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Abstract In this paper it is suggested that a stochastic
isotropic diffusive process, representing a spatial first
order auto regressive process (AR(1)-process), can be
used as a null hypothesis for the spatial structure of
climate variability. By comparing the leading empirical
orthogonal functions (EOFs) of a fitted null hypothesis
with EOF modes of an observed data set, inferences
about the nature of the observed modes can be made.
The concept and procedure of fitting the null hypoth-
esis to the observed EOFs is in analogy to time anal-
ysis, where an AR(1)-process is fitted to the statistics of
the time series in order to evaluate the nature of the
time scale behavior of the time series. The formulation
of a stochastic null hypothesis allows one to define
teleconnection patterns as those modes that are most
distinguished from the stochastic null hypothesis. The
method is applied to several artificial and real data sets
including the sea surface temperature of the tropical
Pacific and Indian Ocean and the Northern Hemi-
sphere wintertime and tropical sea level pressure.

1 Introduction

One of the outstanding features of natural climate
variability is that the variability is organized in specific
spatial patterns. The El Niño Southern Oscillation
(ENSO) mode is such an example. The accurate
description of the spatial patterns associated to the

modes is therefore an important issue in climate
research.

Principal component analysis, also known as the
empirical functions (EOFs) technique, is the most
widely used method to identify these patterns. Often a
single EOF mode is analyzed, assuming that this mode
reflects a specific mode of climate variability with a
well defined underlying physical mechanism.

The literature about EOF analysis, its statistical
characteristics and alternative methods is vast and
nearly intractable (an overview on EOF analysis is
given in von Storch and Zwiers 1999; Jolliffe 2002 and
references therein). Some important measures are gi-
ven about the statistical uncertainties of EOF eigen-
values and patterns due to sampling limitations (North
et al. 1982; Overland and Preisendorfer 1982). More
important in the context of the interpretation of the
statistical modes as reflections of underlying physical
mechanism are studies focusing on the characteristics
of EOF or other statistical modes of simple stochastic
models, which may give some insight into the struc-
tures of the statistical modes as they may appear in
observed physical systems (North 1984; Navarra 1993;
Metz 1994; Gerber and Vallis 2005 and many others).
North (1984) finds that the EOFs of some simple sto-
chastic models driven by spatially white noise coincide
with the eigen modes of the dynamic operator of the
system. Navarra (1993), Metz (1994), Gerber and
Vallis (2005) analyzed the atmospheric variability in
simplified linearized models and found that the ob-
served structures of meridional dipole variability can
be explained by these simplified models.

Much of the discussion of the EOF-analysis is about
its capability of presenting modes that reflect under-
lying physics. In general these discussions follow the
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concept of comparing the EOF-analysis with alterna-
tive definitions of statistical modes in order to point out
which method works best (Richman 1986; Bretherton
et al. 1992; van den Dool 2000; Aires 2002 and many
others).

In Dommenget and Latif (2002a) three very simple
modes of variability are used to construct a simple
artificial example, in which the resulting EOF modes
have very little in common with the three modes of
variability used to create the multivariate problem,
thus indicating that EOF modes do not necessarily
reflect physical modes of a system. Although, this
work only discusses the limitation of EOFs, the
conclusions hold essentially for all statistical methods
of defining modes of variability. The dilemma is that
we like to use the concept of climate modes to
understand climate variability, while the EOF-analy-
sis or alternative statistical methods, which we use to
define these, are pure mathematical concepts which
will not necessarily detect the physical modes. The
problem is to some degree due to the fact that the
statistical modes are discussed without having a null
hypothesis of how the statistical modes would look
like if no outstanding climate modes exist. To eval-
uate the physical relevance of statistical modes it may
therefore be helpful to formulate a null hypothesis
for the statistical modes against which the observed
modes can be compared.

Calahan et al. (1996) used a stochastic model with
spatial correlation to compare the EOF-eigenvalues of
rainfall variability over North America against, which
essentially represents a spatial auto-regressive process
of the first order. This approach is very similar to the
null hypothesis used in analysis of time series. Here
Hasselmann (1976) introduced the stochastic climate
model as the null hypothesis for the time evolution of
climate variables, which assumes, in its simplest form,
an auto-regressive process of the first order.

In this paper it is illustrated how the formulation
of a null hypothesis for the spatial structure of
climate variability can help to evaluate the physical
nature of EOF or other statistical modes and subse-
quently helps to identify outstanding patterns of
climate variability.

The paper is organized as follows: In Sect. 2 a defi-
nition of climate modes and the concept of testing a
stochastic null hypothesis are discussed. In Sect. 3 a
null hypothesis for the spatial variability of climate
variables is formulated. The procedure of how to
evaluate EOFs against a stochastic null hypothesis is
described in Sect. 4. The concept is applied to several
artificial and real data sets in Sect. 5. The paper con-
cludes with a discussion in Sect. 6.

2 Concepts

It is helpful to first discuss how climate modes could
be defined and how limited such definitions may be.
It is also instructive to illustrate how the concept
of testing a stochastic null hypothesis is performed in
time series analysis, which will be a guide for the
subsequent analysis of the spatial structures of climate
variables.

2.1 The null hypothesis in time series analysis

It is common in time series to evaluate the spectra of
time series against an first order auto-regressive pro-
cess (AR(1)-process), which goes back to the stochastic
climate model of Hasselmann (1976). In its simplest
form, Hasselmann’s model is an AR(1)-process, which
is defined by the following differential equation for
time evolution of any physical variable F:

d

dt
U ¼ cdamp " Uþ f ð1Þ

with cdamp < 0 being a constant damping and f white
noise. The auto-correlation function in time, c(s), of F
is:

cðsÞ ¼ e&s=t0 ð2Þ

with the time lag s and the e-folding time t0 = 1/cdamp.
One can derive the analytical form of the spectral
distribution of the null hypothesis of F from Eq. 2. In
time series analysis, this null hypothesis is often used to
evaluate the temporal behavior of F, by simply com-
paring the spectrum of F with that of a fitted AR(1)-
process. The parameters of the fitted AR(1)-process
are derived from the auto covariance function of F
(e.g. Reynolds 1978; Dommenget and Latif 2002b).

In the case of the El Niño SST time series, for in-
stance, the spectrum shows some characteristic en-
hanced variance (peak) in the interannual frequency
range, which is usually interpreted as an indication for
the oscillating nature of El Niño SST. The spectrum of
the midlatitudes SST time series shows no peak, but a
different overall slope of the spectrum, which indicates
deviations from the AR(1)-process null hypothesis
(Dommenget and Latif 2002b).

2.2 Definitions of teleconnection/climate modes
and their limitations

The way EOFs modes are discussed in most statistical
analyses (e.g. Dommenget and Latif 2002a and refer-
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ences therein) is based on a factor analysis approach, as
pointed out by Jolliffe (2003). It is implicitly assumed
that the multivariate data X is a result of the time
evolution of a set of K fixed factors, pi, (often called
teleconnections, modes or patterns), and some residual
unstructured noise n.

XðtÞ ¼ WðtÞPþ nðtÞ ð3Þ

P is a matrix of factor loadings pi, where each pi is
interpreted as a coherent spatial pattern (teleconnec-
tion). These patterns are the dominating influence for
X (for details on factor analysis see textbook by Jolliffe
2002). The time evolution of P is given by a matrix of
time series Y.

The idea is to assume that the high-dimensional
system can be approximated by a low-order state space
model, with the number of modes, K, much smaller
than the dimension of X (von Storch and Zwiers 1999,
Sect. 15.5). The patterns P in this approach are a
reflection of the underlying low-order physical model.
This approach, however, depends strongly on how the
patterns P are estimated. In the recent literature it
seems a popular approach to associate the leading
EOFs or other statistical modes with the leading tele-
connections (e.g. Thompson and Wallace 1998 or Saji
et al. 1999). It is, however, important to note that it is
in general unclear if any teleconnections exist in the
data set and how they can be estimated (e.g. Jolliffe
2002, Sect. 7 and Dommenget and Latif 2002a).
Dommenget and Latif (2002a) argue that most likely
neither EOF nor VARIMAX will find the leading
teleconnection factors in climate data sets. The inher-
ent problem in this approach is that a criteria or
algorithm needs to be formulated by which the
empirical patterns P are chosen. Thus the resulting
modes may in many cases be a reflection of the sta-
tistical method used, but are not a good representation
of the underlying physical processes.

An alternative method, which avoids to formulate
any criteria for the structure of teleconnection modes,
is to formulate a null hypothesis for the structure of
spatial variability, which can be regarded as a model
for the noise. Any pattern that is very distinct from the
patterns of the null hypothesis is a good starting point
for the estimation of teleconnection modes. This con-
cept is similar to the time series analysis, in which the
time scale behavior of El Niño, for instance, is sim-
plified into a distinct oscillation mode on interannual
time scales and a background red noise. In analogy the
teleconnection modes are defined as the modes that
stick out of the background noise, as define by the null
hypothesis.

3 A stochastic null hypothesis for the spatial structure
of climate variability

The stochastic model of Calahan et al. (1996) is
essentially given by the correlation between two spatial
locations of the data field, F:

cðrÞ ¼ e&r=d0 ð4Þ

Here r is the distance between the two locations and d0
is the decorrelation length. Note that Eq. 4 is the
equivalent to Eq. 2. Thus the stochastic model of
Calahan et al. (1996) is an AR(1)-process in the spatial
domain dimension.

The simple physical model in Eq. 1 can be extended
to include diffusion for the relation between two
locations:

d

dt
U ¼ cdamp " Uþ cdiffuser2Uþ f ð5Þ

cdiffuse is a diffusion coefficient and f now represents
spatial and temporal white noise. In this equation the
diffusion is just introduced in a statistical sense. This
diffusion model is often refered to as a simple energy
balance models of the climate system (see e.g. North
et al. 1981, 1983 and references there in). Leung and
North (1991) discussed some statistics of this model for
the atmospheric variability of a zonally symmetric
planet. North (1984) finds that the EOFs of this model
driven by homogenous forcing f (spatially white noise
with the standard deviation of f constant over the do-
main) coincide with the eigen modes of the dynamic
operator of the system.

Note that for an isotropic diffusive process (neither
cdamp nor cdiffuse are a function of the location) driven
by a homogenous forcing f, the model in Eq. 5 is an
AR(1)-process in the spatial domain. We can derive
the covariance matrix of F:

Rij ¼ rirje&dij=d0 ð6Þ

where ri is the standard deviation of F at point i and dij
the spatial distance between the two points i and j. If
the standard deviation field r or d0 exhibit spatial
variations (e.g. ri „ rj for i „ j), than the model in
Eq. 5 is not a spatial AR(1)-process any more and
Eq. 6 does not exactly represent the covariance matrix
of F. However, Eq. 6 should be a good approximation
if the spatial variations of ri and d0 are small. The
effect of spatial variations of r will be discussed in Sect.
5 by means of a realistic example.

An isotropic diffusive process in Eqs. 5 and 6 is
the null hypothesis for the spatial characteristics of a
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climate variable F. In this formulation, F has no
teleconnections other than the exponential decay of its
auto-correlation function. In analogy, the spectrum of
a time series of an AR(1)-process, is not considered to
have a significant time scale (peak in the spectrum)
other than a damping time scale.

We can find the EOF modes and eigenvalues of the
null hypothesis numerically. In Fig. 1 the leading EOF
modes of a domain defined by 17 · 11 points with
constant r = 1 and d0 = 4.6 points is shown. The ei-
genvalues of the leading EOF modes are also shown in
Fig. 1.

Based on this example and a few other examples
with variations in the domain dimensions and d0 (not
shown), a few important characteristics of the EOF
modes and eigenvalues of the diffusion null hypothesis
can be formulated as follows:

• The EOF modes are a hierarchy of multi poles,
starting with a monopole as EOF-1, followed by a
dipole, and then by higher order multi poles. The
order and structure of the multi poles is a result of
the domain dimensions and the decorrelation
length d0. Note that this kind of structure of the
observed leading EOF modes of most climate data
sets is also discussed in Richman (1986), but not in
the context of the simple stochastic model in (5).

• The EOF-1 peaks in the center of the domain,
because the center point is the point which is in

average closest to all other points and has therefore
a larger covariance with all other points. Note that
r and d0 are identical for all points, so that the
statistics of all points of the domain are identical.
The EOF-1 mode is therefore only a reflection of
the domain geometry. It simply reflects that there is
no structure in the variability other than exponen-
tial decay of covariance with distance.

• None of the EOF modes represent teleconnections
(factors), since no teleconnections exist in this
simple model. In the simple model of an spatial
AR(1)-process the spatial variability is a continuous
spectrum of spatial patterns, where no spatial
pattern is dominating over the other patterns. The
EOF modes should be interpreted as a reflection of
different spatial scales. In analogy, the spectral
coefficients of a continuous spectrum of an AR(1)-
process are a reflection of the different time scales,
but not a representation of an oscillating behavior.
The domain wide monopole of the leading EOF-1
represents the largest spatial scale of variability in
the domain, which in an AR(1)-process has the
largest variance. EOF-2 and EOF-4, for instance,
should be interpreted as spatial variability along the
x-axis with a spatial length scale of about 1/2 of the
domain size along the x-axis. They do not represent
an anti correlation between the centers. The same
holds for all other EOF modes.
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Fig. 1 The leading EOF modes (left panels) and eigenvalues (right panel) of a spatial AR(1)-process in a 17 · 11 points domain
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• The decrease of the eigenvalues to higher order
EOFs is only a function of the domain size and the
decorrelation length d0. None of the 20 leading
eigenvalues is degenerated (equal to another eigen-
value), reflecting the different length of the domain
along the x- and y-axis. Note that in this example
the number of points in each direction was chosen
as a prime number to avoid degenerated eigen-
values, which in real domains, such as ocean basins,
would not occur. Note also that the numerical
precision of the EOF analysis in this example is
much better than the line (dot) thickness in Fig. 1.

An important quantity that quantifies the degree of
complexity in the domains spatial variability is the
effective spatial number of degrees of freedom Neff

(Bretherton et al. 1999). It essentially estimates the
effective dimension of the multivariate variability:

Neff ¼
1P
e2i

; with
X

ei ¼ 1 ð7Þ

with ei the eigenvalues as derived from the EOF
analysis. The number Neff corresponds to the number
of independent spatial modes. It also quantifies the
decrease of the eigenvalues and is a monotonic func-
tion of the decorrelation length d0. It can therefore also
be used as an estimate for the decorrelation length.

4 Evaluating EOF-vectors and eigenvalues against a
stochastic null hypothesis

The stochastic model allows an evaluation of EOF
modes. In many studies only the leading EOF modes of
an observed data set are discussed. Here the focus is
often on the spatial structure of the observed EOF
patterns, which are interpreted as teleconnection pat-
terns. It is therefore important to discuss to which de-
gree the leading EOF modes are consistent with the
simple null hypothesis or, in a more objective ap-
proach, to find those patterns, that are most distin-
guished from those of the null hypothesis.

4.1 Fitting an isotropic diffusion process to data

The null hypothesis as formulated in the previous
section can be fitted to any data set by estimating the
standard deviation field r and the average decorrela-
tion length d0. Given r and d0 the covariance matrix of
the null hypothesis in Eq. 6 is defined and the EOF
modes of the null hypothesis can be calculated.

Note that the estimation of d0 can have large
uncertainties in a limited gridded domain (see e.g. von

Storch and Zwiers 1999). However, d0 is a monotonic
function of the spatial number of degrees of freedom,
Neff, which is estimated by the sum of eigenvalues. The
estimation of d0 will usually depend on the correlation
of neighboring points, which is a function of the vari-
ability on all spatial scales. The estimation of Neff is
essentially a function of the leading EOF-modes only,
while the small scale variability has little effect on this
quantity. Hence, the agreement between the leading
eigenvalues of the observations and the fitted null
hypothesis appears to be better if the observed Neff is
used to estimate the fitted d0 in Eq. 6. An analytical
relation between Neff and d0 may exist for some simple
domain geometries, such as a sphere for instance.
However, it will be difficult to write down an analytical
relation for complicated geometry and boundary con-
ditions and it may therefore be most practical to esti-
mate these quantities numerically. Thus, d0 is varied
until Neff of the fitted null hypothesis agrees with the
Neff of the observational data set within the uncertainty
range of Neff, which should be given by the statistical
uncertainties of the eigenvalues due to sampling errors
(North et al. 1982).

4.2 Comparing the observed EOF modes with a
null hypothesis

An EOF eigenvector (mode) of an observed data set,
~Eobs

i ; and the corresponding eigenvalue ei
obs can be

compared to the eigenvectors ~Enull
j and eigenvalues ej-

null of a null hypothesis by projecting the eigenvectors
~Enull

j onto the eigenvector ~Eobs
i :

cij ¼
~Eobs

i
~Enull

j

j~Eobs
i jj ~Enull

j j
ð8Þ

cij is the uncentered pattern correlation coefficient
between the two EOF-patterns. The variance that the
mode ~Eobs

i would have under the null hypothesis can be
estimated by the linear combination of all eigenvalues
ej
null of the null hypothesis using cij:

eobsnulli ¼
XN

j¼1

c2ije
null
j : ð9Þ

The variance ei
obsnull is the expected variance of ~Eobs

i

if the data follows the diffusive process of the
null hypothesis. Note that while the eigenvalues ei

obs

decrease monotonically with higher order numbers, the
ei
obsnull values does not need to decrease with higher
order number. A pattern that explains a lot of variance
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in the observations (large ei
obs) may explain little var-

iance under the null hypothesis (small ei
obsnull values).

4.3 Statistical inferences about the nature of EOF
modes

The uncertainties of the eigenvalues ei
obs of the ob-

served data due to sampling errors are given by
North et al. (1982). When the observed data follows
the null hypothesis we expected the ei

obsnull value to
be within the uncertainties of the eigenvalues ei

obs. A
comparison of the eigenvalue spectrum ei

obs with the
spectrum of ei

obsnull allows to quantify the deviations
of the observed data from the null hypothesis, which
can be the basis for statistical inferences about the
nature of EOF modes. The concept is in analogous
to the comparison of the spectrum of an observed
time series with the spectrum of the fitted AR(1)-
process.

ei
obs and ei

obsnull are variances, which tend to be v2-
distributed. Statistical inferences about v2-distributed
random variables are usually obtained on the basis of
the ratio, ei

obs/ei
obsnull, as in time series analysis (e.g.

Reynolds 1978; Dommenget and Latif 2002b). How-
ever, as mentioned in Calahan et al. (1996), the
strongest deviations of the ratio, ei

obs/ei
obsnull, are found

in the low (higher order) eigenvalues, which are in
most studies of little interest. It therefore may be more
instructive for large-scale teleconnections to base the
statistical inferences on the difference between ei

obs and
ei
obsnull. However, the choice of the right test variable
depends on the focus of the analysis.

The method of projecting the null hypothesis
onto observed patterns can be used for all kind of
patterns, like box-averages or more sophisticated
indices. The explained variance of the index com-
pared to the explained variance eobsnull could reveal
whether the index indeed presents an unexpected
structure and thus can be used to justify a specific
choice of indices.

5 DEOFs: An estimate of teleconnection modes

If the ~Eobs appear to be different from the null
hypothesis one may be interested in the spatial pattern
that maximizes the difference in explained variance
between the data and the null hypothesis. These are
named distinct EOFs (DEOFs or ~DobsÞ and distinct
PCs for the time series (DPCs), respectively. The
leading ~Dobs is defined as the pattern that maximizes
the differences in explained variance Dvar:

Dvar ¼ Varobsð~DobsÞ &Varnullð~DobsÞ ð10Þ

where Varobs denotes the variance that the pattern
~Dobs explains in the observed data and Varnull denotes
the variance that the pattern ~Dobs explains under the
null hypothesis following (9) The leading ~Dobs can be
found by pairwise rotation of the leading EOFs, as it is
done for determining the VARIMAX modes (Kaiser
1958), until the maximum of Dvar is found. By iterating
this procedure we can define a complete set of
orthogonal DEOFs, building a complete representa-
tion of the data.

The patterns that are most distinguished from the
null hypothesis, the leading DEOFs, are, from a sta-
tistical point of view, a good first guess for the tele-
connections. They should in general be a good starting
point for the understanding of the underlying physical
processes.

The DEOF have, however, some limitation in the
interpretation, that are similar to those pointed out
for EOFs in Sect. 3. Identifying the DEOFs with
coherent teleconnections depends on the formulation
of the null hypothesis. Furthermore, the concept of
teleconnection patterns may not always be helpful in
the understanding of the multivariate data. In some
systems, for instance, the DEOFs are a reflection
anisotropy in the diffusion or advection, which are
better described by physical process parameter.
Coherent teleconnection patterns may not exist in
such systems. The DEOFs focus on the deviations
in the leading (large) eigenvalues, while differences
in the higher order (small) eigenvalues are neglected,
which in some systems may be important for the
understanding of the underlying physical processes
(Crommelin and Majda 2004).

The DEOF are defined in an orthogonal system,
which, similar to EOFs, maximize some variance cri-
teria. Therefore it can be difficult to interpret the
DEOFs in systems where many DEOFs explain more
variance than expected under the null hypothesis
(see also the discussion of the observed Northern
Hemisphere and tropical SLP variability in Sects. 5.5,
5.6 and 6).

Note that due to the limited length of the time series
the expected value of Dvar is larger then zero, when the
data follows the null hypothesis. For statistical infer-
ence about the significance of Dvar of the leading
DEOF we have to estimate the probability distribution
function (PDF) of Dvar. The simplest way to estimate
the PDF of Dvar of the leading DEOF is by means of a
bootstrapping approach (see von Storch and Zwiers
1999).
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6 Examples

We start with some artificial examples, in which the
true nature of the problem is well defined. The two
artificial examples illustrate two different ways in
which a multivariate data set can differ from a pure
isotropic diffusion process. We shall then discuss sev-
eral examples of observed climate variability, some of
which have led to some controversy in the recent lit-
erature. In the discussion of all examples, the null
hypothesis of the climate variability is an isotropic
diffusion process as formulated in Sect. 3 and the
parameters are fitted to the data as described in Sect.
4.1. The discussion of the observed climate variability
modes will be brief and focuses on the new technique.
A more detailed physical analysis of the observed cli-
mate variability modes may be desirable, but would be
beyond the scope of this paper.

6.1 An isotropic diffusive field with inhomogeneous
standard deviation

The following example is a numerical stochastic reali-
zation of Eq. 5, which should be similar in its statistics
to typical monthly mean time series of ocean basin
SSTs. The model in Eq. 5 was integrated on a grid with
18 · 18 points with a daily time step. The diffusion
coefficient was chosen to produce a decorrelation
length of about 3 points. For the statistical analysis, 30
time steps were averaged to build a monthly mean and
the damping cdamp in Eq. 5 was chosen to create a one
month lag correlation of about 0.6. The resulting time
series has a length of 1,000 months with about 500
degrees of freedom. The standard deviation of the
spatially uncorrelated forcing f was increased in two
regions, with one peak in the northeast and one in the
southwest. The resulting standard deviation of F varies
between 1.0 and 4.0 (at the peaks) in arbitrary units.
The EOF analysis was performed on only the central
10 · 10 domain to avoid boundary effects.

In Fig. 2a–c, the leading EOFs of the stochastic
simulation are shown. In addition, the leading EOFs of
the covariance matrix S based on Eq. 6 with parame-
ters ri and d0 fitted to the statistics of the simulation
are shown for comparison (Fig. 2d–f). The explained
variance of the EOF modes of the simulation, ei

obs, are
compared with the fitted isotropic diffusion process by
projecting the EOF modes of the null hypothesis onto
the EOF modes of the stochastic simulation as outlined
in Sect. 4 using Eqs. (8) and (9) (see Fig. 2g). Note that
while the eigenvalues ei

obs decrease monotonically with
higher order numbers, the variance under the null
hypothesis, ei

obsnull, does not need to decrease with

higher order number, because these are not eigen-
values (see section 4.2).

In a first comparison we find that the EOF modes
and eigenvalues of the stochastic simulation are in
good agreement with the fitted null hypothesis. If we
rotate towards the leading vectors ~Dobs; which point
towards the largest differences, the two leading
modes (see Fig. 2h, i) reveal some significant struc-
tures (no other higher order mode shows any signif-
icant differences). These two structures represent
some differences in the spatial scale of variability
near the two centers of the leading EOF mode. They
reflect that Eq. 6 is only an approximation if struc-
tures in r or d0 exist. In this example the structure
introduced in the standard deviation of the white
noise forcing f leads to some structure in the standard
deviation of F and it also creates some variations in
d0. However, the difference between the stochastic
simulation and the null hypothesis amounts to only
4% for the leading mode.

If we repeat the experiment with a homogenous
standard deviation of the forcing f, the significant
structure in the leading vectors ~Dobs is gone (the dif-
ference in explained variance is < 2%, decreasing with
the length of the time series).

In summary, the EOF modes and eigenvalues are
close to those of the null hypothesis.

6.2 A diffusive field with a weak teleconnection
pattern

Here the standard deviation of the forcing f is homo-
geneous through out the domain. In addition to the
spatially and temporally white noise forcing f, a tele-
connection forcing pattern p was introduced in Eq. 5
leading to the following equation:

d

dt
U ¼ cdamp " Uþ cdiffuser2Uþ p " F þ f ð11Þ

The spatial pattern of p is shown in Fig. 3a, where F is
a white noise time series with a variance of about 12%
of the variance of f. The teleconnection forcing pattern
p is therefore relatively weak. Figure 3b, c highlights
the correlation between the two centers of the tele-
connection forcing pattern by means of box correla-
tions, showing only a weak correlation in F between
the two centers. For the EOF analysis, the data were
normalized so that each point has unity standard
deviation. As a result the stochastic simulation reflects
a domain which has no structure in the standard
deviation of F, but it has a structure in the covariance
matrix forced by a teleconnection pattern.
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The EOF modes and eigenvalues are shown in
Fig. 3d–k. The EOF modes are very similar to those of
a purely diffusive process as discussed in Sect. 3, but
the eigenvalue of EOF-2 is larger than expected by a
diffusive process. The leading mode of the rotation
towards the largest difference relative to the fitted
isotropic diffusion process, DEOF-1, is very similar to
the teleconnection forcing pattern. DEOF-1 explains
18% of the total variance, where this pattern would
only explain 10% in the fitted AR(1)-process (see
Fig. 3l). Thus the residual of about 8% of the total
explained variance may be associated with a telecon-
nection following the spatial structure of DEOF-1.
Note that none of the leading VARIMAX modes (not
shown) have any similarity to the teleconnection p,

because the structure of the teleconnection forcing
pattern (a dipole) does not maximize the VARIMAX
criteria ‘simplicity’.

6.3 Tropical Pacific SST

The first example of observed data is the tropical Pa-
cific (from 30"–30"N to 100"E–70"W) monthly mean
SST as presented by the HADISST data set from 1870
to 2003 (Folland et al. 1999). The ENSO mode in the
tropical Pacific is probably the best understood tele-
connection mode of natural global climate variability
and is therefore a good example on which to apply
the analysis introduced in this paper. Whether or not
the ENSO mode is stochastically forced, as assumed by
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Fig. 2 The leading EOFs of the stochastic simulation (a–c) and
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example in Sect. 5.1 are shown. The eigenvalues ei
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sampling errors after North et al.(1982). h and i show the leading

DEOF-1 and DEOF-2. The first percentage value in the heading
of the h and i give the explained variance of the DEOF in the
stochastic simulation and the second value the explained
variance of the DEOF under the null hypothesis. All spatial
modes are in arbitrary units. Dashed contours indicate negative
values
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the null hypothesis, or is due to intrinsic chaotic
behavior, will not be addressed in this work (Kirtman
et al. 2005 and references therein).

The three leading EOFs are compared with the
EOFs of the fitted null hpyothesis in Fig. 4a–f. The
structures of the leading EOFs of the observed SST are
quite different to those of an isotropic diffusion pro-
cess. The comparison of the variance of the eigenvalues
shown in Fig. 4g clearly shows that nearly all leading
EOFs are different from the null hypothesis.

If we maximize the difference between the observed
EOF modes and the null hypothesis by rotation we find
a pattern similar to EOF-1 (see Fig. 4h), with less ex-
plained variance (32%) but with a much larger differ-
ence relative to the null hypothesis of about 22%,
which makes this mode more distinct to a diffusive
process than EOF-1. It is also interesting to note that
the leading teleconnection DEOF-1 is more focused on
the central equatorial region than the EOF-1, a region
often discussed in ENSO forecasting studies to be the

most predictable region on seasonal to interannual
time scales (e.g. Barnett et al. 1993; Dommenget and
Stammer 2004).

6.4 Tropical Indian Ocean SST

The EOF-1 of the monthly mean Indian Ocean SST
(20"S–30"N to 30"E–120"E) from the HADISST data
set over the period from 1870 to 2003 (Folland et al.
1999), as shown in Fig. 5a, has been identified as the
response of the Indian Ocean to ENSO by Saji
et al.(1999). They further identify the EOF-2 as a new
mode of ocean–atmosphere interaction in the Indian
Ocean. A discussion of whether or not this interpre-
tation is justified can be found in Baquero and Latif
(2002), Behera et al. (2003) and in Dommenget and
Latif (2003).

The spatial structure of the leading EOFs appear to
be very similar to the EOFs of the null hypothesis and
the leading eigenvalues are in good agreement with the
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Fig. 3 As in Fig. 2 but for the example in Sect. 5.2. In addition the forcing pattern p is shown in a, and the box-average correlations of
two regions with the rest of the domain are shown (b and c)
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variance of the null hypothesis (see Fig. 5a–g). It
therefore seems that the SST variability of the Indian
Ocean is consistent with a purely diffusive process. In
particular, EOF-2, the so called Indian ocean dipole
mode, explains less variance than expected from the
fitted AR(1)-process.

Although there is no indication for strong deviations
from an isotropic diffusion process, a rotation towards
the leading differences from the null hypothesis was
performed (see Fig. 5h). However, DEOF-1 explaining
32% of the total variance (24% in the null hypothesis)
is only slightly different from the null hypothesis.
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6.5 Northern hemisphere winter time SLP

Thompson and Wallace (1998) proposed the Arctic
Oscillation (AO) or the annular mode as one of the
leading modes of climate variability, which is defined
by EOF-1 of Northern Hemisphere (from 10"N) win-
tertime SLP. The leading EOFs are shown in Fig. 6a–c
based on the NCEP SLP from 1948 to 1999 (Kalney
et al. 1996). A teleconnection between the Pacific and
Atlantic region is seen in EOF-1.

However, Deser (2000) and Ambaum et al. (2001)
pointed out that the AO does not project onto local
correlation patterns as well as the two more localized
patterns of the North Atlantic Oscillation (NAO) and
the Pacific North America pattern (PNA), which are
the leading EOFs of the Atlantic and Pacific sub do-
mains. The NAO and the PNA both project well onto
the AO pattern. Further, they argue that the data does
not give much support for strong interactions between
the Atlantic and Pacific region as the AO pattern
suggests.

In response to the lack of correlation between the two
oceans, Wallace and Thompson (2002) argue that the
EOF-2 may represent another inter-oceanic mode of
variability, which leads to the apparent weak correlation
between the SLP over the two oceans. In summary,
Thompson andWallace indicate that there is a relatively
strong connection between the Atlantic and Pacific re-
gions, whereas Deser (2000) and Ambaum et al. (2001)
do not see evidence for this connection.

Furthermore, the arguments of Deser (2000) and
Ambaum et al. (2001) are similar to the arguments
which lead to the null hypothesis. Assuming the lead-
ing modes of variability should be reflected in the local
correlation patterns, as the two more localized patterns
NAO and PNA, is in principle the same as assuming
that the data are dominated by diffusive processes and
a few (one or two) teleconnections.

The leading EOFs of observed wintertime SLP are
quite different from those of the null hypothesis in that
each of the leading EOFs explains considerably more
variance than it would under the null hypothesis (see

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

ex
pl

ai
ne

d 
va

ria
nc

e 
[%

]

eigenvalue number

Eigenvalues

g)

h) i)

f)

e)

d)a)

b)

c)

data
fitted diffusion process

Fig. 6 As in Fig. 2 but for the Northern Hemisphere wintertime SLP as discussed in Sect. 5.5. In addition the explained variance field
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Fig. 6a–g). The comparison therefore indicates that the
wintertime SLP is inconsistent with diffusive processes.
However, the leading teleconnection DEOF-1 is quite
clearly represented by a NAO like structure explaining
about 17% (4% in the null hypothesis) of the total
variance (see Fig. 6h, i). Note that this pattern has a
high correlation with the EOF-1 or AO mode, but it
explains very little variance in the Pacific region (see
Fig. 6i).

Note that one should resist in interpreting all the
DEOFs, that explain more variance, than expected
under the null hypothesis, as teleconnection patterns.
In multivariate systems with many DEOFs explaining
more variance than expected under the null hypothesis,
the interpretation of the DEOFs can be very difficult
and the concept of teleconnection modes may not be
very helpful. It may in some cases be possible to
identify some of the DEOFs with teleconnections, but
one have to keep in mind that in a multivariate
orthogonal system, rotation of the dominant DEOFs
patterns may lead to a different presentation of the
leading teleconnections. Moreover, the DEOF will in
most cases not represent any coherent teleconnections,
but be a reflection of dominant physical process that
drive SLP in the extra tropics, such as mass and vor-
ticity conservation.

6.6 Tropical SLP

Tropical monthly mean SLP variability is strongly re-
lated to SST variability, which is dominated by the
ENSO-mode. While the El Niño SST pattern is well
represented by the leading EOF of the tropical Pacific
SST, the Southern Oscillation mode is not well repre-
sented by the leading EOF of the tropical SLP, see
Fig. 7a. The Southern Oscillation has some similarity
with EOF-2, but is usually defined by the correlation
with the NINO3 region (5"S–5"N/150"W–90"W) or as
the pressure difference between the stations at Darvin
and Tahiti.

The structure of the EOF-patterns is similar to what
is assumed for a pure isotropic diffusion process (as
discussed in Sect. 3), with a monopole as EOF-1 fol-
lowed by dipole patterns in EOF-2 and EOF-3. Thus
the structure or the EOF-patterns does not suggest any
characteristic teleconnection pattern. The important
role of the EOF-2 (Southern Oscillation) becomes
clear, when the eigenvalues of the EOFs are compared
with the fitted null hypothesis (Fig. 7g). Overall the
eigenvalues of the EOFs are relatively close to those of
the fitted null hypothesis, but the EOF-2 explains
considerably more variance than expected, while EOF-
3 explains much less variance than expected. The sit-

uation is similar to the artificial example with a zonal
dipole teleconnection, as discussed in Sect. 5.2.

The leading DEOF is similar to the EOF-2 (South-
ern Oscillation), but is more global, with larger
amplitudes in the tropical Atlantic region. In the con-
text of the ENSO mode we would expect the leading
SLP in the tropical atmosphere to be correlated to the
SST. The DPC-1 of the tropical SLP shows higher
correlations with the PC-1 and DPC-1 of the SST in the
tropical Pacific (as discussed in Sect. 5.3) than the PC-2
of the tropical SLP. It also shows larger correlations
with global SST than the PC-2 of the tropical SLP,
including the North Pacific, tropical Indian Ocean and
Atlantic, which are region known to be influenced by
the ENSO mode.

The tropical SLP also shows some clear anisotropy
in the decorrelation length. In the zonal direction the
decorrelation length is much larger than in meridional
directions. This deviation from the isotropic diffusion
process becomes more dominant in the leading DEO-
Fs, if the analysis is repeated on a wider latitudes range
(e.g. 30"S–30"N; not shown). The mismatches between
the leading eigenvalues and the fitted null hypothesis
become larger, but the EOF-2 (Southern Oscillation)
remains to be the largest deviations from the null
hpyothesis. The southward shift of the amplitudes in
the DEOF-1 (Fig. 7h) is also a reflection of the
anisotropy in decorrelation length.

7 Discussion

In this paper it is suggested that the leading EOF
modes of observed data are compared with the EOF
modes of a fitted stochastic null hypothesis in order to
determine what the nature of the spatial structures of
the data are. Calahan et al. (1996) formulated a simple
stochastic model for rainfall data, which can be used as
a general null hypothesis for the spatial structure of
climate fields. The stochastic model of Calahan et al.
(1996) is an AR(1)-process in the spatial dimension,
which is the same as the null hypothesis for the tem-
poral dimension (time series) as introduced by Has-
selmann (1976). The spatial AR(1)-process can be
described by a simple physical model, in which the
relation between two spatial locations is only due to
isotropic diffusion. The EOF modes of a spatial AR(1)-
process are characterized by a hierarchy of multi poles
with decreasing eigenvalues. In this simple model the
spatial variability is a continuous spectrum of spatial
patterns, where no spatial pattern is dominating over
the other patterns.
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Similar to time series analysis the formulation of this
stochastic null hypothesis for the spatial structure of
climate variability allows one to compare the EOF
modes and eigenvalues of an observed data set with the
EOF modes and eigenvalues of a fitted null hypothesis.
It also allows to define a representation alternative to
the EOF modes, the so called distinct EOFs (DEOFs
or ~Dobs). The leading DEOF is defined as the mode
that is most distinguished from the modes of the null
hypothesis. It represents the direction in the multi-
variate space, in which the observed data differs most
from the null hypothesis, which may be called the
‘‘finger print’’ of the observed data. It is a good starting
point for the understanding of underlying physical
processes. However, one should be careful in inter-
preting the DEOF as a coherent teleconnection pat-
tern. This will in many cases be a misleading
interpretation.

Note that in VARIMAX or other criteria for rota-
tion of the EOFs a simple equation, which reflects a
predefined symmetry in the system (e.g. simplicity for
VARIMAX), is maximized. The rotation analysis will
therefore find patterns that follow the assumed sym-
metry. The DEOFs introduced in the present study are
rotated by comparison with a stochastic null hypothe-
sis, which reflects a physical model. The structure of
the resulting DEOF-1 is therefore not predefined by
any mathematical symmetry. It is only assumed that it
is different from the null hypothesis. It can in some
cases point to a coherent teleconnection pattern, but it
may also be a reflection of physical processes, different

from isotropic diffusion, driving the variability of the
domain.

As an example the SST of the tropical Pacific was
analyzed, which is known to contain the ENSO tele-
connection pattern. The comparison with the fitted
isotropic diffusion process clearly supports the idea
that the El Niño pattern is the leading teleconnection.
The rotation towards the leading differences finds a
pattern similar to the EOF-1 but more focused in the
central Pacific. It is interesting to note that the EOF-1
mode explains 41% and about 34% in the fitted null
hypothesis. Thus about 4/5 of the variance of EOF-1
may be explained by the fitted isotropic diffusion
process. The leading rotated mode DEOF-1 explains
32% and about 10% in the fitted null hypothesis. If we
consider the diffusive part of the fitted null hypothesis
as noise, then the leading DEOF-1 has a much better
signal to noise ratio, which amounts to 3:1.

In the other example of the tropical Indian Ocean,
the SST seems to be much closer to the fitted isotropic
diffusion process.

Northern Hemisphere winter time SLP showed that
SLP variability is not well described by a pure isotropic
diffusion process. Essentially the entire large-scale
structure of Northern Hemisphere SLP deviates from
the modes of the fitted null hypothesis. This is some-
how not surprising since the large-scale SLP is driven
by the quasi-geostrophic equations in which the con-
servation of absolute vorticity and mass plays an
important role, forcing wave like structures (Navarra
1993; Metz 1994; Gerber and Vallis 2005). It is there-
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Fig. 7 As in Fig. 2 but for the tropical SLP (from 15"S–15"N to 0"E–360"E)
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fore inappropriate to assume that local box correla-
tions should reflect the leading teleconnections, be-
cause this already assumes that the main characteristics
of SLP is that of a diffusive process. A better strategy
appears to be a formulation of a stochastic null
hypothesis based not on the isotropic diffusion, but on
the quasi-geostrophic equations or simple linearized
models (Navarra 1993; Metz 1994; Gerber and Vallis
2005). Comparing the observed EOF modes against
the EOF modes of a stochastic quasi geostrophic
model will help to decide if the SLP variability has
teleconnections with strong links between the Pacific
and Atlantic region.

The SLP variability of the tropical regions is much
closer to the null hypothesis, which may reflect that
mass and vorticity conservation are less important in
the relatively narrow zonal band of the tropics.

In summary, one should compare the observed
spatial patterns to those expected from a simple
physical model to evaluate their significance. A good
starting point is the isotropic diffusion process, which is
the equivalent to the AR(1)-process used in time series
analysis.
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