP 
simulations in Eq. (1) as described above.

3  Proof of concept

Before we apply the ReOsc model to diagnose the ENSO 
dynamics in the CMIP model simulations we first like to 
start with a proof of concept. We therefore do a number 
of different analyses to illustrate the skill of the ReOsc 
model in diagnosing the ENSO behavior in different model 
simulations.

We start the analysis by evaluating the observed time 
series of T and h, see Fig. 1a. In addition to the standard 
deviations of T and h, the power spectrum of T and the lag-
lead correlation between T and h are two important statistical 
characteristics describing the ENSO behavior; see Fig. 1c, 
d. The observed time evolution of h leads that of T by about 
5–6 months (peak of cross-correlation), which is indicative 
of the ENSO recharge and discharge mechanism, which is 
the fundament of the ReOsc model.

The stochastic integration of the ReOsc model with the 
observed parameters (see Table 2) shows very similar sto-
chastic behavior. Figure 1b shows a 20 years sample from 

the 1000 years long integration. The statistical properties 
stdv(T), stdv(h), power spectrum of T and the cross correla-
tion between T and h based on the 1000 years integration of 
the ReOsc model are all similar to observed. The stdv(h), 
spectral slope and the cross-correlation are, however, slightly 
overestimated (Table 3). In summary, we conclude that the 
ReOsc model does replicate the main stochastic character-
istic of T and h and their interaction fairly well.

Figure 2 shows the power spectrum and cross correla-
tion between T and h for four CMIP5 models. Here we 
highlighted four CMIP simulations that have fairly differ-
ent ENSO behaviors. They differ in the shape of the power 
spectrum, the overall variance and in the cross correlation 
between T and h. The stochastic integrations of the ReOsc 
model with the parameter from the four CMIP model simu-
lations (see Sect. 2 for details) do replicate the differences in 
these main statistical characteristics fairly well. For instance, 
the ReOsc integration mimicking the bcc-csm1-1-m simula-
tion has a much stronger peak in the power spectrum than 
the one for the CMCC-CM, replicating the same difference 
seen in the original CMIP simulations of bcc-csm1-1-m and 
CMCC-CM. Similarly, the weak cross correlation between T 
and h in the CMCC-CM simulation is well captured by the 
ReOsc integration. These preliminary results suggest that 
the ReOsc model is capable of capturing the most important 
characteristics of ENSO behavior in CMIP simulations.

We now compare four main statistical properties [stdv(T), 
stdv(h), power spectrum slope and cross correlation between 
T and h] of all CMIP simulations against the ReOsc integra-
tion mimicking the CMIP models, see Fig. 3. Here we first 
of all focus on the proof of concept, but we will in the next 
sections discuss the results further. The ReOsc model is able 
to replicate the stdv(T) and stdv(h) with very high correla-
tions for both CMIP3 and 5 (see Fig. 3). It may, however, 
be argued that this is not totally unexpected, as we have fit-
ted the model parameters to the T and h tendency Eqs. (1) 
for each model. This essentially enforces a close match in 
stdv(T) and stdv(h) if the ReOsc model has any value in 
presenting the main dynamics of the CMIP simulations. 
However, the fact that we closely reproduce the stdv(T) and 
stdv(h) does suggest that the ReOsc is capturing some essen-
tial elements of the ENSO dynamics in the CMIP simula-
tions. It should be pointed out here that this model does not 
consider seasonal difference in the parameters (all param-
eters are constants) neither does it consider non-linearities. 
Thus, to first order these are not essential to understand the 
main ENSO statistics presented in this study.

The ReOsc model also has some skill in reproducing the 
variations in the power spectrum. To captures the difference 
in the power spectrum we estimated the slope (in log-scale) 
of the power spectrum for each model and observations for 
periods from 6 months to 5 years (see Fig. 3c). This marks 
the range of the power spectrum in which the variance is 

Table 2  All model parameters values as estimated from observations 
or calculated otherwise

a
11

 (T damping/growth rate) − 0.074 [1/month]
a
12

 (T coupling to h) 0.021 [C/m/month]
a
22

 (h damping/growth rate) − 0.022 [1/month]
a
21

 (h coupling to T) − 1.23 [m/C/month]
stdv (�

1
) (amplitude of T noise) 0.25 [C/month]

stdv (�
2
) (amplitude of h noise) 2.22 [m/month]

C�T (wind-SST feedback) 0.011 [N/m2/C]
CfT (atmos. heat–SST feedback) − 16.9 [W/m2/C]
� (free coupling parameter) 2100  [m3/N]
� (scaled ocean mixed layer depth) 79.0 [C  m2/W/month]
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strongly increasing with period length (e.g. see Fig. 2c). 
The ReOsc model estimates are closely following the varia-
tions in the CMIP models suggesting that the ReOsc model 
describes much of the large-scale variations in the power 
spectra shape.

The mean cross correlation between T and h for 4–8 
months lag (h leading T) is also fairly well captured by the 
ReOsc model (Fig. 3d). However, the ReOsc model tends to 
overestimate the cross correlation between T and h, suggest-
ing that T and h are more tightly related in the ReOsc model 
than they are in the CMIP simulations. Given the simplicity 
of the ReOsc model this is not entirely unexpected.

Another way of testing the ReOsc model is to evaluate 
the tendencies of T and h. According to the ReOsc model 
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Fig. 1  a Time series of observed NINO3 SST anomaly (T) and mean 
equatorial Pacific thermocline depth (h) anomaly. b Time series of 
ReOsc toy model T and h. c Power spectra of T. The red vertical lines 
mark the 5 years and 0.5 years periods, which mark the period range 

used to estimate the spectral slopes in the analysis sections. d Cross 
correlation between T and h. The solid vertical red lines are the 4 and 
8 months lead, which mark the lag range used in the analysis sections

Table 3  Comparison of observational data and REOSC toy model 
estimates

stdv of T stdv of h Spectral slope Mean correlation 
(4–8 months lead)

Observa-
tion 
(1982–
2002)

1.0 6.8 − 2.5 0.61

Recharge 
oscilla-
tor toy 
model

0.99 7.8 − 3.1 0.71
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Eq. (1) the tendencies of T and h should be related to T and 
h themselves [first two terms on the rhs of Eq. (1)] and to the 
noise terms �1 and �2. Given the estimated parameters we can 
evaluate what the correlation between the sum of the two T 
and h terms in Eq. (1) and the tendencies of T and h for all 
CMIP simulations, see Fig. 4a, b. The correlations for the 
tendencies of T in the ReOsc model are distributed some-
where between 0.2 and 0.8 with a mean of about 0.5. The 
spread in this distribution reflects the different ReOsc model 
parameters in the CMIP5 simulations. The distribution is 
similar for h, but the correlation for the h tendencies tend to 
be larger, indicating that h is more strongly forced by the two 
T and h terms than by the noise term [last term in Eq. (1)].

We can estimate what distributions of correlations we 
should expect from the ReOsc model, by doing Monte 
Carlo integrations of the ReOsc model with the same 
CMIP parameters. We therefore integrated a 1000 years 
long time series of the ReOsc model for each CMIP model 
parameter set and computed the correlation values. We did 
these 100 times for each model. The ReOsc model distri-
butions are very similar to those of the CMIP models, see 
red lines in Fig. 4 a and b. Spread, mean values and even 
more detailed variations in the distributions are similar to 

those of the CMIP5 simulations, suggesting that the ReOsc 
model Eq. (1) does give a good approximation of the T 
and h tendencies and their relations to T and h themselves.

Finally, we test the noise estimates of the ReOsc model 
tendencies Eq. (1). The assumption of the ReOsc model 
is that the noise forcings �1 and �2 have a low lag-1 auto 
correlations. Thus, essentially being white noise. The dis-
tribution of the lag-1 auto correlations for �1 and �2 in the 
ReOsc model integrations are shown in Fig. 4c, d. The 
distributions have nearly no spread and have a mean of 
about 0.2, which is close to what is expected for white 
noise. The estimates of the residual noise for the CMIP5 
simulations show a much wider spread and for �2 (for h 
tendencies) the mean of the distribution is higher (~ 0.4). 
This indicates that the residual noise forcing estimates in 
the CMIP model show some deviations from the white 
noise estimate, in particular for the h tendencies. It illus-
trates some limitation of the ReOsc model in describing 
the fully complex CMIP simulations. However, in sum-
mary we conclude from this section that the ReOsc model 
gives a good first order representation of the main ENSO 
behaviors in the CIMP simulations and that the ReOsc 

Fig. 2  Power spectra of T (upper) and cross correlations between T and h (lower) for some example CMIP5 models (black) and for are the ReOsc 
model regenerated data (green). Positive lead times in the cross-correlations indicate h leading T 
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model parameter estimates therefore are a good diagnostic 
to describe the ENSO behavior in these model simulations.

4  CMIP model ENSO dynamics

After establishing the efficiency of the ReOsc model in 
replicating the CMIP representation of ENSO, we now 
focus on the characteristics of the CMIP model simula-
tions ensemble utilizing the ReOsc model parameter diag-
nostics in combination with other statistical parameters. 

We start with a comparison of the CMIP models against 
observations in Sect. 4.1. This will be followed by an 
analysis of the atmospheric and oceanic contributions 
to the diversity in the dynamics of ENSO in Sect. 4.2 
and a closer look at the CMIP model ensemble spread 
in Sect. 4.3. This will be followed by an analysis of the 
sensitivity of the ENSO dynamics to the different model 
parameters in Sect. 4.4, which will be utilized to develop 
a dynamical bias score for the models in Sect. 4.5 and to 
summarize the CMIP model parameter spread.
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Fig. 3  Scatter plots of observed (black), CMIP3 (red) and CMIP5 
(blue) data on x-axis and ReOsc toy model regenerated data on y axis 
for a standard deviation of T (°C); b standard deviation of h (m); c 
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(log(°C2)/log(year−1)); d mean of the cross correlation between T and 

h for lags 4–8 months. (h leading T). Observed error bars are the 90% 
confidence intervals. The r value marks the correlation between the 
x-axis vs. the y-axis of CMIP data points. Supplemental Table  S1 
lists all model values shown in this figure
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4.1  Comparison towards observations

The main statistical properties [stdv(T), stdv(h), spectral 
slope and lag cross correlation between T and h] of the 
CMIP3 and CMIP5 ensemble means are fairly close to the 
observations (Fig. 3). The results of Bellenger et al. (2014) 
for the observed stdv(T) agree fairly well with our findings. 
The stdv(T), stdv(h) and the cross correlation between T 
and h for 4–8 months. lag (h leading T) are all on average 
slightly underestimated by the CMIP3 and CMIP5 ensem-
bles. However, more remarkable are the quite large spreads 

in the CMIP3 and CMIP5 ensembles in stdv(T) and stdv(h). 
They are clearly inconsistent with the observed uncertain-
ties. The spread within the models will be discussed in more 
detail in Sect. 4.3.

We now focus on the ReOsc model parameters; see 
Fig. 5. Here we combined the two parameters that influ-
ence the T tendency equation in Fig. 5a. Both T damping 
 (a11) and coupling to h  (a12) are very close to the uncer-
tainties boundary of the observed values for the CMIP3 
and CMIP5 ensemble means. However, the spread of these 
parameters is again larger than expected from statistical 
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uncertainties, suggesting that many CMIP3 and CMIP5 
simulations have T damping  (a11) and coupling to h  (a12) 
significantly different from that observed.

The parameters influencing the h tendency equation are 
shown in Fig. 5b. The coupling to T is within the observed 
uncertainties for the CMIP3 and CMIP5 ensemble means 
suggesting a fairly good agreement of the models with 
observations in this parameter in average. The h damping 
 (a22) is in most model simulations clearly over estimated 
(more negative). This has even increased slightly from the 
CMIP3 to the CMIP5 ensemble (Fig. 5b).

The strength of the noise forcing estimates for T and h 
(stdv (�1) and stdv(�2)) are shown in Fig. 5c. The mean T 
noise forcing is very similar to observed, but the strength of 
the h noise forcing is underestimated in most CMIP3 and 
CMIP5 simulations. There is also a very large spread within 
the model ensembles with some models having stronger 
noise forcings than observed. In particular, the noise forcing 
of the T tendencies (�1) are much more widely spread within 
the models than would be expected from statistical uncer-
tainties. Some models have less than half as much stdv(�1) 
than observed. Here it is interesting to note that despite 
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Fig. 5  Equation  (1) parameters of the ReOsc model for observed 
(black with grey shaded area marking the 90% confidence interval), 
CMIP3 (red) and CMIP5 (blue) models. a T damping (a11) vs. T cou-
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points. See models and corresponding numbers in Table  1. Supple-
mental Table S2 lists all model values shown in this figure
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underestimating the forcing strengths and overestimating 
the damping of h  (a22) the overall variability of T (stdv(T)) 
is not strongly underestimated, but is in the ensemble mean 
close to observed.

An alternative way of evaluating the ReOsc model is to 
look at the relative contribution of the three forcing terms 
in rhs of Eq. (1). We estimated the relative contribution of 
each term by building the mean fraction that each of the 
three terms contribute to the sum of the absolute values of 
each term of each monthly mean, see Fig. 6. The largest 
(~ 50%) contribution to the observed T and h tendencies 
comes in average from the noise forcings, illustrating that 
ENSO is a strongly noise driven process. The second largest 
contribution (~ 36%) to the observed T tendencies comes 
from the coupling to h indicating the strong influence of 

the thermocline variability onto the SST variability. This 
coupling is even stronger than the direct effect of T (~ 17%). 
Similarly, the tendencies of h are also more strongly forced 
by the coupling to T (~ 36%) and less so by h itself (~ 7%).

The ensemble means of CMIP3 and CMIP5 are very 
similar to the observed contributions to the T tendencies. 
However, both ensembles tend to underestimate the relative 
contribution of the noise forcings to the h tendencies. This 
is consistent with the above finding that the strength of the 
h noise forcing (stdv(�2)) was underestimated by the CMIP 
models and that the h damping was too strong. The rela-
tive contribution of h to the tendencies of T is also slightly 
underestimated.

Individual models show a fairly wide spread in the 
relative contributions of the different terms to the T and h 
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tendencies. These can in general be linked to the variations 
in the model parameters (Fig. 5). CMIP5 model #20, for 
instance, has a strong contribution of T to the tendencies of 
T (Fig. 6a), which is consistent with the strong damping  (a11) 
in this model (Fig. 5a). In turn, CMIP5 model #7 with a near 
zero  a11 value has almost no contribution of T to the tenden-
cies of T. However, here we have to consider that the rela-
tive contributions cannot always be related to the absolute 
values of the parameters. Low forcing strengths in the CMIP 
models (Fig. 5c), for instance, do not necessarily imply low 
relative contributions to the tendencies, because the relative 
contributions of the forcings also result from the integrations 
with the other parameters of the model. For instance, CMIP5 
model #14 does have a relative contribution of the forcings 
to the T tendency close to those observed, but at the same 
time it has much weaker noise forcing (stdv(�1); see Fig. 5c) 
and weaker over all T variability (Fig. 3a). Biases in the 
other parameters of the model also contribute to the relative 
contribution of the forcings.

4.2  Contribution from atmospheric and oceanic 
dynamics

The ReOsc model parameters a11 and a21 can be split into 
an atmospheric and a residual oceanic part following the 
approach of Frauen and Dommenget (2010) (see Sect. 2). 
We will use this approach to get some further separation 
between atmospheric and oceanic processes.

We start the discussion with the atmospheric processes 
contributing to the T damping (a11A), which are the wind-
SST Bjerknes feedback (C�T) and the atmospheric net heat 
flux (CfT), see Fig. 7a. The observed C�T is positive repre-
senting a positive feedback and CfT is negative representing 
a negative feedback for a11 (see Eqs. 2, 3). The combined 
observed atmospheric feedback on T is a positive growth rate 
a11A (Fig. 7b), which is dominated by the positive Bjerknes 
feedback (C�T).

The CMIP models ensemble means and indeed almost 
all model simulations underestimate both Bjerknes (C�T) 
and the atmospheric net heat flux (CfT), feedbacks. C�T is 
in ensemble mean only half as strong as observed and simi-
larly CfT is only half as strong as observed. This is qualita-
tively similar to the finding of Bellenger et al. (2014) and 
Lloyd et al. (2009). The combined atmospheric growth rate 
a11A is in the ensemble mean still positive, but weaker than 
observed and some models have even negative atmospheric 
growth rates (damping). Even though the two biases in C�T 
and CfT do compensate each other a little bit, as we have a 
positive and a negative feedback underestimated, they do not 
compensate each other completely, because the C�T term is 
much stronger for a11A than the CfT term.

The oceanic contribution to the growth rate of T (a11O) 
is estimated as the residual of a11 after considering the 

atmospheric part (see Eq. (2)). The observed oceanic feed-
back to T is a strong damping (Fig. 7b, c) that counter acts 
the positive atmospheric growth rates leading to the much 
weaker total damping of a11. Thus, the weak total T damp-
ing (a11 in Fig. 5a) is a result of strong positive atmospheric 
growth rate and strong oceanic damping. Again, nearly all 
CMIP5 model simulations underestimate the oceanic damp-
ing and the ensemble means are significantly smaller than 
the observed value.

The coupling of h to T (a21) can also be split into an 
atmospheric and oceanic part (see Eqs. (2) and (4)). Here 
the observed a21 is dominated by the oceanic part (a21O) 
with a smaller contribution from the atmospheric part (a21A; 
Fig. 7c, d). This is similar in the CMIP ensembles, but the 
models tend to underestimate the oceanic part and overesti-
mate the atmospheric part. The overestimation of a21A results 
mostly from the too strong h damping (a21A; see Eq. (4) and 
Fig. 5b).

4.3  Spread within the model ensembles

In addition to how the models compare to the observations 
we can consider the spread within the model ensemble. If 
the models are consistent with each other within the sta-
tistical uncertainties of the data, then they should have a 
spread similar to the statistical uncertainties of the observa-
tions (Figs. 3, 5, 7). However, the CMIP3 and CMIP5 model 
ensembles show much larger spreads in all statistics and 
parameters shown. In particular, the ENSO statistics stdv(T), 
stdv(h) and the cross-correlation between h and T show large 
spread. Also, the spread in a11, stdv(�1) and stdv(�2), C�T, 
CfT, a11A and a11O are very large. This highlights large diver-
sity in the model simulations with models not only having 
very different ENSO statistic, but also having very different 
process parameters, suggesting that the processes control-
ling ENSO in the different model simulations can be very 
different from model to model.

The variation in the parameters within the CMIP model 
ensemble have many interesting cross-correlations. Some of 
them are shown in Figs. 5 and 7 and all cross-correlations 
are listed in Table 4. It is beyond this study to discuss all of 
these cross-relations in the parameters and most of these will 
be addressed in future further studies. In the following we 
like to point out a few interesting relations.

The ReOsc model parameters (Eq.  (1); a11, a12, a22, 
a21, stdv(�1) and stdv(�2)) show very little cross correla-
tions within the CMIP ensemble. Only the strength of the 
noise forcings (stdv(�1) and stdv(�2)) have a stronger posi-
tive correlation, suggesting that models that have stronger 
noise forcing on T also have strong noise forcing on h (see 
Fig. 5c). We can also notice a positive correlation between 
the strength of the noise forcing on T (stdv(�1)) and the 
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coupling of h to T (a21). A reason for his correlation is 
unclear to us and would need further future investigations.

If we extend the discussion on all cross-correlation with 
the atmospheric and oceanic parameters (a11a, a11o, a21a, 
a21o, C�T and CfT,) we see many more significant cross-cor-
relations. The most remarkable cross relation here is that 
the models tend to underestimate all three elements (C�T , 
CfT and a11o) contributing to a11 yet the total a11 is about 
the same as observed (Fig. 5a). This suggests that the vari-
ations of the model simulations relative to the observed 

atmospheric and oceanic process have strong compensating 
effects: model simulations that have too strong atmospheric 
growth rates also have too strong oceanic damping leading 
to a total T damping close to observed. This is illustrated 
in Fig. 7b: the models line up closely to the compensation 
line, which marks the line on which the sum of a11a and a11o 
adds up to the observed a11. We are not aware of any physi-
cal process that could explain this behavior. We will discuss 
possible implications of this further in the final summary 
and discussion section.
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Fig. 7  Atmospheric and oceanic parameter components for observed 
(black with grey shaded area marking the 90% confidence interval), 
CMIP3 (red) and CMIP5 (blue) models. a Atmospheric Bjerknes 
feedback  (CτT) (N/m2/°C) vs. atmospheric heat flux feedback (W/
m2/°C); b oceanic  (a11o) and atmospheric  (a11a) components of T 
damping (1/month); c oceanic feedbacks of T damping  (a11o) (1/
month) vs. h coupling to T  (a21o) (m/°C/month); d oceanic  (a21o) and 

atmospheric  (a21a) components of h coupling to T (m/°C/month). The 
cyan line in b and c marks the compensation line at which atmos-
pheric and oceanic components add up to the observed total values 
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sponding numbers in Table 1. Supplemental Table S2 lists all model 
values shown in this figure



1765An evaluation of ENSO dynamics in CMIP simulations in the framework of the recharge oscillator…

1 3

Some other cross-correlations are quite remarkable too. 
The atmospheric feedbacks C�T and CfT, for instance, are 
negatively correlated. Thus the variations in these two 
feedbacks seem to be having compensating effects on a11a 
(see Eq. (3)). Subsequently, variations in a11a are largely 
unrelated to variations in C�T and CfT (Table 4) despite a11a 
being a direct function of both (Eq. (3)). Other studies have 
pointed out a similar relationship between C�T and CfT. Bayr 
et al. (2017) argue that such a negative relationship can 
result from a shift in the mean state position of the uplifting 
branch of the walker circulation.

The atmospheric part of the h coupling to T (a21a) is 
positively correlated to the h damping (a22) as expected 
from Eq. (4). However, the Bjerkness feedback (C�T) is also 
expected to be positively correlated following Eq. (4), but it 
has a significant negative cross-correlation. Again, we have 
no explanation for this unexpected relation.

4.4  Sensitivities of ENSO statistics to the ReOsc 
model biases and spreads

We now focus on the sensitivity of the ENSO statistics to the 
ReOsc model parameter biases and spreads discussed above. 
The advantage of using the conceptual framework of the 
ReOsc model is that we can evaluate the relative importance 
of different parameters or feedbacks biases by integrating 

the dynamics ReOsc model and analyzing how the ENSO 
statistic changes.

We estimate the sensitivity of an ENSO statistic, σk, to a 
parameter, pi, of the ReOsc model by integrating the ReOsc 
model with all other parameters set to the CMIP ensem-
ble mean parameters and perturbing pi by a small δpi. The 
change in the ENSO statistic, δσk, relative to the control inte-
gration in which all parameters are set to the CMIP ensemble 
mean parameters gives us an estimate of the sensitivity �ki: 

All integrations are done for 500 years using the same 
white noise forcing. We estimate the sensitivities to C�T, CfT, 
a11o and a21o by incorporating them into the ReOsc model 
Eq. (1) replacing a11 and a21 using Eqs. (2–4). By multiply-
ing the sensitivity, estimated with Eq. (5), with a difference 
in a particular parameter, Δpi, we can estimate the change in 
the ENSO statistic Δσki: 

It needs to be noted here that we made a first order 
linear approximation in this approach. However, the 
ENSO statistics in the ReOsc model are in general not a 
linear function of the parameters, but do show some non-
linear behavior (e.g. changing a11 = 0.1 by Δa11 = −0.1 
does not have the exact opposite effect of changing it by 

(5)�ki ≈
��k

�pi

(6)Δ�ki = Δpi ⋅ �ki

Table 4  Cross-correlation in the 
variations of the parameters in 
CMIP ensembles

Cross correlations in CMIP model parameters
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0.12 0.42 0.47 0.06 0.73 -0.67 0.29 0.23 -0.31 0.22

0.34 0.26 0.08 0.22 -0.42 0.64 -0.11 0.22 -0.03

0.64 0.28 0.48 -0.55 0.44 0.75 -0.31 0.61
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-0.91 0.1 0.45 0.1 0.4
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-0.26 -0.57 0.4
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Correlation values with magnitudes < 0.5 are shown in light grey. Values > 0.5 are blue if they are >0.5 
in both CMIP3 and CMIP5 ensembles, otherwise they are in dark grey
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Δa11 = +0.1). It also needs to be considered that the sen-
sitivity of the �ki will in general depend on the values of 
all other parameters as well as.

Figure 8a shows the changes in stdv(T) and stdv(h) for 
the biases of the CMIP ensemble mean (of both CMIP3 
and 5) relative to the observed values. First, we can note 
that the stdv(T) and stdv(h) behave similar: parameter 
changes that increase the stdv(T) also increase stdv(h). 

Suggesting that the strength in variability T and h are 
strongly linked.

The largest changes in stdv(T) and stdv(h) result from 
the biases in the Bjerknes feedback C�T, the residual oce-
anic T damping a11O and the atmospheric net heat flux CfT. 
This reflects that all three have relatively large biases to the 
observed values (Fig. 7a, b) combined with a relatively large 
sensitivity of the ENSO statistics in the ReOsc model to 
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the CMIP models relative to the observed; c same as a but due to the 
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in the std(T or h) of the ReOsc model. See text for details
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these parameters. In turn, the total T damping a11 has only a 
small sensitivity, although it has the same sensitivity (�ki) as 
a11O. However, the bias to observed in a11 (Fig. 5a) is much 
smaller than in a11O (Fig. 7b).

The much too weak C�T in the CMIP models would result 
into a much weaker stdv(T) and stdv(h), and the too weak 
a11o would result into a stronger stdv(T) and stdv(h). The 
strongly opposing effects combine (Eqs. (2, 3)) into the total 
T damping a11, which has very little bias to observations and 
therefore has very little effect on stdv(T) and stdv(h). The 
biases in the strength of the noise forcings and the h damp-
ing a22 also have some significant influence on stdv(T) and 
stdv(h), whereas the biases in a12, a21 and a21o have very 
little influence.

The effects of the parameters on the power spectrum slope 
and the cross-correlation between h and T, (rTh), are shown 
in Fig. 8b. The spectral slope changes are remarkably similar 
to the changes in stdv(T), but with reversed sign: parameters 
that increase the spectral slope (thus becoming less negative; 
see Fig. 3c) decrease the stdv(T) (compare with Fig. 8a). 
This suggests that models with stronger SST variability also 
have a stronger increase in SST variance with increasing 
periods (more negative spectral slope) and thus have a more 
pronounce interannual variability. There is indeed a negative 
correlation of -0.6 between the std(T) and the spectral slopes 
in the CMIP ensemble (compare Fig. 3a, c).

The cross-correlation rTh is most strongly affect by the 
biases in the h damping (a22), h forcing strength (stdv(�2)) 
and C�T. Most other parameters have little effect on rTh. 
There is a weak indication that changes in the parameters 
that lead to a stronger rTh also lead to more negative spectral 
slope. This suggests that models with stronger delayed cou-
pling between h and T have a stronger increase in SST vari-
ance with increasing periods (more negative spectral slope) 
and thus have a more pronounced interannual variability.

The CMIP models have fairly large spread within the 
ensemble in nearly all parameters. We estimate the sensi-
tivity of the statistics to these parameter variations by using 
absolute values of Eq. (6) (neglecting the signs) with Δpi 
being the stdv of the parameters within the CMIP ensemble, 
see Fig. 8c, d. The largest changes in statistics of stdv(T) and 
stdv(h) again result from the spread in C�T, a11o and CfT. 
However, the spread in a11 and stdv(�1) are now more impor-
tant than in the bias towards observations. This is due to the 
fact that a11 had little bias towards observations, but have 
fairly large spread within the CMIP models (see Fig. 5a).

The spectral slope again behaves similarly to the stdv(T) 
with the noticeable difference that the T coupling to h (a12) 
has stronger influence on the spectral slope than it does on 
the stdv(T). The T coupling to h (a12) also has the most 
strongly influence on the cross-correlation rTh. The damping 
of h (a22) has a similarly strong influence, but most other 
parameters have weaker effects on rTh.

5  Bias score of CMIP models

We can summarize the CMIP model biases relative to the 
observed ENSO ReOsc model parameters by combining all 
parameter biases into a normalized bias score, S�ki: 

with S�ki the bias score for the ENSO statistic �k for the 
model with index i, the model bias in the parameter pn rel-
ative to observed, Δpi

n
, and the observed ENSO statistic, 

�k(obs). This bias score is effectively a root mean square 
error (RMSE) in the eight model parameters (a12, a22, 
stdv(�1), stdv(�2), C�T, CfT, a11o and a21o) scaled by the sen-
sitivity of the ENSO statistics to these parameters (�kn) in the 
ReOsc model and normalized by the absolute value of the 
observed ENSO statistic, �k(obs).It thus provides a dynam-
ics-based bias score of ENSO. The higher the bias score the 
more the model dynamics deviate from the observed dynam-
ics, hence the ideal model should have a bias score close to 
or within the observed uncertainties.

Figure 9 shows the bias scores for all CMIP models for 
the ENSO statistics stdv(T), stdv(h), spectral slope and the 
mean cross-correlation between h and T at lags 4–8 months 
(rTh). In addition, we show an estimate of the observed 
uncertainties by replacing Δpi

n
 in Eq.  (7) with the 90% 

uncertainty values of the observed parameters as shown in 
Figs. 5 and 7.

There are a number of interesting aspects in the bias 
score results. Starting with the bias scores in stdv(T) and 
stdv(h) (Fig. 9a) we can first of all notice that all models are 
relatively far away from the observed uncertainty estimate. 
Much more than they are from any of the individual param-
eters (see. Figs. 5, 7). This is due to the role of compensating 
errors. In the definition of the bias score (Eq. (7)) we have 
implicitly assumed that the biases are independent. However, 
some of the parameters with the strongest sensitivities have 
very strongly compensating biases (see C�T, CfT and a11o 
Fig. 7a, b). While these compensating errors lead to rela-
tively small biases in the ENSO statistics, they do not lead to 
small bias values in Eq. (7). Thus, the main reason why the 
models are far away from good bias values is the dominance 
of compensating errors. This is in particular captured by the 
bias in a11a, which combines C�T and CfT, and by the bias 
in a11o (Fig. 7b). Models that perform well in these have in 
general small bias scores and vice versa.

Further we can notice that the bias scores in stdv(T) 
and stdv(h) are nearly identical. Models that perform well 
in stdv(T) also perform well in stdv(h). This first of all 
reflects that the correlation between stdv(T) and stdv(h) 
in the CMIP ensemble is fairly high (r = 0.9). Thus, the 

(7)S�ki =
1

|�k(obs)|

√√√√1

8

8∑

n=1

(Δpi
n
⋅ �kn)

2
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strength of the SST variability in the CMIP model simula-
tions is strongly linked to the strength of the thermocline 
variability. The tight relation in the bias scores also indi-
cates that the sensitivities, �ki, in the ReOsc model for 
stdv(T) and stdv(h) are very strongly linked to each other. 
A parameter change that leads to a change in stdv(T) also 
leads to an equivalent change in stdv(h).

The bias scores of stdv(T) and stdv(h) are also rela-
tively wide spread out with a clear separation between the 
models. Again, this is much stronger than in any of the 
individual parameters (see Figs. 5, 7). It is indicating that 

the dynamical skills of the CMIP model is indeed very 
different between the models.

The bias score in the spectral slope behaves very similar 
to the skill score of the stdv(T) (Fig. 9b). Here it has to be 
noted that the statistical estimate of the spectral slope of 
the T time series is independent of the stdv(T). The tight 
relation therefore suggests that the spectral slope and the 
stdv(T) are dynamically linked. This we already indicated 
in the discussion of the sensitivities above with the mod-
erate negative correlation between spectral slope and the 

tendencies T vs. h

1

2

3

4
5

6

7

8

9

10

11
12

13

14

15

16
1718

1920

21

22

23

24

25

2627

28

291
2

3

4

5
67

8

9

10

(a)

r=1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

skill(T)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

sk
ill

(h
)

CMIP5
CMIP3
Observed uncertainty

tendencies of T  vs. spec. slope

1

2

3

4
5

6

7

8

9

10

11
12

13

14

15

16
17
18

1920

21

22

23

24

25

2627

28

29
1

2

3

4

5

6
7

8

9

10

(b)

r=1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

skill(T)

0

0.1

0.2

0.3

0.4

0.5

sk
ill

(s
pe

c.
 s

lo
pe

)

tendencies of T  vs. cross-correl (T vs. h)

1
2

3
4

5

6

7

8

9

10

11

12

13

14 151617

18

19
2021

22

23

24

25

26
27

28

2912

3
4

5 67

8
9

10

(c)

r=0.63

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

skill(T)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

sk
ill

(c
or

r.
 T

 v
s.

 h
)

spec. slope vs. cross-correl (T vs. h)

1
2

3
4

5

6

7

8

9

10

11

12

13

14 151617

18

19
2021

22

23

24

25

26
27

28

2912

3
4

5 6 7

8
9

10

(d)

r=0.59

0 0.1 0.2 0.3 0.4 0.5

skill(spec. slope)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

sk
ill

(c
or

r.
 T

 v
s.

 h
)

Fig. 9  Dynamical skill scores of CMIP model for different statis-
tical properties. Skill scores for a stdv(T) (°C) vs. stdv(h) (m); b 
stdv(T) (°C) vs. spectral slope (log(°C2)/log(year−1)); c stdv(T) (°C) 
vs. cross correlation between T and h for lags 4–8 months (h lead-
ing T); d spectral slope (log(°C2)/log(year−1)) vs. cross correlation 

between T and h for lags 4–8 months (h leading T). The r value marks 
the correlation between the x-axis vs. the y-axis of CMIP data points. 
See models and corresponding numbers in Table  1. Supplemen-
tal Table S3 lists all model values shown in this figure. See text for 
details



1769An evaluation of ENSO dynamics in CMIP simulations in the framework of the recharge oscillator…

1 3

stdv(T) in the CMIP ensembles (r = −0.57), but here the 
dynamical skill suggests an even tighter relationship.

The bias score for cross-correlation rTh is more independ-
ent from the other bias scores, but also shows less spread 
within the models and is also closer to the observed uncer-
tainties. In summary of all skill scores we cannot see much 
difference in the bias scores of the ensembles means of the 
CMIP3 and CMIP5 simulation, although there is a weak 
tendency for the CMIP5 ensemble to have slightly smaller 
biases than the CMIP3 ensemble.

The bias scores of the models as a whole are surprisingly 
bad considering that the models match observed ENSO sta-
tistic much better than the bias scores would suggest. As 
mentioned above this is due to the fact that the models have 
compensating biases. A comparison of the CMIP model 
spread in stdv(T) with the CMIP model spread in the model 
parameters illustrates this, see Fig. 10. We can note that the 
ensemble mean stdv(T) is very close to the observed with 
the model distribution wider than the observed uncertainty, 
but still close to the observed. However, the most important 
parameters (Fig. 10b–e) all have substantial biases towards 
the observed values and relatively large spread. It is sur-
prising that the models manage to simulate the observed 
stdv(T) so well given such large biases in the controlling 
ENSO dynamics.

6  Summary and discussion

In this study, we introduced the linear recharge oscillator 
model as a diagnostic tool to evaluate the representation of 
ENSO dynamics in the CMIP model database. We presented 
a proof of concept analysis that illustrated that ENSO-statis-
tics and their diversity within the CMIP5 ensemble, can be 
well represented with the linear recharge oscillator model 
diagnostics. Although simplified to only represent the first 
order dynamics, presenting only a linear system, we believe 
it is an efficient tool to replicate ENSO dynamics in CMIP 
models. It provides a very effective bridge between simple 
statistical analysis of ENSO variability and the fully com-
plex dynamical ENSO system with all its feedbacks and 
processes.

Starting with the simple statistics of the variability in T 
and h we found that the CMIP ensembles in the mean can 
present those fairly well, but the model ensemble spread 
is relatively large suggesting that many models are not 
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consistent with the observed values. Furthermore, as we will 
point out further below, the good fit in these simple statistics 
seem to mask bigger problems in the model dynamics of 
ENSO, as they result from the analysis of the ReOsc model 
parameters.

The CMIP model simulations present the six parameters 
of the ReOsc model (Eq. (1)) with different quality. All six 
parameters show fairly large spread within the CMIP ensem-
ble, with some models being nearly undamped in T tenden-
cies  (a11 ≈ 0) and others having more than twice as much 
damping then the ensemble mean. Other biases of signifi-
cance are a too strong damping of h and in general too weak 
stochastic noise forcing on h.

More significant problems in the CMIP ensemble dynam-
ics became apparent when we split up the growth rate 
(damping) of T  (a11) into atmospheric and oceanic feed-
backs. Atmospheric feedbacks (Bjerknes wind–SST feed-
back, C�T, and atmos. heat flux feedback, CfT) are largely 
underestimated, which is consistent with previous studies 
(Lloyd et al. 2009; Bellenger et al. 2014) and also consistent 
with the idea of Dommenget et al. (2014) that CGCM simu-
lations are often closer to a slab ocean El Nino dynamics 
(Dommenget 2010) than to the observed ENSO dynamics.

All three elements that make up the growth rate of T 
(Bjerknes wind-SST feedback, C�T, atmos. heat flux feed-
back, CfT, and oceanic damping of T,  a11o) are strongly 
underestimated in the CMIP ensemble, while at the same 
time the total of T  (a11) is essentially unbiased. This is 
achieved by strongly compensating biases: too weak atmos-
pheric growth rates  (a11a) combined with too weak oceanic 
damping  (a11o).

Here it has to be noted that the oceanic damping of T 
 (a11o) was estimated as the residual of  a11 minus  a11a (Eqs. (2 
and 3)). A possible explanation for the strong compensation 
between atmospheric and oceanic feedbacks may therefore 
be a limitation in the ReOsc model approach used here. The 
assumption that  a11a results from Eq. (3) may be limited. 
However, it is very likely that oceanic processes do contrib-
ute to damping of  a11 and it therefore seems reasonable to 
assume that the results presented do hold to some degree. 
It is beyond this study to solve this unexpected result and 
future study need to address this issue in more detail.

Assuming that there is indeed a compensating effect of 
atmospheric feedbacks  (a11a) and oceanic feedbacks  (a11o) 
in the CMIP ensemble, then we would need to find a reason 
of why that is. We are not aware of any physical mechanism 
that could explain such a relationship, but we cannot exclude 
such a possibility. For instance, Bayr et al. (2017) and partly 
Kim et al. (2008) argue that C�T and CfT are dynamically 
linked by the position of the Walker circulation. Whether 
some mechanism like this could explain the link between 
 a11a and  a11o is unclear. An alternative possibility is that the 
CGCM models are tuned to produce the observed ENSO 

statistics: by doing so model developers may have, by coinci-
dent, tuned errors into the atmospheric and oceanic dynam-
ics that compensate each other nearly completely. Thus, 
CMIP models may produce apparently good ENSO simula-
tions for the wrong reasons.

The combination of errors we find in the CMIP models 
suggests that the relative importance of ocean dynamics for 
the simulated ENSO SST variability is underestimated. This 
results from underestimated oceanic processes such as noise 
forcing for h, ocean coupling of h to T(a21o) and too strong 
damping of h. This is at large consistent with the findings of 
Kim et al. (Kim et al. 2014), who also report an underrepre-
sentation of oceanic processes in ENSO. At the same time 
CMIP models underestimate atmospheric damping, which 
allows the models to create ENSO variability with realistic 
amplitudes. Thus, it appears that the relative importance of 
atmospheric processes in the CMIP models is larger than 
observed.

The ReOsc model allowed us to estimate the sensitivity 
of the ENSO statistics to each model parameter. It illustrated 
that in terms of model biases towards observed the most 
important parameter errors are in C�T, CfT, and  a11o, and to a 
lesser extent in the noise forcing and damping of h. In terms 
of CMIP ensemble spread the same parameters contribute to 
the ENSO statistics uncertainty, but in addition the growths 
rate of T  (a11) is important too.

Based on these sensitivities we defined a dynamical bias 
score that is essentially a normalized root mean squared 
in the model parameters. All CMIP model have fairly bad 
bias scores relative to what we could expect from observed 
uncertainties. These bad bias scores mostly result from the 
compensating errors in the dynamics as describes above. 
Even if we would exclude the less clear estimate of  a11o 
the bias scores would remain fairly bad (correlation with 
original bias score of Eq. (7) is still 0.85 if  a11o is excluded). 
Bias scores that are based on just the ENSO statistics (e.g. 
stdv(T), etc.) or just the ReOsc model parameters of Eq. (1) 
(not shown) would be much better. However, these would 
exclude the most important elements of ENSO dynamics 
(C�T, CfT, and  a11o) and would therefore not present a com-
plete picture. Bellenger et al. (2014) also found little rela-
tion between skill scores based on simple ENSO statistical 
properties vs. those based on dynamics properties. From the 
bias scores that we estimated we find a fairly clear ranking in 
the CMIP model performance with no substanital improve-
ment from CMIP3 to CMIP5. The best models in this skill 
score are the family of models from NCAR/UCAR (CCSM4, 
CESM1-BGC, CESM1-CAM5, CESM1-FASTCHEM).

The results we found here have some implications for 
ENSO studies with CGCMs. The fact that the models pro-
duce realistic ENSO statistics with compensating errors in 
dynamics highlights some concerns in the models skill in 
predicting future SST evolutions. This is relevant not only 
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for seasonal to interannual forecasting, but also for long 
time climate change projections. Even though models in 
the ensemble mean project a systematic shift towards El 
Nino like conditions Collins et al. (2010), this projection is 
undermined by the CGCM having systematic biases in the 
dynamics. How ENSO will change in the future strongly 
depends on the right sensitivity of the tropical Pacific region 
to the different forcings (e.g. heat fluxes and winds) that 
drive these changes.

The recent global warming hiatus and the mismatch of 
the CMIP simulations in predicting tropical Pacific climate 
trends (e.g. in winds or the Walker Circulation) may be some 
further indication that the model ENSO dynamics do not 
have the right balance in feedbacks (England et al. 2014; 
Kociuba and Power 2015; McGregor et al. 2014). The frame-
work that we have introduced here may help to address such 
biases. Therefore, the good news from this study is that we 
can expect that future CGCM simulations will improve in 
ENSO dynamics, if model developers can use approaches 
like the one we have introduced here to improve the dynam-
ics of the model.
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