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1  Introduction

The Intergovernmental Panel on Climate Change (IPCC) 
projections of future anthropogenic climate change are 
based on coarse resolution coupled general circulation 
models (CGCMs) from the coupled model intercomparison 
project (CMIP). The models of CMIP are different in their 
structures and physical parameterizations and have shown 
significant disagreement and uncertainties in their perfor-
mance (e.g. Stott and Kettleborough 2002; Reichler and 
Kim 2008; Gleckler et al. 2008; Hawkins and Sutton 2009; 
Shiogama et  al. 2012). The uncertainties are for the larg-
est part caused by errors in the model formulations (Cess 
et  al. 1990; Bony et al. 2006; Murphy et al. 2004; Meehl 
et  al. 2007, Reichler and Kim 2008; Hawkins and Sutton 
2009). A number of studies have used the perturbed phys-
ics ensemble (PPE) approach to estimate the uncertainties 
in the model predictions resulting from model uncertain-
ties (e.g. Murphy et al. 2004; Stainforth et al. 2005; Collins 
et al. 2006; Sanderson et al. 2008a, b). The focus in these 
studies is mostly on quantifying which processes cause the 
largest uncertainty in the global mean climate sensitivity, as 
typically estimated by the transient response to CO2 forcing 
scenarios in the twentyfirst century or idealized 2 × CO2 
forcing experiments.

It is interesting to note in this context, that very little 
attention has been given to the fact that uncertainties in the 
model processes will not only cause uncertainties in the cli-
mate sensitivity (for the global mean as well as on regional 
scales), but will also cause the models control climate 

Abstract  In this study the relationship between climate 
model biases in the control climate and the simulated cli-
mate sensitivity are discussed on the basis of perturbed 
physics ensemble simulations with a globally resolved 
energy balance (GREB) model. It is illustrated that the 
uncertainties in the simulated climate sensitivity (estimated 
by the transient response to CO2 forcing scenarios in the 
twenty first century or idealized 2 × CO2 forcing experi-
ments) can be conceptually split into two parts: a direct 
effect of the perturbed physics on the climate sensitivity 
independent of the control mean climate and an indirect 
effect of the perturbed physics by changing the control 
mean climate, which in turn changes the climate sensitivity, 
as the climate sensitivity itself is depending on the control 
climate. Biases in the control climate are negatively cor-
related with the climate sensitivity (colder climates have 
larger sensitivities), if no physics are perturbed. Perturbed 
physics that lead to warmer control climate, would in aver-
age also lead to larger climate sensitivities, if the control 
climate is held at the observed reference climate by flux 
corrections. Thus the effects of control biases and perturbed 
physics are opposing each other and are partially cancelling 
each other out. In the GREB model the biases in the control 
climate are the more important effect for the regional cli-
mate sensitivity uncertainties, but for the global mean cli-
mate sensitivity both, the biases in the control climate and 
the perturbed physics, are equally important.
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mean state to be different from that observed and different 
between different models. Indeed many PPE simulations 
force the climate mean state to be close to the observed 
by flux correcting the mean sea surface temperature (SST) 
(e.g. Stainforth et  al. 2005; Collins et  al. 2006; Yokohata 
et  al. 2010; Sanderson 2011), but therefore do not allow 
an estimate of how the perturbed physics may affect the 
mean control climate. The effect, that model uncertainties 
or perturbed physics may have for the predicted climate 
sensitivity, can be thought of as having two components: 
one is the change in the physics that leads to changes in the 
climate sensitivity from a given control climate mean state 
and the second is the change in the control climate mean 
state, which leads to a change in the climate sensitivity, as 
the climate response to external forcing itself is mean state 
dependent (Manabe and Bryan 1985; Brierley et al. 2009; 
Colman and McAvaney 2009; Jonko et  al. 2012; Dom-
menget 2012 hereafter as D12; Caballero and Huber 2013; 
Hodson et al. 2013).

Figure 1 illustrates the concept in a sketch: In a perfect 
model the climate is at a the observed (correct) mean state 
(blue circle) from which it will warm over time by a cer-
tain amount due to the external forcing (red bar). An imper-
fect model (Fig. 1b) will have a control mean state climate 
that is different from that observed (the perfect model) due 
to imperfect simulation of the climate physics (blue cir-
cle). From this different mean state it will warm by a dif-
ferent amount than the real world (perfect model) would 
for the same external forcing (red bar). The difference in 

the climate sensitivity here results from two errors: first, 
the imperfect simulation of the physical processes in the 
model would let the model respond with a different cli-
mate sensitivity than the perfect model if the model would 
be started from the same mean state (equilibrium) control 
climate (Fig.  1c). Second, a perfect model that would be 
started from the different control mean state (equilibrium) 
climate of the imperfect model, would again have a differ-
ent amount of warming than the perfect or imperfect model 
would to the same external forcing (Fig. 1d), because the 
climate response to external forcing itself is mean state 
dependent.

The aim of this study is to explore how important the 
two components of the errors are and how they may inter-
act to build the total model uncertainty. However, since 
testing these conceptual ideas with fully complex CGCM 
simulations is fairly difficult and expensive this study here 
presents a first test of concept with a much simpler and 
cheaper, reduced complexity model. The study will present 
analysis of PPE simulations using the Globally Resolved 
Energy Balance (GREB) model from Dommenget and 
Floeter (2011; hereafter as DF11). While the GREB model 
is quite different in its structure and physical parameteriza-
tions to typical CGCMs, it is still complex enough to give 
a good first order approximation of how climate mean state 
biases and errors in the physics may relate to each other. 
It is capable to simulate realistic global and in particular 
regional patterns of climate sensitivity. Since it is numeri-
cally very cheap it allows a first order estimation of the 

Fig. 1   Sketch illustrating the 
climate sensitivity in the real 
world (a) and the simulated 
climate sensitivity of imperfect 
models due to mean state biases 
(b, d) and due to perturbed 
physics (b, c)
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interactions that may motivate follow up studies to verify 
these findings with more realistic GCGMs.

The paper is organized as follows: In the following sec-
tion we introduce the data used, the model simulations and 
methods for the data analysis. In the first analysis section 
we take a short look at some statistical characteristics of 
the CMIP model simulations spread in their control mean 
and in the response to CO2-forcing scenarios. This is used 
as background information for the main part of this study, 
which is the analysis of the GREB model perturbed phys-
ics ensembles in Sect. 4. In Sect. 5 we take a closer look 
at how different mean states in the GREB model affect the 
climate sensitivity. The study is concluded with a summary 
and discussion section.

2 � Data and methods

The CMIP model simulations are taken from the CMIP3 
and CMIP5 databases (Meehl et  al. 2007; Taylor et  al. 
2012). All models that have the CMIP3 A1B or CMIP5 
RCP 4.5, 6.0 and 8.5 scenarios are used, see Table  1. A 
number of CMIP3 models have several realizations of the 
A1B scenario with independent initial conditions. These 
simulations are used to estimate the spread in the response 
to the A1B CO2-forcing that is entirely due to internal vari-
ability (initial conditions and internal natural fluctuations 
within the simulations).

The PPE simulations for this study are performed 
with the GREB model from DF11. The GREB model is 
a three layer (atmosphere, surface and subsurface ocean) 
global climate model with a horizontal resolution of 
3.75° × 3.75°, that simulates the thermal and solar radia-
tion in the atmosphere, heat transport in the atmosphere by 
isotropic diffusion and advection with the mean winds, the 
hydrological cycle (evaporation, precipitation and water 
vapor transport), a simple ice/snow albedo feedback and 
heat uptake in the subsurface ocean. The emissivity (for the 
thermal radiation) of the atmospheric layer is a three-band 
log-function fitted to observational and model data, simu-
lating the effects of CO2, water vapor, clouds and residual 
trace gasses. The GREB model has mean winds and total 
cloud cover as seasonal prescribed boundary conditions. 
Thus the GREB model is conceptually very different from 
the CGCM simulations of the CMIP database as the circu-
lation of the atmosphere and the oceans are not simulated. 
In equilibrium to all external boundary conditions this 
model does not have any internal natural variability due to 
weather fluctuations, as non-linear weather dynamics are 
not simulated in the GREB model. For a complete descrip-
tion of the model see DF11.

All parameters and boundary conditions of the GREB 
model that are uncertain are being perturbed for the 

following analyses. Due to the different structure of the 
GREB model compared to CGCMs the perturbed param-
eter of the GREB model may not have a matching param-
eter in the CGCMs. However, it will be discussed in the 
analysis section that the overall characteristics of the 
uncertainties resulting form the parameter perturbations 
are indeed quite similar in many aspects to those seen in 
CGCM simulations. As described in DF11 processes or 
boundary conditions can be switched off in the GREB 
model and be replaced by constant fluxes. This allows 
testing of the influence of processes on the response to 
external forcing by maintaining the same mean control cli-
mate with the constant fluxes replacing the mean process 
tendencies.

The GREB models main advantage for this study is that 
it is very simple, numerically cheap (one simulation year 
per second on a standard personal computer) and the con-
trol mean state climate can be controlled by flux correc-
tions of the surface temperature, Tsurf, the total atmospheric 
water vapor content and the subsurface ocean temperatures. 
A further advantage is that the GREB model has no inter-
nal natural variability. Thus all GREB model variables are 
in equilibrium (constant) when no boundary conditions 
or model parameters are changed. In turn all variations 
that are seen in the GREB model variables in the control 
mean or response to doubling of CO2 forcing due to per-
turbed parameters can be directly related to the parameter 
changes. The GREB model also allows for very simple 
deconstruction of the climate system by switching off pro-
cesses or boundary conditions. For details of this model see 
DF11.

In the following analyses we estimate the climate sensi-
tivity (for the global mean as well as on regional scales) of 
models by the transient response to CO2 forcing scenarios 
in the twentyfirst century or by the response to idealized 
2  ×  CO2 forcing experiments. In all CMIP simulations 
the response to the CO2-forcing scenarios is defined as 
the difference between the periods 2079 and 2099 minus 
1979 and 1999. The Tsurf ensemble mean response pattern 
relative to the global mean value are very similar (pattern 
correlation >0.95) in the A1B and RCP scenarios. In the 
context of this study it therefore in all following analysis 
assume that the relative uncertainties in these ensembles 
can be directly compared.

In the GREB model simulations the response to the 
2 × CO2-forcing is defined as the difference between year 
50 of the 2  ×  CO2-forcing simulation minus the control 
mean. Again note, that the GREB model does not have 
internal weather variability, which is why the response to 
external forcing can be estimated by a single year. We use 
these responses to the CO2-forcing scenarios as the esti-
mate for climate sensitivity on regional and global mean 
scales.
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Analyses of the mean control and response spread are 
based on monthly mean anomalies. In the CMIP ensembles 
anomalies are defined relative to the ensemble mean values 
(12 months climatology) and in the GREB model anoma-
lies are defined relative to the original GREB model. For 
the ‘internal variability’ (referred to later in the analysis 
section) ensemble of the CMIP3 A1B models with several 
realizations the anomalies are defined relative to the ensem-
ble mean of each individual model.

The spread or uncertainty in the climate sensitivity for each 
individual simulation is quantified for the global mean by the 
response difference from the corresponding ensemble mean of 
each model normalized by the corresponding ensemble mean 
response (as in D12). This allows comparing different scenar-
ios on the same scale. The uncertainty in the local response 
amplitude (or pattern uncertainty) is estimated (as in D12) by 
the normalized response pattern spread of each model relative 
to the normalized ensemble mean response pattern:

Table 1   List of CMIP3 and 
CMIP5 model simulations 
analyzed

CMIP3 CMIP5

Model A1B scenario ensemble members Model Scenarios

BCCR-BCM 2.0 1 ACCESS 1.0 RCP: 4.5/-/8.5

CCCma 3.1 (T63) 1 ACCESS 1.3 RCP: 4.5/-/8.5

CCCma 3.1 5 BCC CSM 1.1 m RCP: -/6.0/8.5

CNRM-CM3 1 BCC CSM 1.1 RCP: 4.5/6.0/8.5

CSIRO Mk3.0 1 BNU-ESM RCP: 4.5/-/8.5

CSIRO Mk3.5 1 CCSM4 RCP: 4.5/6.0/8.5

GFDL CM2.0 1 CESM1-BGC RCP: 4.5/-/8.5

GFDL CM2.1 1 CESM1-CAM5 RCP: 4.5/6.0/8.5

GISS-AOM 1 CMCC-CM RCP: 4.5/-/8.5

GISS E–H 3 CMCC-CMS RCP: 4.5/-/8.5

GISS E-R 5 CNRM-CM5 RCP: 4.5/-/8.5

IAP FGOALS-g1.0 3 CSIRO-Mk 3.6 RCP: 4.5/6.0/8.5

INGV ECHAM4 1 CanESM2 RCP: 4.5/-/8.5

INM CM3.0 1 FGOALS-g2 RCP: 4.5/-/8.5

IPSL CM4 1 FGOALS-s2 RCP: -/-/8.5

MIROC3.2(hires) 1 FIO-ESM RCP: 4.5/-/8.5

MIROC3.2(medres) 3 GFDL-CM3 RCP: 4.5/6.0/8.5

MIUB ECHO-G 3 GFDL-ESM2G RCP: 4.5/6.0/8.5

MPI ECHAM5 4 GFDL-ESM2 M RCP: 4.5/6.0/8.5

MRI CGCM2.3.2a 5 GISS-E2-H RCP: 4.5/6.0/8.5

NCAR CCSM3 7 GISS-E2-H-CC RCP: 4.5/-/-

NCAR PCM 1 4 GISS-E2-R RCP: 4.5/6.0/8.5

UKMO HadCM3 1 GISS-E2-R-CC RCP: 4.5/-/-

UKMO HADGEM1 1 HadGEM2-AO RCP: 4.5/6.0/8.5

HadGEM2-CC RCP: 4.5/-/8.5

HadGEM2-ES RCP: 4.5/6.0/8.5

INM CM4 RCP: 4.5/-/8.5

IPSL-CM5A-LR RCP: 4.5/6.0/8.5

IPSL-CM5A-MR RCP: 4.5/6.0/8.5

IPSL-CM5B-LR RCP: 4.5/-/8.5

MIROC-ESM-CHEM RCP: 4.5/6.0/8.5

MIROC-ESM RCP: 4.5/6.0/8.5

MIROC5 RCP: 4.5/6.0/8.5

MPI-ESM-LR RCP: 4.5/-/8.5

MPI-ESM-MR RCP: 4.5/-/8.5

MRI-CGCM3 RCP: 4.5/6.0/8.5

NorESM1-M RCP: 4.5/6.0/8.5

NorESM1-ME RCP: 4.5/6.0/8.5
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with the Tsurf response for the climatological month, m, of 
the individual models, Ti(m,x,y), and that of the ensemble 
mean, Tensemble(m,x,y), and their respective global means, 
T̂i and T̂ensemble, and the area size weight, w(x,y). The nor-
malized response pattern spread of each model, σi, gives 
a measure of the relative uncertainty of the local response 
amplitudes, independent of the global mean response. This 
definition is essentially a standard deviation or a root mean 
squared error assuming the ensemble mean would repre-
sent the truth. This pattern spread indicates by how much 
each model deviates from the ensemble mean response at 
any grid point at any calendar month in average. It thus 
estimates how similar the response patterns are. The val-
ues are in percentage of the ensemble mean response. A 
value of 0 % would indicate a response pattern identical to 
the ensemble mean response pattern and a value of 100 %, 
for instance, would indicate that the response difference 
from the ensemble mean response pattern is on average 
over all locations and calendar months as big as the mean 
amplitude of the ensemble mean response pattern and 
would therefore mark a quite substantial difference in the 
response pattern.

It is useful here to clarify the wording for climate sen-
sitivity uncertainty, error or spread: In the GREB model 
ensemble we assume the unperturbed model as the truth 
and all deviations form it or spread in the perturbed GREB 
simulations are discuss as uncertainties or errors. Thus we 
assume a perfect model world. Again it should be noted 
here that the GREB model has no internal variability.

In the CMIP model ensemble the spread relative to the 
ensemble mean is caused by internal variability, differ-
ences in the model physics and numerics. Furthermore, 
it is not known how the model ensemble mean relates to 
the true observed climate mean or sensitivity, as the true 
observed values are unknown. We thus refer to the CMIP 
model spread simply as spread. In some cases when we 
can neglect internal variability or when we relate the CMIP 
simulation to the GREB perturbed model ensemble we 
refer to the CMIP spread as uncertainties or errors.

3 � Control climate biases and climate sensitivity 
uncertainties in the CMIP5 simulations

We start the analysis part with a look at the spread in the 
CMIP5 model simulations Tsurf response to CO2 forcing 
and its relation to the control climate variations, which is 
useful background information for the following GREB 
model study. Figure  2 shows a few statistics for the Tsurf 
control and response spread, which is an update with the 
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CMIP5 simulations of what has also been shown in D12 for 
CMIP3 (Fig. 1 in D12). Similar to what was shown in D12 
the CMIP model simulations control mean Tsurf spread is 
largest over the continental and Polar Regions, and is in the 
order of 2–4 K. The spread in the Tsurf response is similar to 
the control Tsurf spread.

The Tsurf response spread in the CMIP ensemble is about 
15–40 %, but is strongly enhanced over the northern North 
Atlantic and in the Southern Ocean. In the CMIP5 simu-
lations there is a weak negative correlation between the 
control and the response variations for most regions, sug-
gesting that regions with colder mean Tsurf have stronger 
Tsurf responses. This is more pronounced over oceans and 
at higher latitudes. This result is slightly different from the 
CMIP3 analysis in D12. There a more positive correlation 
in the tropics for the CMIP3 simulations was found.

Figure  3 illustrates the spread relative to the ensemble 
mean in the global mean and the regional response patterns 
for several CMIP3 and CMIP5 ensembles (see Sect. 2 for 
details). The spread of four different scenarios, where each 
ensemble member is from a different CGCM, are com-
pared to an estimate of the spread due to internal variability 
(labeled ‘internal variability’). The internal variability esti-
mate is defined based on several CMIP3 CGCMs that have 
simulated the A1B scenario with at least three different 
realizations. Each point in this ensemble marks the spread 
of a single run from one model relative to the ensemble 
mean of the same model (see Sect. 2 for details). Thus the 
spread in this ensemble is entirely due to different initial 
conditions and internal natural variability simulated in the 
individual scenario runs.

A number of important characteristics can be found 
here:

•	 The spread (relative to the ensemble mean response) 
in the global mean and in the regional pattern due to 
internal variability is much smaller than the spread in 
the CMIP3 and CMIP5 ensembles. Thus the latter is 
primarily caused by differences (errors) between the 
CGCMs.

•	 The spread in the CMIP5 ensembles are about as large 
as in the CMIP3 ensemble despite the model improve-
ments in the more advanced CMIP5 ensembles. How-
ever, it has to be noted here that at the same time as the 
CMIP5 model have improved in their physical represen-
tations of the processes that are simulated in the CMIP3 
models as well, they have also significantly increased in 
complexity by including more processes that have not 
been simulated in the CMIP3 models (e.g. aerosol pro-
cesses). Thus it is likely that the lack of reduction on 
the model spread is a mixture of improvements in some 
processes, but also inclusion of new uncertainties from 
newly simulated processes.
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•	 The scenarios with stronger CO2 forcing (compare 
RCP8.5 vs. RCP6 or RCP4.5) appear to have slightly 
smaller spread. This is to some degree expected as the 
smaller CO2 forcing has a smaller signal to noise ratio, 
which affects the diagnostics as they are based on rela-
tive spread.

In summary, substantial response spread in the CMIP 
simulations are found that are caused by model differences 
in structure, numerics or physics and can thus be interpreted 
as model uncertainties or errors. They appear to have some 
relation to the variations in the control climate and they have 
not improved substantially from CMIP3 to CMIP5.

4 � Perturbed physics and perturbed control 
climate simulations

In the following analysis we will discuss a number of PPE 
simulations with the GREB model, see Table 2. The PPE 
simulations are generated by randomly varying a number of 
parameters and boundary conditions of the GREB model. 

All model parameters and boundary conditions of the 
GREB model that do have some uncertainty or are model 
dependent are randomly varied. The strength of the varia-
tions was chosen to be within some first guess uncertainty 
of each parameter and boundary condition. See Table 3 for 
a complete list of the perturbed parameters and boundary 
conditions of the GREB PPE simulations.

Figure 4 shows some examples of how perturbations of 
a single parameter (experiments PP–SP) change the mean 
state control climate and how it changes the response to 
a doubling of CO2. The four examples are chosen to best 
illustrate the concepts. A small decrease in the radiative 
effect of CO2, −δPemi1(CO2), for instance, will cool the 
mean climate globally (Fig. 4a), due to the reduce green-
house effect by CO2. Further, it will decrease the climate 
sensitivity to a doubling of CO2 for most regions (Fig. 4b). 
However, surprisingly some regions have increased cli-
mate sensitivity (e.g. central Asia and North America). This 
result is at firth counter intuitive and will be discussed in 
more detail further below.

A small increase of the snow/ice albedo (δαice = + 0.025; 
10 % of the original value), for instance, will cool the mean 

(a) control spread [K] (b) response spread [K]

(c) response spread [%] (d) correl. control vs. response

Fig. 2   a Spread (standard deviation) of the individual CMIP5 
simulations monthly-mean Tsurf 1970–1999 climatologies rela-
tive to the CMIP5 ensemble mean Tsurf climatology for the same 
period. b Spread (standard deviation) of the 36 CMIP5 simulations 
monthly-mean Tsurf response in the RCP8.5 scenario (mean 2070-
99 minus mean 1970-99) relative to the CMIP5 ensemble monthly-

mean Tsurf response. c Relative response spread defined as the result 
in (b) divided by the CMIP5 ensemble mean response. d Correla-
tion between the 36 monthly-mean climatologies and the responses. 
Anomalies for the climatologies are defined in the same way as for 
(a), and for the responses they are defined in the same way as for (b)
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climate at higher latitudes (Fig.  4c) and will increase the 
climate sensitivity to a doubling of CO2 in these latitudes 
(Fig. 4d), which is what you would expect from an increased 
snow/ice albedo. Other parameters affect the mean and the 
response in different ways, some have a stronger impact on 
the control mean, but less on the response (e.g. +δrviwv in 
Fig. 4e, f) and others will have a stronger global impact on 
both, but with different regional pattern to other parameters 
(e.g. δαclouds Fig. 4g, h).

The effect that each of these parameters has on the cli-
mate sensitivity to a doubling of CO2 is a combination of 
two effects: changes in mean state control climate (result-
ing from the perturbed physics) and the changes in the 
physical processes incorporating these parameters. To illus-
trate this two additional sensitivity experiments are per-
formed: In the first experiment the parameters are perturbed 
as in the previous perturbed physics experiment (PP–SP), 
but the control mean state (on every grid point; including 
land, ocean and sea ice points) is held close to the observed 
by adjusting the Qflux corrections (see Sausen et  al. 1988; 
Schneider 1996 for the concept of flux corrections) and 
start the double CO2 experiment from this observed mean 
state (as illustrated in Fig.  1c; referred to as PP–FC–SP). 
In the second experiment the parameters are not perturbed, 
but the Qflux corrections are changed to force the GREB 

model into the control mean state from the PP–SP experi-
ments and start the double CO2 experiment from this per-
turbed control state (as illustrated in Fig. 1d; referred to as 
FP–PC–SP). Results for four different parameters for each 
of the three experiments and the superposition of the PP–
FC–SP and FP–PC–SP are shown in Fig. 5.

A small increase of δαice, for instance, does increase 
the climate sensitivity in higher latitudes in the PP–FC–
SP experiment (Fig.  5e), because the ice-albedo feed-
back is increased by the larger differences in surface 
albedo between ice-covered and ice free regions (δαice). 
A small increase of δαice also changes the mean climate 
in higher latitudes to be colder (Fig. 4c). This increases 
the ice-covered regions in the mid and higher latitudes in 
the control climate, and therefore also increases the ice-
albedo feedback by being active over a larger area frac-
tion and over a larger fraction of the seasonal cycle. In 
turn the climate sensitivity increases in higher latitudes in 
the FP–PC–SP experiment (Fig. 5f). Thus, in this exam-
ple both the perturbed physics and the perturbed climate 
have similar impacts onto the climate sensitivity. The lin-
ear superposition of the two experiment results is quite 
similar to the perturbed physics experiment PP–SP that 
includes both effects (compare Fig.  5g, h). This is also 
the case for the linear superposition for the three other 
parameters shown.

The effect of the perturbed physics can, however, be 
quite different from the effect of the perturbed climate. 
For the Pemi1(CO2) and rviwv parameters, for instance, the 
two effects are opposing each other, leading almost to a 
cancelation (first and third row in Fig. 5). This leads to the 
strange characteristics that the total effect of a perturbed 
parameter in the PP–SP experiments is the opposite of what 
would be expected from the physical process that was per-
turbed. The decrease in Pemi1(CO2), for instance, results 
into a decreased emissivity effect of the CO2 concentra-
tions in the GREB model. This should result in decreased 
climate sensitivity everywhere. But at some locations (e.g. 
central Asia and North America) the cooling in the control 
climate (Fig. 4a) counteract the changes in the climate sen-
sitivity due to the process parameter changes, due to the 
increased positive feedbacks in the colder control climate.

In the PP–FC–SP experiments the changes in the climate 
sensitivity are much smoother and more directly related to 
what is expected from the physical parameter changes, than 
in the PP–SP experiments (compare first and last columns 
in Fig. 5). In PP–SP the changes in the climate sensitivity, 
which result from the combined effect of perturbed param-
eters and perturbed control climate, are more complex 
and are of smaller spatial scale. For the δαclouds parameter 
(Fig. 5m–p) the changes in the response are almost entirely 
(values in Fig. 5m are slightly negative, but below the first 
contour level) due to the changes the mean climate.
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Fig. 3   Scatterplot of the CMIP3 and CMIP5 model’s climate sen-
sitivity for different scenarios and due to internal variability in the 
CMIP3 A1B scenario. The x-axis shows a measure of regional dif-
ferences in the warming pattern in percentage of the correspond-
ing ensemble mean response. It is an estimate of the mean local 
response amplitude deviation from the corresponding ensemble mean 
response; see text for a definition. The y-axis shows the global mean 
Tsurf response difference in percent relative to the corresponding 
ensemble mean. The triangles show the mean of the pattern spread, 
σi, and global mean diff. for each ensemble. The vertical bars show 
the standard deviation of the global mean diff. distribution for each 
ensemble. See Sect. 2 for details
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In the next step of the analysis all 26 parameters and 
boundary conditions are randomly varied to create a PPE, 
in which each member has slightly different parameters 
and boundary climatology values for all of the 26 param-
eters and boundary conditions (referred to as PP experi-
ments). The standard deviations of the parameter uncertain-
ties have been chosen in a way that the values appear to be 
still within the uncertainties that can be attributed to each 
parameter and that none of the parameters is dominating 
the models climate sensitivity uncertainties.

Table 3 lists the relative contribution of each parameter 
to the total climate sensitivity spread. It first of all needs to 
be noted that the parameter uncertainties interact in a non-
linear way, so that the estimated relative contribution do 
not add up to 100 %. We can further note that none of the 
individual parameters is dominating and that the dominat-
ing parameters are mostly related to the effects of clouds, 
water vapor and small-scale turbulent processes. Thus 
it gives a fairly complex interaction of many uncertain 
parameters. This is in principle similar to those processes 
that cause most of the spread in CGCM simulations, but 
the parameters and processes of the GREB model cannot 
be directly compared to those of the CGCM due to the very 
different structure of the GREB model. It needs to be noted 
here again that the parameters of the GREB model in most 
cases do not have counterparts in the GGCMs. Uncertain-
ties related to cloud feedbacks are entirely missing here. 

Nevertheless, the parameters related to cloud do have a 
strong impact on mean climate and on the response uncer-
tainty, as also discussed and shown in Figs. 4 and 5.

In analog to the three sensitivity experiments with the 
single parameter changes, we perform three PPE simula-
tions: perturbed physics (PP), perturbed physics with fixed 
control climate (PP–FC) and fixed physics with only per-
turbed control climates (FP–PC), see Table 2. To get a first 
impression Fig. 6 shows the change in the Tsurf response to 
a doubling of CO2 concentrations for six members of the 
500 members of the PPE ensembles. A quantitative discus-
sion of the whole ensemble set will be given further below. 
The six members illustrate similar characteristics as the 
four examples of the single parameter changes:

•	 The total response changes in the perturbed physics 
(PP) experiments are approximately a linear superpo-
sition of the perturbed PP–FC and FP–PC simulations 
(compare third and last columns in Fig. 6).

•	 Some random parameter changes lead to significant 
control climate changes that lead to changes in the 
response (FP–PC), whereas the PP–FC experiments 
lead to very little changes in the response (e.g. examples 
1, 3 and 5 in Fig. 6).

•	 In many cases the changes in the response in the PP–
FC experiments have the opposite sign of those of the 
FP–PC experiments (e.g. examples 2, 4 and 6 in Fig. 6). 

Table 2   GREB model simulations

Experiments numbers for the FP–PC deconstruction ensembles are as in DF11, expect for exp-22, which was not mentioned in DF11

Model Ensemble 
members

Control 2 × CO2 
(years)

Comments

GREB 1 – 50 Original unperturbed model; control climate flux corrected towards observed, as illustrated in Fig. 1a

PP–SP 23 50 years 50 Perturbed physics (PP) simulation with a single parameter (SP) or boundary condition perturbed, as 
illustrated in Fig. 1b.

PP–FC–SP 23 – 50 As PP–SP, but the control climate is forced to be as observed by flux corrections (fix control; FC), as 
illustrated in Fig. 1c

FP–PC–SP 23 – 50 As GREB, but control climate flux corrected towards the control of PP–SP [fixed physics (FP) and 
perturbed climate (PC)], as illustrated in Fig. 1d

PP 500 50 years 50 As PP–SP, but with all 23 parameters and boundary conditions randomly perturbed for each member.

PP–FC 500 – 50 As PP, but the control climate is forced to be as observed by flux corrections.

FP–PC 500 – 50 As GREB, but control climate flux corrected towards the control of PP.

FP–PC–exp3 500 – 50 As FP–PC, but the ice-albedo and hydrological cycle processes are switched of, the water vapor 
climatology is constant over all regions and no heat transport into the subsurface ocean, as in DF11 
exp-3.

FP–PC-exp4 500 – 50 As FP–PC-exp3, but realistic water vapor climatology.

FP–PC-exp6 500 – 50 As FP–PC-exp4, but with the ice-albedo feedback.

FP–PC-exp7 500 – 50 As FP–PC-exp6, but with the local (no water vapor transport) hydrological cycle feedback.

FP–PC-exp9 500 – 50 As FP–PC, but no heat transport into the subsurface ocean.

FP–PC-exp22 500 – 50 As FP–PC-exp4, but with the local (no water vapor transport) hydrological cycle feedback.

FP–PSST 500 – 50 As FP–PC, but only the ice-free SST is forced to be the mean control values of the PP simulations.

PP–FSST 500 50yrs 50 As PP, but the ice-free SST is forced to be the observed mean control values by flux corrections.
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However, the regional details of the two experiments 
appear to be quite different, indicating that the effect of 
the perturbed parameters in PP–FC on the response is 
quite different from the effect that the perturbed control 
climate in the FP–PC has on the response.

•	 The changes in the response are stronger in the FP–PC 
experiments than in the PP–FC experiments.

Some important statistical characteristics of the PP sim-
ulations can be quantified and compared against the CMIP 
model simulations (Fig. 2), see Fig. 7. In all four statisti-
cal parameters for the control and response spreads we see 
a fairly good agreement between the global pattern in the 
CMIP and in the GREB PP simulations. In both ensembles 
larger uncertainties in the control and response are seen 
over land and higher latitudes (ice covered regions). The 
correlation between control and response variation are in 
both ensembles slightly negative.

However, we also find some differences in the two 
ensembles. In the GREB PP simulations the overall con-
trol mean surface temperature spread is somewhat larger, 
compared to the CMIP5 simulation and is also stronger 
over continental regions. The GREB PP control spread is 
larger over oceans and much weaker over Polar Regions, 
and the GREB PP response spread is weaker over most 
oceanic regions and more strongly focused on sea ice cov-
ered regions. The GREB PP ensemble correlation between 
control climate and response variations (Fig. 7d) is stronger 
over land and weaker in the higher latitudes than in the 
CMIP5 ensemble. In summary, the statistical character-
istics of the control climate and response variations in the 
GREB PP ensemble are similar to those of the CMIP5 
ensemble, but some characteristic differences do exist.

Figure 8 illustrates how the three different GREB PPE 
ensembles relate to each other and how the perturbed phys-
ics and perturbed climates contribute to the total changes in 

Table 3   List of perturbed parameters and boundary conditions

Parameter names are taken from DF11 unless otherwise noted. The relative contribution of each parameter or boundary condition perturbation 
to the climate sensitivity variations, are estimated by the explained variance (r2  ) based on the mean (over all regions) linear correlation of the 
parameter variations with the annual mean response variations in the PP ensemble. Note that since the parameter interact in a non-linear way, the 
r2 values do not add up to a 100 %

Name r2 (Response) [%] Comments

pe1 7 CO2 effect on emissivity; Eq. (5) in DF11

pe2 9 H2O effect on emissivity; Eq. (5) in DF11

pe3 0.5 Residual emissivity; Eq. (5) in DF11

pe4 2 Strength of overlap band; Eq. (5) in DF11

pe5 1 Strength of CO2 band; Eq. (5) in DF11

pe6 4 Strength of H2O band; Eq. (5) in DF11

pe7 1 emissivity zero off set; Eq. [5] in DF11

pe8 2 Influence of cloud cover on emissivity; Eq. (5) in DF11

pe9 5 Influence of cloud cover on emissivity; Eq. (5) in DF11

pe10 4 Influence of cloud cover on emissivity; Eq. (5) in DF11

rprecip 6 Precipitation ratio; Eq. (11) in DF11

rqviwv 5 Regression between surface humidity and total air column water vapor; Eq. (8) in DF11

catmos 5 Atmos. Coupling to surface; Eq. (13) in DF11

αclouds 4 cloud albedo; Eq. (2) in DF11

δαice 2 Ice/snow albedo; from Fig. 3a in DF11

κ 1 Isotropic diffusion coefficient; Eq. (12) in DF11

Cw 0.5 Transfer coefficient for latent cooling by evaporation; Eq. (7) in DF11

Tsea-ice1, Tsea-ice2 0.3 Tsurf range for the ice albedo feedback over oceans; from Fig. 3a in DF11

Tland-ice1, Tland-ice2 0.2 Tsurf range for the ice albedo feedback over land; from Fig. 3a in DF11

Wind climatology 0.8 Variations in the wind climatology are based on the leading empirical orthogonal function of 
global monthly wind anomalies.

MLD climatology 0.4 Variations in the MLD climatology are based on the leading empirical orthogonal function of a 
spatial red noise process (Dommenget al. 2007) for winter and summer seasons with the effec-
tive spatial number degree of freedoms, Nspatial = 50 (Bretherton et al. 1999)

Cloud climatology 0.3 Variations in the cloud climatology are based on the leading empirical orthogonal function of 
global monthly wind anomalies

Soil moisture climatology 0.3 Same procedure as for the MLD
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the response. The local response changes in the PP simu-
lations are nearly perfectly correlated to the linear super-
position of the PP–FC and FP–PC simulations for nearly 

all regions, but not quite for the high altitudes of Tibet, 
Greenland and Antarctica (Fig. 8f). This indicates that the 
GREB PP response spread can be thought of as the sum of 

Control [K] Response [%]
(a) −δPemi1(CO2) (b)

δαice (d)(c) +

(e) +δrviwv (f)

(g) +δαclouds (h)

Fig. 4   Left Column Changes in the control mean Tsurf due to changes 
in four different parameters in the PP–SP simulations. Values are in 
Kelvin. Right column Changes in the Tsurf response relative to the 
GREB models unperturbed Tsurf response due to changes in four dif-

ferent parameters in the PP–SP simulations. Values are in  % of the 
GREB models unperturbed Tsurf response. a, b for −δPemi1(CO2), c, d 
forδαice, e, f for +δrviwv and g, h for δαclouds
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a perturbed physics and a perturbed climate. However, the 
absolute spread of the super position is larger than that of 
the PP simulations (compare Figs. 7c, 8e), indicating that 
the combined effect of the perturbed physics and a per-
turbed climate in the PP simulations is somewhat compen-
sated in a non-linear way.

The FP–PC simulations have a larger response spread 
and are more strongly correlated with the PP simulations 
(Fig.  8c, d) than the PP–FC simulations (Fig.  8a, b) for 
most regions. This suggests that the control climate spread 
has a bigger influence on the response in the PP simula-
tions than the physics perturbations themselves. Further, it 
is found that the response changes in the PP–FC and FP–
PC simulations are negatively correlated for most regions 
(Fig.  8g). Thus, the effects of the perturbed physics and 
the perturbed climate are counter acting each other in the 
GREB PP simulations.

The regional uncertainties (spread) of the GREB PP 
simulations are larger than the global mean uncertainties 
(spread) (Fig.  9a), which is similar to the CMIP ensem-
bles (Fig. 3). The GREB PP–FC simulations have strongly 

reduced regional spread compared to the PP simulations, 
but increased global mean spread. The GREB FP–PC sim-
ulations also have enhanced spread for the global mean 
response, but nearly no change in the regional response 
spread. Thus, a flux corrected mean control climate 
strongly reduces the regional climate sensitivity spread in 
the GREB PPE simulations. It can be noted in both, the 
FP–PC and PP–FC ensembles, that simulations with larger 
deviations in the global mean response also tend to have 
larger deviations from the ensemble mean response pattern 
(bimodal signatures in Fig. 9a). Thus simulations that are 
very different in their global mean climate sensitivity tend 
to have a response pattern that is different from the original 
response.

In the above results there is a clear distinction between 
the global mean and the regional response pattern sensitiv-
ity to perturbed physics and control climates. The direct 
perturbed physics effect is strongly counter acting the per-
turbed control climate effect on the global mean response, 
but much less so on the regional response pattern. Indeed 
the anti-correlation between the two effects (Fig.  8g) is 

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 5   Changes in the Tsurf response relative to the GREB models 
unperturbed Tsurf response due to changes in the same four param-
eters as in Fig.  4. First column perturbed physics and fixed control 
climate (PP–FC–SP) simulation. Second column fixed physics and 

perturbed control climate (FP–PC–SP) simulation. Third column the 
sum of the first and second column. Last column perturbed physics 
(PP–SP) simulation as in Fig. 4 right column. All values are in  % of 
the GREB models unperturbed Tsurf response
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mostly due to anti-correlation in the global means (correla-
tion of −0.85). The correlation in the response variations 
is only −0.4 if the global mean warmings are subtracted 
(as in the definition of the response pattern spread, σi; see 
Sect. 2). Thus, the small regional differences in the direct 
perturbed physics effect and the perturbed control climate 
effect cause the response pattern spread.

Next, a closer look is taken at uncertainties (spread) 
resulting from the SST, as these have been discussed in pre-
vious studies. The ECHAM5-SLAB ensemble of D12 illus-
trated that the spread in the climate sensitivity caused by 
the spread in the control mean SST is about half the spread 
in the climate sensitivity of the CMIP ensemble. The 
GREB PPE simulations can be used to mimic this approach 

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

(u) (v) (w) (x)

Fig. 6   Changes in the Tsurf response relative to the GREB models 
unperturbed Tsurf response as in Fig. 5, but for 6 examples from the 
PPE ensembles. First column perturbed physics and fixed control 
(PP–FC) simulation. Second column fixed physics and perturbed con-

trol (FP–PC) simulation. Third column the sum of the first and second 
column. Last column perturbed physics (PP) simulation. All values 
are in  % of the GREB models unperturbed Tsurf response
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by just perturbing the control SST as it was perturbed in the 
PP simulations, but again keeping the parameters fixed to 
the original values (these simulations are referred to as FP–
PSST). The GREB FP–PSST ensemble spread (red points 
in Fig. 9b) is about half of the GREB PP ensemble (black 
points in Fig. 9b). This first of all indicates that the differ-
ent SST control mean state do have a substantial impact on 
the regional and global mean response uncertainties, which 
is in general agreement with D12. The results here show a 
somewhat stronger impact of the SST on the climate sensi-
tivity spread than in the ECHAM5-SLAB ensemble of D12 
(not shown). This may partly be due to the stronger spread 
in the control SST in the GREB PP ensemble than in the 
CMIP ensemble (see Fig. 7a, c).

In earlier CGCM model simulations the SST was often 
flux corrected to keep the CGCM simulation closer to the 
observed mean climate in the control simulation. Thus 
one may argue that SST flux corrected simulations should 
perform much better than simulations without flux correc-
tions if the mean control climate errors do matter. To test 
this idea we can mimic this in the GREB PPE simulations 
by applying the flux correction only to ice-free SST regions 

and keeping the perturbed physics (these simulations are 
referred to as PP–FSST).

First, we can note that the GREB PP–FSST ensem-
ble (blue points in Fig.  9b) does have a reduced regional 
spread relative the uncorrected PP ensemble (black points 
in Fig. 9b), indicating that the flux correction of the ice-free 
SST regions does reduce the regional response uncertain-
ties. However, the GREB PP–FSST ensemble has much 
larger regional spread than the PP–FC ensemble (blue 
points in Fig.  9a), indicating that SST flux corrections 
alone are not sufficient, but that error in Tsurf over land and 
ice-covered region are important too.

It needs to be noted here that the SST spread is larger 
in the GREB PP simulations than in the CMIP ensemble 
(Figs. 2a, 7a). Thus the relative rule of SST errors is over-
stated in the GREB model. Further, it needs to be noted that 
SST flux correction in CGCMs is not working as precisely 
as in the GREB model, leaving some significant SST biases 
in the mean state (e.g. Stainforth et al. 2005; Collins et al. 
2006; Sanderson 2011; Dommenget et al. 2014). Consider-
ing that a perfect flux correction of much larger SST spread 
in the GREB PP simulations does reduce the regional 

(a) control spread [K] (b) response spread [K]

(c) response spread [%] (d) correl. control vs. response

Fig. 7   Statistics as in Fig.  2, but for of the GREB PP ensemble. a 
Spread (standard deviation) of the monthly-mean Tsurf climatolo-
gies of the PP ensemble relative to the original GREB simulation. 
b Spread (standard deviation) of the PP ensemble monthly-mean 
Tsurf response in the 2 × CO2-forcing relative to the original GREB 
monthly-mean Tsurf response. c Relative response spread defined as 

the result in (b) divided by the original GREB response. d Correla-
tion between the PP ensemble monthly-mean climatologies and the 
responses. Anomalies for the climatologies are defined in the same 
way as for (a), and for the responses they are defined in the same way 
as for (b). Note that the colorbars in (b) and (c) are different from 
Fig. 2 (b, c)
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(a) perturbed physics (fix control) (b)

(c) perturbed control (fix physics) (d)

(e) superposition (f)

(g) perturbed physics (PP-FC) vs. perturbed control (FP-PC)

response spread [%] correlation with PP

Fig. 8   Left: Spread (standard deviation) of the Tsurf response as in 
Fig. 7c, but for a PP–FC, c FP–PC and e the linear superposition of 
PP–FC and FP–PC simulations. Right: The correlation between the 
response variations in the PP simulations and the b PP–FC, d FP–PC, 

and f the linear superposition of PP–FC and FP–PC simulations. g 
Correlation between the response variations in the PP–FC and FP–PC 
simulations
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uncertainties only by about half (blue vs. black points in 
Fig.  9b) and considering that SST flux corrections in the 
CGCMs is much less efficient, then it has to be concluded 
that SST flux corrected CGCMs are likely to have a similar 
amount of uncertainty in the regional mean control climate 
as the uncorrected CGCMs of CMIP simulations. We can 
therefore not draw any strong conclusion from SST flux 
corrected CGCM simulations in regards to whether or not 
the mean control climate errors do matter for the regional 
climate sensitivity uncertainties.

5 � The role of the control climate for the climate 
sensitivity spread

In the previous section it was illustrated that the climate 
sensitivity spread in the GREB PP simulations is to a larger 
part caused by the control climate spread. It is relatively 
easy to understand that changes in physical parameters will 
change the climate sensitivity. It is, however, more complex 
to understand how the mean control climate spread would 
lead to spread in the climate sensitivity, which is the focus 
of this section.

Figure  10a shows the correlations of the PP control 
mean Tsurf variations with the Tsurf response variations in 
the PP–FC. It should be noted here again that the GRBE 
model does not have internal variability and the variations 
that we see in the control mean or response in the GREB 
PPE simulations (e.g. Figs. 4 or 5) are entirely a result of 
the perturbed physics. Subsequently the correlation values 
for these variations evaluate the co-variance of variations in 
the control mean or response due to perturbed physics.

In the PP–FC simulations we see a clear positive corre-
lation for most regions, indicating that parameter perturba-
tions that lead to a warmer mean state in the PP simulations 
also lead to larger climate sensitivity in this region in the 
PP–FC simulations if the simulations are started from the 
unperturbed control mean climates.

This can be understood if we consider that the earth 
without feedbacks is like the moon and has only the simple 
radiation balance, leading to the surface temperature. The 
Earth radiation balance temperature is more than 30° colder 
than its actual surface temperature. Thus, the net effect of 
all feedbacks or processes leads to more than 30° warming. 
This implies in turn: if the mean climate is warmer than the 
reference model, the net feedbacks (or the average over all 
possible perturbed feedbacks) are likely to be more posi-
tive, thus would lead to stronger climate sensitivity than 
in the reference model. Thus if a parameter perturbation 
leads to a warmer mean state, it is also likely to lead to a 
larger sensitivity to external forcings such as 2 × CO2 forc-
ing. However, as pointed out in Figs. 3 and 4, some process 
can behave contrary to this average effect (e.g. ice-albedo 
feedback).

The perturbed control mean state of the PP simulations 
is negatively correlated to the response in the FP–PC simu-
lations (Fig.  10b). This indicates that a cooler mean state 
in the GREB model leads in average to a stronger response 
to the doubling of CO2. This is most pronounced in the 
warmer and moister climates (e.g. oceans or tropics) and 
less so in the Polar Regions.

In the GREB PP simulations the correlation between the 
control mean state and the response (Fig. 7d) is also mostly 
negative, but much weaker than in the FP–PC simulations. 
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Fig. 9   Scatter plot of the climate sensitivity as in Fig. 3, but for different GREB ensemble simulations. a For the PP (black dots), FP–PC (red 
dots) and the PP–FC (blue dots) simulations. b For the PP (black dots), FP–PSST (red dots) and the PP–FSST (blue dots) simulations
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In the PP simulations the correlation is a result of the 
combined effects of perturbed parameters and the mean 
control climate. Since the two have opposing correlations 
(Fig.  10a, b), the combined effect is closer to a zero cor-
relation. The stronger control climate effect in the GREB 
PP simulations is thus dominating the overall correlation. 
In the CMIP ensemble the correlations are even closer to 
zero, which may again be due to the fact that the relative 
importance of the control climate spread is weaker in the 
CMIP ensemble.

To understand how the control mean state in the GREB 
model affects the climate sensitivity some processes of 
the GREB model are switched ‘off’, as done in DF11. 
Thus the GREB FP–PC simulations are repeated with sev-
eral processes switched off or some boundary conditions 
replaced against simplified homogenous values, see Table 2 
and DF11 for details. The same experiment numbers as 
in DF11 are used to indicate that the same processes have 
been switched ‘off’. These deconstructions of the GREB 
model simplify the interactions and allow pinning down the 
cause of the climate sensitivity spread in the GREB FP–PC 
simulations. Since some processes are switched ‘off’ the 
response to the CO2-forcing is changing and the effect of 
the mean control climate is changing as well. Some of the 
process parameters and boundary conditions that are per-
turbed may not influence the results at all any more if some 
processes are switched off (e.g. perturbations of the ice/
snow albedo do not have an effect on the response if the 
ice-albedo feedback if switched ‘off’).

Figure  11 shows the ensemble mean values in the 
regional and global mean response spread in the decon-
structed and complete FP–PC ensemble simulations. In the 
simplest case without ice-albedo and water vapor feedback 
and without any regional difference in the atmospheric 
water vapor concentrations (FP–PC-exp3) the spreads 
in the regional and global mean are very small (note that 
the values are relative to the ensemble mean). It illustrates 

that the differences in the control climate do not lead to 
any significant spread in the regional and global mean 
response if no feedbacks are active and no regional differ-
ence in the atmospheric water vapor concentrations exists. 
If we introduce the regional variation in the water vapor 
concentrations (FP–PC-exp4), then the spread increases in 
the regional and global mean, but is still much weaker than 
in the full GREB model. However, it will be shown in the 
following analysis that this initial spread due to the inho-
mogeneous atmospheric water vapor concentrations in the 
control climate is one of the main causes of the response 
spread in the GREB FP–PC simulations.

Introducing the two main feedbacks leads to about half 
of the spread for each of the two feedbacks, whereas the 

(a) perturbed physics (PP-FC) (b) perturbed control (FP-PC)

Fig. 10   a Correlation between the Tsurf control variations of the PP simulation and the response variations in the PP–FC simulations. b Correla-
tion between the Tsurf control and response variations the FP–PC simulations
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Fig. 11   Spread in the climate sensitivity for different ensemble sim-
ulations of the deconstructed GREB FP–PC simulations. The x-axis 
shows the mean of the Tsurf response pattern spread, σi. The y-axis 
shows the standard deviation of the global mean Tsurf response dif-
ference
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ice-albedo feedback (FP–PC-exp6) contributes more to the 
regional spread and less to the global mean spread than 
the water vapor feedback (FP–PC-exp22). The addition of 
transporting changes in the atmospheric water vapor con-
centration to other regions leads to some additional spread 
in both regional and global mean responses (compare FP–
PC-exp9 and FP–PC-exp7 in Fig. 11). Finally, the introduc-
tion of the heat exchange with the subsurface oceans does 
effectively reduce the spread (compare FP–PC and FP–PC-
exp9 in Fig. 11), although parameter perturbations in this 
process are introduced as well (e.g. mixed layer depth). 
In summary, we find that the control mean climate spread 
primarily leads to spread in the two main feedbacks (ice-
albedo and water vapor) of the GREB model, whereas the 
direct response to the radiative CO2 forcing does not have 
much of a spread (exp. 3 and 4).

In the left column of Fig.  12 it is shown how the 
responses in the deconstructed experiments correlate to 
the responses of the complete GREB FP–PC simulations. 
Most of the lower and mid latitudes of the complete GREB 
FP–PC response are highly correlated to the response in 
the FP–PC-exp4, but are anti-correlated to the FP–PC-
exp3. This means that the changes in the control climate 
mean atmospheric water vapor concentrations are the pri-
mary source of the spread in the response in these regions. 
The direct response to the radiative CO2 forcing, given the 
changes in the control climate mean atmospheric water 
vapor concentrations, are already leading to a spread in the 
response that is highly correlated to the complete GREB 
FP–PC response.

In the high latitudes and polar regions the ice-albedo 
feedback is the main contributor to the response of the 
complete GREB FP–PC simulations, as only the inclusion 
of the ice–albedo feedback leads to high correlations with 
the complete response. The water vapor feedback does also 
contribute in the higher latitudes, but it is relatively more 
important in the lower latitudes. In particular in the drier 
subtropical continental regions (e.g. Sahara or Australia) 
the correlation with the complete response is strongly 
increased by introducing the water vapor feedback.

The right column of Fig.  12 shows the correlation of 
the response with the control climate variations, which 
helps to understand how the control climate influences the 
response of the GREB model. In the complete GREB FP–
PC simulations the response in the lower and mid latitudes 
is strongly anti-correlated to the control climate (Fig. 10b). 
This anti-correlation is already present in the experiment 
without any feedbacks and with regional differences in the 
atmospheric water vapor concentration (Fig. 12d) and then 
becomes closer to the complete GREB FP–PC simulations 
with including further feedbacks and processes (Fig. 12f, h, 
j). The regional differences in the water vapor concentra-
tion affect the emissivity function of the GREB model (see 

DF11) by changing the overall emissivity of the atmosphere 
and by changing the sensitivity of the emissivity function to 
the CO2 concentrations due to the overlap radiation band. 
For most lower and mid latitude regions the later effect 
dominates, which makes the climate more sensitive to CO2 
forcing if the water vapor concentration is smaller. Smaller 
water vapor concentrations are usually directly related to 
colder temperatures, thus we find a negative correlation 
between the mean climate and the response in the GREB 
FP–PC simulations. In higher latitudes and Polar Regions 
the overall emissivity effect dominates, which reduces the 
strength of the main negative feedback (thermal radiation) 
if the water vapor levels increase. Thus, warmer mean cli-
mates in these regions have a stronger response.

The water vapor and, most importantly, the ice-albedo 
feedback increase the negative correlation between the 
control and response. Colder climates make the ice-albedo 
feedback more efficient in most higher and mid latitudes, 
because the climate is more within the temperature range of 
the ice-albedo feedback (see DF11). Colder and drier cli-
mates are also more sensitive to increased levels of water 
vapor by atmospheric transport due to the water vapor 
feedback.

In summary, we find that the control climate variations 
change the regional control water vapor concentrations and 
thereby change the radiative effect of the CO2 and the over-
all emissivity. The different mean temperatures at higher 
latitudes also change the ice-albedo feedback. Finally, the 
water vapor feedback is also altered by the mean water 
vapor concentrations.

6 � Summary and discussion

In this study the relationship between the control mean 
climate biases and the climate sensitivity uncertainty 
(spread), both resulting from errors in the model physics, 
was analyzed on the basis of PPE simulations with the 
simple GREB model. By randomly perturbing 26 model 
parameters and boundary conditions of the GREB model, 
uncertainties or errors in the model physics were mimicked 
to explore how these affect the control mean climate and 
the model response to a 2 ×  CO2-forcing. The perturbed 
physics cause the GREB model to drift from its original 
(observed) control mean state into a different control mean 
climate. From these different control mean climates the 
model response to a 2 × CO2-forcing is estimated. Thus, 
the perturbed physics of the GREB model simulations lead 
to two errors: errors in the model physics and errors in the 
model mean control climate. In order to separate the two 
effects from each other, a number of sensitivity studies 
were performed, in which only one of the two errors exists. 
This was done by using flux corrections on Tsurf and total 
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response ctrl-clim
(a) homo. / no feedbacks (FP-PC-exp3) (b)

(c) no feedbacks (FP-PC-exp4) (d)

(e) ice-albedo feedbacks (FP-PC-exp6) (f)

(g) water vapor feedback (FP-PC-exp22) (h)

(i) no deep ocean (FP-PC-exp9) (j)
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atmospheric water vapor content to enforce specific control 
mean climates.

In the GREB PPE simulations the variations in the 
response to 2  ×  CO2-forcing (Fig.  1b) can clearly be 
separated into two parts: A variation in the response to 
2 × CO2-forcing resulting from the variation in the control 
mean climate without any perturbed physics (Fig. 1d) and 
a variation in the response to 2  ×  CO2-forcing resulting 
from the perturbed physics if the control mean is held at the 
observed reference climate by flux corrections (Fig.  1c). 
The sum of the two separated effects is highly correlated 
with the total variations in the response to 2 × CO2-forcing 
when both effects are simulated together. The variations 
resulting from the biases in the control mean climate are 
stronger and are more closely related to the total error than 
those resulting from the perturbed physics only.

Further it was shown that the effects are opposing each 
other and are partially cancelling each other out. Perturbed 
physics in the absence of mean climate errors (Fig. 1c) that 
lead to stronger response to 2 × CO2-forcing in a region, 
would also lead to warmer mean climate in the same 
region, if the mean control climate is allowed to drift. Thus, 
having a positive correlation between the variations in the 
control and the response. In turn the control mean biases, 
caused by the perturbed physics (Fig. 1d), lead to a weaker 
warming response to 2 × CO2-forcing in these regions, if 
the GREB model with unperturbed physics is forced (by 
flux corrections) to start from these control biases. Thus, 
there is a negative correlation between the variations in the 
control and the response. This is in particular true for the 
global mean response and less so for the regional pattern 
differences. Qualitatively similar results have been found 
in some CGCM studies (Manabe and Bryan 1985 and Col-
man and McAvaney 2009), but other studies suggest the 
opposite behavior (Brierley et al. 2009; Jonko et al. 2012; 
Caballero and Huber 2013; Meraner et al. 2013).

Thus, the total uncertainty (spread) in the climate sen-
sitivity is only the residual effect of the two counteract-
ing effects. The understanding of the control bias and the 
perturbed physics effects on the climate sensitivity is more 
easily achieved when the two effects are studied separately. 
The direct effects of perturbed physics are leading to much 
simpler and easier to understand climate sensitivity changes 
if the control mean state is forced to be unperturbed.

The biases in the control mean climate affect the cli-
mate sensitivity mostly by altering the relative importance 
of the two main feedbacks: the water vapor and ice-cover 

feedbacks. Changes in the regional distribution of atmos-
pheric water vapor do affect the climate sensitivity in most 
lower latitude regions, while at higher latitudes the changes 
in the Tsurf are more relevant by affecting the strength of the 
ice-albedo feedback.

Two particular questions with respect to errors in the 
mean SST have been addressed in this study: First, does 
the mean SST uncertainty in the GREB model yield simi-
lar results to those of D12 and second, does flux correcting 
the SST lead to a reduced climate sensitivity uncertainty. 
For the first question the results indeed are similar to D12: 
spread in the control mean SST does lead to substantial 
spread in the response, but not nearly as strong as the total 
response spread. The second question is related to the gen-
eral approach in previous and current CGCM simulations to 
flux correct the SST to improve the mean state simulations 
and the climate change predictions. Here, it was found that 
flux correcting the SST does not reduce the global mean 
response uncertainty and only slightly reduces the response 
pattern uncertainty. This reflects to some part that most of 
the control mean state errors are not over the open oceans, 
but are over land and sea-ice regions, which do not improve 
much if just the SSTs are flux corrected.

An obvious question is to what extent can the results 
of these GREB model PPE simulations tell us something 
about the model uncertainties of the CMIP CGCM simula-
tions. Here, two things need to be considered: how similar 
are the GREB model physics to those of the CGCMs and 
how similar are the perturbed physics of the PPE simula-
tions to the true errors in the CGCMs. First of all, it was 
shown that the GREB PPE and the CMIP ensembles have 
a number of similarities in the statistics of their control and 
response variations (comparison of Figs.  2, 3, 7, 9) and 
most of the response spread in both, the GREB PPE and the 
CMIP ensembles, results from uncertainties in the clouds, 
atmospheric water vapor and convection parameters. This 
suggests that the two ensembles have indeed some similar 
behavior. However, there are also a number of character-
istics in which the two ensembles show some disagree-
ment: The GREB PPE simulations have larger uncertain-
ties in the SST and the spread in the control mean climate 
relative to the response spread is larger than in the CMIP 
ensembles, suggesting a larger sensitivity to the control 
mean climate. It also needs to be noted that CGCMs have 
significant spread in the atmospheric and ocean circulation 
resulting from model uncertainties that are not captured in 
any way in the GREB model, as the GREB model is not 
simulating the general circulation (e.g. uncertainties in 
cloud cover feedbacks). In summary, one has to be cau-
tious when directly drawing conclusions from this study for 
the uncertainties of CGCMs. In particular how a particular 
parameter or process may influence the control bias or the 
climate sensitivity. The focus in this study here is more on 

Fig. 12   Left Correlation between the response variations of the 
GREB FP–PC simulations and the response variations of the decon-
structed GREB FP–PC simulations. Right Correlation between the 
control variations of the GREB FP–PC simulation and the response 
variations of the deconstructed GREB FP–PC simulations

◂
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highlighting the general interaction between control biases 
and climate sensitivity. While these may and will be dif-
ferent for different parameters or processes, the general 
concepts discussed here are likely to hold for most param-
eters or processes. In the absence of evidence suggesting 
the opposite, it may be advisable to assume that the CGCM 
simulations behave in a similar way. Thus this study served 
as a pilot study to evaluate a characteristic in model errors 
that may potentially lead to substantial improvements in 
CGCM simulations. The only way to get more certainty 
about the implications of the results of this study is to 
repeat a similar set of experiments with full complexity 
CGCMs.

A number of consequences can be drawn for the CGCM 
simulations, assuming the results of the GREB PPE ensem-
bles hold also for the CMIP ensembles: The regional uncer-
tainties in the climate sensitivity will be strongly reduced 
in the CGCM ensemble if the control (twentieth century) 
mean Tsurf is flux corrected towards the observed not just 
over open oceans but globally including land and sea 
ice regions. This approach has so far not been applied to 
CGCMs, as only SST has been flux corrected in CGCMs. 
The global mean climate sensitivity uncertainty will not be 
reduced by this approach. Further, the regional uncertain-
ties in the climate sensitivity in the flux corrected CGCM 
simulations will be more directly related to the process 
uncertainties.
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