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as observed and simulated, is linked to seasonally changing 
cloud feedbacks.

1 Introduction

The El Nino Southern Oscillation (ENSO) variability is the 
leading mode of interannual climate variability. It is marked 
by a pattern of sea surface temperature (SST) anomalies in 
the tropical Pacific with largest amplitudes in the central 
to eastern equatorial Pacific. The SST variability tends to 
be strongest in boreal winter and weakest in boreal spring. 
This seasonal phase-locking is an important characteristic 
of ENSO, as it indicates that the underlying dynamics con-
trolling the evolution of this mode are state dependent. It 
is also important for predicting the evolution of ENSO, as 
only models that can simulate the seasonal phase-locking 
and the associated ‘spring barrier’ correctly are able to sim-
ulate the growth and decay of SST anomalies adequately. 
The correct phase locking is also important for the correct 
simulation of the ENSO teleconnections, as many telecon-
nections display strong seasonal phase-locking too.

A realistic seasonal phase-locking of ENSO is still a sig-
nificant challenge for most state-of-the-art Coupled Gen-
eral Circulation Models (CGCMs) (e.g. Bellenger et al. 
2014; Rashid and Hirst 2016). Models from the Coupled 
Model Inter-comparison Project (CMIP) version 3 and 5 
have significant problems in simulating the right seasonal-
ity of ENSO in both, the seasonal phase and in its ampli-
tude. Rashid and Hirst (2016) found that the biases in the 
cloud simulations are key in controlling the ENSO phase-
locking biases in the ACCESS model simulations.

The dynamics that cause the seasonal phase-locking 
are yet not fully understood, although it has been stud-
ied in a number publications (e.g. Chang et al. 1995; 

Abstract ENSO variability has a seasonal phase-lock-
ing, with SST anomalies on average decreasing during the 
beginning of the year and SST anomalies increasing during 
the second half of the year. As a result of this, the ENSO 
SST variability is smallest in April and the so call ‘spring 
barrier’ exists in the predictability of ENSO. In this study 
we analysis how the seasonal phase-locking of surface 
short wave radiation associated with cloud cover feedbacks 
contribute to this phenomenon. We base our analysis on 
observations and simplified climate model simulations. At 
the beginning of the year, the warmer mean SST in the east-
ern equatorial Pacific leads to deeper clouds whose anoma-
lous variability are positively correlated with the underly-
ing SST anomalies. These observations highlight a strong 
negative surface short wave radiation feedback at the begin-
ning of the year in the eastern Pacific (NINO3 region). This 
supports the observed seasonal phase-locking of ENSO 
SST variability. This relation also exists in model simula-
tions of the linear recharge oscillator and in the slab ocean 
model coupled to a fully complex atmospheric GCM. The 
Slab ocean simulation has seasonal phase-locking similar 
to observed mostly caused by similar seasonal changing 
cloud feedbacks as observed. In the linear recharge oscil-
lator simulations seasonal phase-locking is also similar to 
observed, but is not just related to seasonal changing cloud 
feedbacks, but is also related to changes in the sensitivity 
of the zonal wind stress and to a lesser extent to season-
ally change sensitivities to the thermocline depth. In sum-
mary this study has shown that the seasonal phase-locking, 
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Tziperman et al. 1995; Jin et al. 1996; Harrison and Vec-
chi 1999; Neelin et al. 2000; Stein et al. 2010; Stuecker 
et al. 2013; McGregor et al. 2013; Ham et al. 2013; Lev-
ine and McPhaden 2015; or Zhu et al. 2015). Most of these 
studies discuss the ENSO phase-locking in the context of 
stochastic chaos theory, but do not address, which physi-
cal process of the seasonal cycle do cause the ENSO phase 
locking. Harrison and Vecchi (1999), Stuecker et al. (2013) 
and McGregor et al. (2012, 2013) argue that the southward 
wind shift or second mode of zonal wind stresses is causing 
the termination of ENSO in the spring season. Thus they 
argue that seasonally changing sensitivities in the zonal 
wind is leading to the ENSO phase-locking. Zhu et al. 
(2015) found that the thermocline-SST feedbacks may 
be one of the causes for ENSO spring persistence barrier. 
Stein et al. (2010) and Levine and McPhaden (2015) both 
analysed the seasonality in the growth rate of the recharge 
oscillator model and found that this is able to explain the 
spring barrier.

In general ENSO dynamics are a result of different pro-
cesses interacting (e.g. Bjerknes 1969; Jin 1997; Neelin 
et al. 1998; or Dommenget 2010). These include oceanic, 
atmospheric and coupled processes. The main interactions 
between the zonal wind stress, SST and the thermocline 
depth which create anomaly growth are often summarized 
as the Bjerknes feedbacks (1969). The simple Recharge 
Oscillator (ReOsc) model of Jin (1997) combines these 
growth mechanisms with mechanisms for the anomaly 
decay. This model has been further simplified by Burgers 
et al. (2005), which describes ENSO as a recharge and dis-
charge of heat content along the whole equatorial Pacific 
forced by zonal wind stress in the central equatorial Pacific 
and atmospheric heat fluxes over the NINO3 region (5°S to 
5°N/150°W to 90°W).

The ReOsc model coupled to a fully complex atmos-
phere model has been used to study ENSO dynamics by 
Frauen and Dommenget (2010) and by Yu et al. (2015). 
Both studies found that realistic seasonal ENSO phase-
locking exists in the ReOsc model simulations. In both 
model simulations the ocean dynamics are linearized 
with constant (seasonally not changing) model param-
eters. Thus, indicating that the seasonality of ENSO in 
these simulations results entirely from the atmospheric 
zonal wind stress and heat fluxes. Yu et al. (2015) also 
found SST variability with the same seasonal phase-
locking as the observed ENSO in a configuration of the 
model which included only a Slab Ocean with constant 
50 m depth (i.e., no upper ocean dynamics). In this simu-
lation seasonality of SST variability results entirely from 
atmospheric heat fluxes only. Thus these simplified mod-
els of tropical SST variability suggest that realistic ENSO 
seasonal phase-locking can result from atmospheric pro-
cesses only.

The ENSO dynamics have also been analysed in the 
context of cloud feedbacks (e.g. Barnett et al. 1991; Wal-
iser et al. 1994; Wang and McPhaden 2000; or Guilyardi 
et al. 2009). It is in general argued that surface short wave 
cloud feedbacks tend to dampen the ENSO variability. 
However, in some situations they can be positive feedbacks 
too (e.g. Dommenget et al. 2014). Dommenget et al. (2014) 
argue that the cloud feedbacks are SST state dependent, 
with warmer SSTs favouring negative cloud surface short 
wave feedbacks and colder SSTs favour more positive 
cloud feedbacks. The role that cloud feedbacks play in the 
context of the seasonal phase-locking have so far not been 
addressed.

The aim of this study here is to analyse the relationship 
between ENSO seasonal phase-locking and the season-
ally changing cloud cover feedbacks in observations and in 
simplified model simulations. We will illustrate that cloud 
cover feedbacks change seasonally in a way that supports 
the observed seasonal phase-locking of ENSO. We will 
also illustrate that in some simplified coupled model simu-
lations the seasonally changing cloud cover feedbacks are 
the main cause of the ENSO seasonal phase-locking.

The paper is organized as follows: The following sec-
tion describes datasets and the model simulations used 
in this study. In Sect. 3 we analyse the observed seasonal 
phase-locking and its relation to cloud cover feedbacks. In 
Sects. 4 and 5 we illustrate the seasonal phase-locking in 
the slab ocean and the ReOsc model simulations. The study 
is concluded with a summary and discussion.

2  Observations, models and methods

Observed SSTs are based on the HADISST dataset from 
1870 to 2011 (Rayner et al. 2003). Cloud cover observa-
tions from 1984 to 2002 are taken from the ISCCP dataset 
(Rossow and Schiffer 1999). The NCEP reanalysis (Kalnay 
et al. 1996) cloud cover or short wave surface radiation are 
not used in this study. Cloud cover observations are not 
assimilated into the NCEP reanalysis and the cloud cover 
variability in the ISCCP and NCEP dataset appear to be 
significantly different from each other. The ISCCP observa-
tions are therefore preferred.

In this study three different hybrid coupled GCM model 
simulations are studied that all use the same atmospheric 
GCM model, but differ only in the formulation of the sim-
plified ocean models. These are the same model simula-
tions studied in Yu et al. (2015). The main elements of the 
model simulations are presented below, but for details on 
the model development see Yu et al. (2015). The atmos-
pheric GCM in all three simulations is a low-resolution 
version (3.75° × 2.5°) of the Australian Community Cli-
mate and Earth System Simulator (ACCESS) model of 
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the UK Meteorological Office Unified Model AGCM with 
HadGEM2 physics (Davies et al. 2005; Martin et al. 2010, 
2011; Bi et al. 2013). In all three simulations the ocean is 
simulated with simplified models and SST climatologies 
are forced to be similar to the observed by either prescrib-
ing the mean SST or by flux corrections.

The first ocean model is a Slab Ocean model with con-
stant mixed layer depth of 50 m:

where γ is the heat capacity of the 50 m mixed layer and 
Fatmos is the net heat flux into the ocean. The flux correc-
tion, FQ, is a state-independent flux correction that forces 
the model to have the same mean SST climatology as 
observed. Both SST and Fatmos are functions of location, �x , 
and time, t, and FQ is a function of location and calendar 
day of the year, tj. Thus this SST tendency Eq. (1) models 
the SST at every grid point for each time step. We refer to 
this model as the Slab simulation.

The second ocean model utilises the slab ocean com-
ponent outside of the tropical Pacific (20°S–20°N, 
130°E–70°W), while within the tropical Pacific region 
SSTAs are calculated with the low order 2-dimensional 
recharge oscillator toy model similar to Frauen and Dom-
menget (2010) (the model is referred to as ReOsc). The 
ReOsc toy model from Burgers et al. (2005) is given by 
two coupled differential equations of SST anomalies in 
the NINO3 region, T, and the thermocline depth anomalies 
over the whole equatorial Pacific, h:

The two equations are forced by stochastic noise terms 
ζ1 and ζ2. The model parameters a11 and a22 represent the 
damping (or growth rate) of T and h, and the parameters a12 
and a21 the coupling between T and h. In the ReOsc simula-
tion Eqs. (1) and (2) are coupled to the atmosphere model 
leading to the equations:

where f is the averaged Fatmos anomaly in NINO3 region 
and τ is averaged zonal wind stress anomaly in the cen-
tral Pacific (6°S–6°N, 160°E–140°W). λ is a free cou-
pling parameter that is tuned in several iterations as done 
in Frauen and Dommenget (2010). a11O and a21O are the 

(1)γ
dSST(�x, t)

dt
= Fatmos(�x, t)+ FQ

(

�x, tj
)

(2)
dT(t)

dt
= a11T(t)+ a12h(t)+ ζ1

(3)
dh(t)

dt
= a21T(t)+ a22h(t)+ ζ2

(4)
dT(t)

dt
= a11OT(t)+ a12h(t)+ a12�τ(t)+

f (t)

γ

(5)
dh(t)

dt
= a21OT(t)+ a22h(t)+

�

2
a22τ(t)

residuals of the original parameters a11 and a21 that exclude 
the linear relation to τ and f with T from atmospheric feed-
backs with regression coefficients CτT and CfT, respectively. 
Thus a11O and a21O represent the oceanic feedbacks to the 
tendencies to T as function of T and h. The atmospheric 
feedbacks are included in f and τ, which also include the 
atmospheric stochastic forcings.

As the ReOsc model only represents temperatures in the 
NINO3 region, anomalies of tropical Pacific temperature 
were generated by multiplying the modelled NINO3 anom-
alies with the pattern of the recharge oscillator component, 
PReOsc(�x) (see Yu et al. 2015). The SST climatology of the 
Slab model, SSTc lim

(

�x, tj
)

, was added before coupling with 
the atmosphere:

The third ocean model (referred to as ReOsc-Slab) 
considers both Slab Ocean Eq. (1) and the ReOsc 
model Eqs. (4–6) in the tropical Pacific (20°S–20°N, 
130°E–70°W) leading to the SST equations:

Each of the three model simulations is 500 years 
long. The model parameters (γ , �, a11O, a21O, a12, a22,

CτT andCfT

)

 of all three simulations are constants without 
any seasonal cycle, see Table 1. Thus all seasonal changing 
characteristics in these three simulations must result from 
seasonal changes in the characteristics of Fatmos (in the Slab 
Ocean and ReOsc-Slab simulation) or from f and τ (in the 
ReOsc and ReOsc-Slab simulation).

The ReOsc model Eqs. (2) and (3) can also be used to 
estimate the model parameters from observed or simulated 
T and h statistics (Burgers et al. 2005; Jansen et al. 2009). 
The effective ReOsc parameters a11, a12, a21 and a22 are 
estimated for the model simulations statistics by multivari-
ate linear regression. The model parameters of Eqs. (4–7) 

(6)SST(�x, t) = SSTc lim
(

�x, tj
)

+ T(t) · PReOsc(�x)

(7)

γ
dSST(�x, t)

dt
= Fatmos(�x, t)+ FQ

(

�x, tj
)

+ PReOsc(�x) · [a11OT(t)

+ a12h(t)+ a12�τ(t)] · γ
−1

Table 1  Parameters of the ACCES model simulations Slab, ReOsc 
and ReOsc-Slab

γ = 2.02× 108
J

m2K

λ = 2100

a11O = −0.536 1
mon

a21O = −1.027 m

mon·K

a12 = 0.021 K

mon·m

a22 = −0.008 1
mon

CτT = 0.011 N

m2K

CfT = −11.223 W

m2K
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and the statistical sets of the parameter do not need to be 
the same and in general will not be the same due the inter-
action of different processes and due to the atmospheric 
forcings not simply being a linear function of the NINO3 
SST. The parameters of Eqs. (4–7) are by construction con-
stants without any seasonal cycle. The effective estimates 
of the ReOsc toy model parameters (Eqs. 2, 3) based on the 
regression on the T and h statistics from the ReOsc simu-
lation can be seasonally changing. The effective statistical 
ReOsc parameters a11, a12, a21 and a22 are estimated for 
each calendar month.

All analyses presented here are based on monthly mean 
data, with the anomalies defined for each data set or model 
simulation individually relative to the data or models mean 
seasonal climatology. Seasonal lag-lead correlations are 
based on monthly data, with comparing a particular calen-
dar month of the first variable (presented on the y-axis in 

the figures) with the lag/lead month of the second variable. 
The calendar month of the other variable is relative to the 
first variable (e.g. for calendar month 7 in the first vari-
able a lag of +3 refers to calendar month 4 in the second 
variable).

3  Observed seasonal phase‑locking

The observed SST standard deviation in the NINO3 region 
(150°W to 90°W/5°S to 5°N) is strongest in boreal winter 
(November–January) and weakest in boreal spring (March–
April), see Fig. 1. Thus SST anomalies tend to decrease in 
amplitude, in average, from December to April and in turn 
SST anomalies tend to grow in amplitude, in average, from 
April to December. These different average tendencies at 
different parts of the calendar year can be illustrated by the 
lag-lead correlation between the SST and its tendencies 
(derivative) as a function of calendar month, see Fig. 2. The 
average, over all months, lag-lead correlation between the 
SST and SST tendencies (black line in Fig. 2a) is asym-
metric around zero lag, with positive SST tendencies lead-
ing the SST evolution, zero cross correlation at zero lag and 
negative SST tendencies lagging the SST. This is illustrat-
ing that in average the SST tendencies build up the SST 
anomalies as much as they decrease them after the SST 
peak. However, focusing on individual calendar months, 
this lag-lead relation is not equally balanced around zero 
lag. In October (red line in Fig. 2a), for instance, the SST 
tendencies have a positive correlation at lag zero and for 
SST leading the SST tendencies. This illustrates that SST 
anomalies are in average still increasing in October. In turn, 
in February the SST tendencies are negative at lag zero 
and even when the SST tendencies are leading, indicating 
that SST anomalies are in average decreasing in February. 
The complete picture is shown in Fig. 2b. We can see that 
at the beginning of the year the SST tendencies are more 
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negative and in the later half of the year the SST tendencies 
are mostly positive.

The different tendencies at different seasons of the 
year indicate state dependent feedbacks and forcings. 
As discussed in the introduction, ENSO has a number 
of processes influencing the feedbacks and forcings and 
thus the SST tendencies. It is beyond the scope of this 
study to analyse all elements of the ENSO dynamics, but 
we shall focus here on the role of the cloud feedback. A 
starting point to understand the seasonal changes in the 
cloud feedbacks is the mean SST climatology along the 
equatorial Pacific (Fig. 3a). The beginning of the year 
marks the warmest season in the central to eastern equa-
torial Pacific SSTs. It is during this season that the SSTs 
are warm enough to allow deep convection and the asso-
ciated deeper and higher clouds. This is reflected in the 
mean cloud cover, which increases during the warm sea-
son (Fig. 3b). Most importantly the cloud feedback is 
increasing substantially, which is illustrated in Fig. 3c 

by the linear regression of the total cloud cover with the 
underlying SST. In particular over the NINO3 region we 
see a very clear change in the linear regression between 
cloud cover and SST, see Fig. 4a. At the beginning of 
the year we have strong regression with more than 10 % 
total cloud cover change per degree SST anomaly along 
the equator. In the later half of the year, however, total 
cloud cover is almost independent of the SST anomalies 
for most of the eastern equatorial Pacific. This is consist-
ent with the state dependent cloud feedbacks discussed in 
Dommenget et al. (2014).

This seasonality suggests a stronger negative surface 
short wave cloud feedback in the beginning of the year: 
positive SST anomalies are counteracted by stronger nega-
tive surface short wave flux anomalies. We can roughly 
estimate the strength of a linear cloud feedback in the 
NINO3 region SSTAs with the strength of the linear regres-
sion coefficient between cloud cover and SST in the 
NINO3 region, rsst, (Fig. 4a) and by assuming a short wave 
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cloud albedo of about αcloud = 0.5. The linear damping by 
SST can then be written as:

with Sor(tj) as the incoming solar radiation (constant 
420 W/m2). Fcloud is shown in Fig. 4b. The strength of the 
surface short wave cloud feedback in the NINO3 region is 
changing from about −30 W

m2K
 in March to about −2 W

m2K
 in 

November (Fig. 4b). The values are on average similar to 
the short wave surface radiation feedbacks values found in 
Bellenger et al. (2014). We can illustrate that such a season-
ally changing cloud surface short wave feedback can lead 
to seasonally phase-locking of SST with similar timing to 
that observed. For this we consider the simple toy model:

Here the heat capacity, γ, is assumed be that of a 20 m 
mixed layer, which is about the average mixed layer depth 
in the NINO3 region Lorbacher et al. (2006). The linear 
damping independent of the cloud cover, c = −7.4 W/
m2, which results into a net average linear damping of 

(8)Fcloud = −rsst
(

tj
)

· αcloud · Sor
(

tj
)

· T

(9)γ
dT

dt
= −c · T + Fcloud + Fnoise

about −17 W/m2. This value is similar to that estimate for 
observations in Bellenger et al. (2014). The SST standard 
deviation of the model in Eq. (9) integrated with a time 
step on 1 day over 104 years and noise forcing of 100 W/
m2 is shown in Fig. 4c. Qualitatively the seasonal phase-
locking of the SST in the simple toy model is similar to 
that observed, with minimum SST variability in April and 
increasing SST variability to later half of the year by about 
50 %.

4  Slab ocean seasonal phase locking

We now take a look at the seasonal phase-looking in the 
Slab Ocean coupled simulation. In Fig. 1 we can see that 
the seasonal phase-looking of SST variability is qualita-
tively similar to that observed, but the overall variability is 
weaker than observed. The cross-correlation between SST 
and the SST tendencies over the different calendar months 
is also very similar to the observed, with negative tenden-
cies dominating at the beginning of the year and positive 
tendencies dominating in the middle and the later half of 
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the year (Fig. 5a). In the Slab Ocean model the SST ten-
dencies are directly proportional to the net atmospheric 
heat fluxes, Fatmos. Thus the same cross-correlation is found 
between Fatmos and SST, see Fig. 5d. This is different in the 
other two simulations (ReOsc and ReOsc-Slab), in which 
SST tendencies are not solely forced by Fatmos and subse-
quently the cross-correlation between Fatmos and SST is not 
the same as the cross-correlation between SST tendencies 
and SST.

In the coupled Slab Ocean simulation the SST tenden-
cies are the sum of the four components of Fatmos: short 
wave (FSW), long wave (FLW), sensible (Fsense) and latent 

(Flatent). The cross-correlation of these four components 
with the SST is shown in Fig. 6. This illustrates that the 
FSW is the primary cause of the simulated seasonal phase-
locking, as it closely matches the cross-correlation between 
SST-tendencies and SST (Fig. 5a). FLW, is mostly coun-
ter acting FSW, as expected since both are related to cloud 
cover changes, but with mostly opposite heating effects. 
Flatent is dominated by negative cross-correlation with 
SST, indicating that it is mostly damping the SST vari-
ability through out the whole year with an exception 
around March to June, where positive Flatent anomalies 
lead the SST anomalies indicating it causes growth of SST 
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Fig. 6  Seasonal cross-correlation between SST and the heat flux 
components, SW (first column), LW (second column), sensible heat 
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row), ReOsc (second row) and the ReOsc-Slab simulation (last row). 
Positive lags indicate the SST leading the heat flux evolution



3668 D. Dommenget, Y. Yu

1 3

variability in this part of the year. Fsense is also similar FSW 
and to the observed seasonal phase-locking, indicating it 
also supports the observed seasonal phase-locking of SST 
anomalies. However, the amplitudes of Fsense anomalies are 
fairly small (not shown) and it is thus not important for the 
SST tendencies overall. In summary, we find that the sea-
sonal phase-locking in the Slab Ocean is essentially caused 
by the seasonal changing FSW forcings and thus it is caused 
by seasonal changes in the cloud cover feedbacks.

The seasonally changing short wave feedback along the 
equatorial Pacific in the Slab Ocean simulation is illustrated 
in Fig. 7a. In the first half of the year negative correlation of 
total cloud covers with SST dominates in the eastern Pacific, 
which represents a negative cloud surface short wave radia-
tion feedback for the SST and is consistent with the picture 
discussed above (Fig. 6a). In the later half of the year the sign 
of the cross-correlation changes towards positive correlation, 
which indicates a more positive cloud short wave radiation 
feedback for the SST. This picture is roughly consistent with 
the observed seasonal changes in the cloud cover feedbacks 
(Fig. 3c). However, in the model simulation the positive cor-
relation between short wave and SST in the eastern equato-
rial Pacific would correspond to a negative cloud cover versus 
SST regression, which in observations is not as strong (in the 
far east; Fig. 3) or is actually still weakly positive (in parts of 
the eastern Pacific; Fig. 3). It is also consistent with the picture 
that during warmer SSTs (see Fig. 3a) the cloud cover is in a 
deep convection regime and in that it leads to negative cloud 
surface short wave radiation feedbacks, thus representing a 
state-dependent cloud feedback (Dommenget et al. 2014).

5  Recharge oscillator seasonal phase locking

The seasonal phase-locking of the SST in the ReOsc model 
is also similar to observed and similar to that in the Slab 

Ocean model (Figs. 1, 5b). However, the dynamics causing 
this similarity to the observed phase-locking are different 
from that in the Slab Ocean simulation, despite both uti-
lising the same atmospheric model. The difference results 
from the different underlying SST equations of the ReOsc 
simulation compared to the Slab Ocean model (see model 
Sect. 2). In the ReOsc model the SST tendencies (Eq. 4) are 
forced by four different terms related to temperature, wind 
stress, thermocline depth and net heat flux. The relative 
seasonal damping (or growth rate) effect of the different 
terms in Eq. (4) can be illustrated by the linear regression 
of the net heat flux, wind stress and thermocline depth onto 
the NINO3 SST anomalies, see Fig. 8. Here each regres-
sion is scaled by its contribution to Eq. (4) for better rela-
tive comparison.

The net heat flux is damping through out the whole year, 
but the damping is strongest in boreal spring and weak-
est in the later half of the year. This is similar to the Slab 
model simulation and is consistent with the lag zero cross-
correlation between net heat and SST shown in Fig. 5e. 
Again we find that the short wave is damping at the begin-
ning of the year and amplifying in the later half of the year 
(Fig. 6e). The correlation between short wave radiation and 
SST along the equator is also similar to that in the Slab 
Ocean simulation (Fig. 7b).

The wind stress has a net growing tendency for the SST 
throughout the year, but it is weakest at the beginning of 
the year and strongest in the middle of the year. This also 
supports the seasonal phase-locking of the SST evolution. 
The thermocline depth has damping tendencies for the SST 
at the beginning and end of the year and growing tenden-
cies in the middle of the year. This also supports the right 
seasonal phase-locking of the SST evolution, although shift 
to slightly earlier in the year and even starting at the end 
of the calendar year. In the classical picture of ENSO it is 
the thermocline depth that drives the SST evolution and the 
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atmospheric heat flux is damping. This picture is also valid 
in the ReOsc simulation, where the net heat flux is mostly 
damping the SST evolution. The thermocline depth has the 
out of phase seasonal cross-correlation with SST that is 
consistent with a driving force (Fig. 9). Thus in the ReOsc 
simulation the thermocline depth is mostly the driving 
force of the SST evolution and the net heat flux is mostly 
a damping.

The relative importance of the three different forcing 
terms in causing the seasonal phase-locking can be evalu-
ated by the amplitude of the seasonal changes in Fig. 8 as 
each of the terms shown in Fig. 8 was scaled by the param-
eters in the equivalent terms of Eq. (4). The wind stress 
and the net heat flux have similarly large contributions to 
the seasonality, whereas the thermocline depth contributes 
slightly less. Thus the seasonality in the ReOsc model is 
a combination of the seasonally changing sensitivities to 
wind stress, net heat flux (mostly due to the short wave) 
and the thermocline depth.

The seasonality in the dynamics of the ReOsc simulation 
can also be well captured in the seasonality of the effective 
ReOsc model parameters (Fig. 10a; see methods section for 
details) following the approach of Burgers et al. (2005) and 
Frauen and Dommenget (2010). The seasonality of all four 
effective ReOsc parameters and of the two forcing terms 
estimated over the 500 years of the ReOsc simulations 
are shown in Fig. 10a. We can note that the only signifi-
cant seasonality exist in the damping of the SST. All other 
parameters, including the noise forcing terms, have very lit-
tle seasonality. The effective seasonality in a11 is consistent 
with the combined effect of the three forcing terms shown 
in Fig. 8 and the remaining SST damping term with a11O in 
Eq. (4).

We can integrate the ReOsc toy model Eqs. (2) and (3) 
with the effective seasonal parameters as shown in Fig. 10a 
and with random white noise forcing terms to illustrate 
how the seasonality of the SST would be according to the 
effective seasonal parameters. The seasonal phase locking 
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of the seasonal ReOsc toy model is essentially the same 
as the ReOsc simulation (Fig. 10b). If we integrate the toy 
model again with all effective seasonal parameters, but 
with the annual mean value of the effective a11 parameter 
(blue line in Fig. 10b), then the SST seasonal phase lock-
ing is essentially not present. In turn if we integrate the toy 
model again with the annual mean values of all the effec-
tive parameters and only the effective seasonal a11 param-
eter (red line in Fig. 10b), then the SST seasonal phase 
locking is essentially the same as in the complete seasonal 
toy model. Thus the damping or growth rate of the ReOsc 
model (a11) is the main parameter causing the seasonality 
in the ReOsc simulation. Similar results were also found 
by Stein et al. (2010) and Levine and McPhaden (2015) by 
analysing the recharge oscillator fitted to observed data.

The ReOsc-Slab simulation combines the ReOsc and 
Slab model equations, and the resulting SST variability is a 
non-linear interaction between the two model equations as 

discussed in Yu et al. (2015). The SST variability is larger 
than in the Slab and ReOsc simulation indicating that the 
interaction between the two is enhancing the SST variabil-
ity (Fig. 1). It is also large than would be expected from 
a linear superposition of two independent sources of SST 
variability as discussed in Yu et al. (2015).

It is very similar to the ReOsc simulation in all seasonal 
phase-locking characteristics discussed above. A noticeable 
difference is that the seasonal phase-locking is shifted by 
about a month or two. This is related to the shift in the sea-
sonal growth rate and damping in the wind stress and ther-
mocline forcing (Fig. 8b, c). The surface short wave cloud 
feedbacks are qualitatively the same as in the ReOsc and 
Slab ocean only simulations. In summary, the ReOsc-Slab 
simulations suggest that the combine SST variability of 
ReOsc and Slab ocean dynamics are essentially similar to 
the ReOsc simulation, but the non-linear interactions com-
plicate the dynamics slightly.

Fig. 10  a The effective sea-
sonal recharge oscillator param-
eters (Eqs. 1, 2) estimate from 
the ReOsc simulation. b Sea-
sonally resolved NINO3 SST 
standard deviation of a Monte 
Carlo integration of the recharge 
oscillator model (Eqs. 1, 2) with 
different combinations of the 
effective seasonal parameters in 
(a). See text for details
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6  Summary and discussion

In this study we examined the role of surface short wave 
cloud feedbacks in the seasonal phase-locking of ENSO. 
We analysed observed total cloud cover and three different 
hybrid coupled GCM model simulations with simplified 
ocean models. The simplified ocean models included a slab 
ocean model, a recharge oscillator model and a model that 
combines the slab and recharge oscillator equations. The 
simplified models have the advantage that the interactions 
causing the ENSO SST variability are strongly simplified 
and in the case of the slab ocean model simulation are just 
a result of surface heat flux forcings.

The observed relationship between total cloud cover and 
SST along the equatorial Pacific has a pronounce seasonal 
cycle, with a strong positive correlation between SST and 
total cloud cover in the eastern part of the equatorial Pacific 
at the first half of the year and nearly no or a negative cor-
relation in the later half of the year. The strong positive cor-
relation between SST and total cloud cover falls into the 
warm season of the eastern equatorial Pacific, which is 
also marked by more total cloud cover and by a deep cloud 
cover regime in contrast to the cold seasons in which shal-
lower clouds are dominant. This is consistent with the SST 
state-dependent cloud feedbacks described in Dommenget 
et al. (2014).

A simple estimate of the surface short wave effect of 
the seasonal correlation between total cloud cover and SST 
suggests that the damping by surface short wave will be 
strongest in March and weakest in the second half of the 
year. An integration of a simple mixed layer heat budget 
equation suggests that such a seasonal changing short 
wave feedback could lead to seasonal phase-locking that 
is qualitatively similar to that observed. However, it should 
be noted that here we only considered the effect of cloud 
surface short wave feedbacks, neglecting the effect of 
total cloud cover on surface long wave feedbacks and how 
clouds may affect the radiation budget within the higher 
levels of the atmosphere. The surface long wave radiation 
will in general have compensating effects. It is beyond the 
scope of this study to discuss all elements of seasonal feed-
backs or other cloud related feedbacks. This needs to be 
addressed in future studies.

The Slab ocean simulations showed a seasonal phase-
locking in NINO3 SST variability that is qualitatively 
similar to observed, albeit with a reduced amplitude. This 
as such is interesting as this model is entirely driven by 
atmospheric heat fluxes only. The analysis of the heat flux 
components in the Slab simulation revealed that the surface 
short wave heat fluxes are the dominant contributor of this 
modelled seasonal phase-locking. This in turn indicates 
that the total cloud cover short wave feedbacks in the Slab 

simulation are the main driver of the seasonal phase-lock-
ing. The Slab, ReOsc and ReOsc-Slab simulations all have 
seasonally changing correlation between SST and surface 
short wave along the equatorial eastern Pacific that are sup-
porting the observed seasonal phase-locking of ENSO.

In the ReOsc and the ReOsc-Slab simulations the sea-
sonal phase-locking is more complicated than in the Slab 
simulations and is not only caused by seasonally changing 
surface short wave cloud feedbacks. In the ReOsc simula-
tion the essential seasonality is in the damping or growth 
rate (a11 parameter) of the recharge oscillator model 
(Eq. 2), as it was also found by Stein et al. (2010) and Lev-
ine and McPhaden (2015). This seasonally changing damp-
ing or growth rate results from three factors, (1) the sea-
sonally changing net heat flux damping (mostly the short 
wave), (2) the zonal wind stress sensitivity, and (3) slightly 
less from the thermocline depth forcing.

In the real observed ENSO the interactions leading to the 
seasonal phase-locking are likely to be more complicated 
than found in the simplified models used here, as more 
processes are involved in the ENSO dynamics that are not 
considered here. A good example for this is the mechanism 
described by Harrison and Vecchi (1999) and McGregor 
et al. (2013). They found that the discharging of equatorial 
warm water volume (changes in zonal mean thermocline 
depth) related to meridional shift of zonal wind is causing 
the spring termination of ENSO events. This mechanism is 
not explicitly simulated in the simplified simulations dis-
cussed here. Thus it seems that a number of processes in 
the ocean and atmosphere are contributing to the seasonal 
phase-locking of ENSO, but this study emphasizes the 
potentially prominent role of cloud feedbacks which had 
not been considered previously.

The importance of seasonally changing cloud feedbacks 
in controlling the ENSO seasonal phase-locking may have 
some important implication for CGCM simulations. Cur-
rent state of the art CGCM in the CMIP5 database have 
substantial problems in simulating the observed cloud 
feedbacks (e.g. Bellenger et al. 2014; or Dommenget et al. 
2014). They also have still significant problems in simu-
lating the right seasonal phase-locking of ENSO, which 
at least in the ACCESS model appear to be related to the 
simulations of the clouds (Rashid and Hirst 2016). Much of 
these cloud and seasonal phase-locking problems are likely 
be related to biases in the SST cold tongue. Improving the 
representation of cloud feedbacks in the tropical Pacific 
will most likely lead to a substantial improvement in the 
seasonal phase-locking of ENSO.

Acknowledgments We like to thank Shayne McGregor, Harun 
Rashid, Axel Timmerman and the ENSO workshops in Sydney and 
Paris 2015 for fruitful discussions and comments. This study was sup-
ported by the ARC project “Beyond the linear dynamics of the El Nino 



3672 D. Dommenget, Y. Yu

1 3

Southern Oscillation” (DP120101442) and the ARC Centre of Excel-
lence for Climate System Science (CE110001028). The experiments 
were performed on the NCI National Facility in Canberra, Australia, 
which is supported by the Australian Commonwealth Government.

References

Barnett TP, Latif M, Kirk E, Roeckner E (1991) On enso physics. J 
Clim 4:487–515

Bellenger H, Guilyardi E, Leloup J, Lengaigne M, Vialard J (2014) 
ENSO representation in climate models: from CMIP3 to CMIP5. 
Clim Dyn 42:1999–2018

Bi DH, Dix M, Marsland SJ, O’Farrell S, Rashid HA, Uotila P, Hirst 
AC, Kowalczyk E, Golebiewski M, Sullivan A, Yan HL, Han-
nah N, Franklin C, Sun ZA, Vohralik P, Watterson I, Zhou XB, 
Fiedler R, Collier M, Ma YM, Noonan J, Stevens L, Uhe P, Zhu 
HY, Griffies SM, Hill R, Harris C, Puri K (2013) The ACCESS 
coupled model: description, control climate and evaluation. Aust 
Meteorol Oceanogr J 63:41–64

Bjerknes J (1969) Atmospheric teleconnections from the equatorial 
Pacific. Mon Weather Rev 97:163–172

Burgers G, Jin FF, van Oldenborgh GJ (2005) The simplest ENSO 
recharge oscillator. Geophys Res Lett 32:L13706

Chang P, Ji L, Wang B, Li T (1995) Interactions between the seasonal 
cycle and El-Nino southern-oscillation in an intermediate cou-
pled ocean–atmosphere model. J Atmos Sci 52:2353–2372

Davies T, Cullen MJP, Malcolm AJ, Mawson MH, Staniforth A, 
White AA, Wood N (2005) A new dynamical core for the met 
office’s global and regional modelling of the atmosphere. Q J R 
Meteorol Soc 131:1759–1782

Dommenget D (2010) The slab ocean El Nino. Geophy Res Lett 
37:L20701

Dommenget D, Haase S, Bayr T, Frauen C (2014) Analysis of the slab 
ocean El Nino atmospheric feedbacks in observed and simulated 
ENSO dynamics. Clim Dyn 42:3187–3205

Frauen C, Dommenget D (2010) El Nino and La Nina amplitude 
asymmetry caused by atmospheric feedbacks. Geophys Res Lett 
37:L18801

Guilyardi E, Braconnot P, Jin FF, Kim ST, Kolasinski M, Li T, Musat 
I (2009) Atmosphere feedbacks during ENSO in a coupled 
GCM with a modified atmospheric convection scheme. J Clim 
22:5698–5718

Ham YG, Kug JS, Kim D, Kim YH, Kim DH (2013) What controls 
phase-locking of ENSO to boreal winter in coupled GCMs? 
Clim Dyn 40:1551–1568

Harrison DE, Vecchi GA (1999) On the termination of El Nino. Geo-
phys Res Lett 26:1593–1596

Jansen MF, Dommenget D, Keenlyside N (2009) Tropical atmos-
phere–ocean interactions in a conceptual framework. J Clim 
22:550–567

Jin FF (1997) An equatorial ocean recharge paradigm for ENSO.1. 
conceptual model. J Atmos Sci 54:811–829

Jin FF, Neelin JD, Ghil M (1996) El Nino Southern Oscillation and 
the annual cycle: subharmonic frequency-locking and aperiodic-
ity. Phys D 98:442–465

Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin 
L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, 
Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, 
Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The 
NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 
77:437–471

Levine AFZ, McPhaden MJ (2015) The annual cycle in ENSO growth 
rate as a cause of the spring predictability barrier. Geophys Res 
Lett 42:5034–5041

Lorbacher K, Dommenget D, Niiler PP, Kohl A (2006) Ocean mixed 
layer depth: a subsurface proxy of ocean–atmosphere variability. 
J Geophys Res Oceans 111:C07010

Martin GM, Milton SF, Senior CA, Brooks ME, Ineson S, Reichler 
T, Kim J (2010) Analysis and reduction of systematic errors 
through a seamless approach to modeling weather and climate. 
J Clim 23:5933–5957

Martin GM, Bellouin N, Collins WJ, Culverwell ID, Halloran PR, 
Hardiman SC, Hinton TJ, Jones CD, McDonald RE, McLaren AJ, 
O’Connor FM, Roberts MJ, Rodriguez JM, Woodward S, Best 
MJ, Brooks ME, Brown AR, Butchart N, Dearden C, Derbyshire 
SH, Dharssi I, Doutriaux-Boucher M, Edwards JM, Falloon PD, 
Gedney N, Gray LJ, Hewitt HT, Hobson M, Huddleston MR, 
Hughes J, Ineson S, Ingram WJ, James PM, Johns TC, Johnson 
CE, Jones A, Jones CP, Joshi MM, Keen AB, Liddicoat S, Lock 
AP, Maidens AV, Manners JC, Milton SF, Rae JGL, Ridley JK, 
Sellar A, Senior CA, Totterdell IJ, Verhoef A, Vidale PL, Wiltshire 
A, Team HD (2011) The HadGEM2 family of met office unified 
model climate configurations. Geosci Model Dev 4:723–757

McGregor S, Timmermann A, Schneider N, Stuecker MF, England 
MH (2012) The effect of the South Pacific Convergence Zone on 
the termination of El Nino events and the meridional asymmetry 
of ENSO. J Clim 25:5566–5586

McGregor S, Ramesh N, Spence P, England MH, McPhaden MJ, San-
toso A (2013) Meridional movement of wind anomalies during 
ENSO events and their role in event termination. Geophys Res 
Lett 40:749–754

Neelin JD, Battisti DS, Hirst AC, Jin FF, Wakata Y, Yamagata 
T, Zebiak SE (1998) ENSO theory. J Geophys Res Oceans 
103:14261–14290

Neelin JD, Jin FF, Syu HH (2000) Variations in ENSO phase locking. 
J Clim 13:2570–2590

Rashid HA, Hirst AC (2016) Investigating the mechanisms of sea-
sonal ENSO phase locking bias in the ACCESS coupled model. 
Clim Dyn 46(3):1075–1090

Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Row-
ell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface 
temperature, sea ice, and night marine air temperature since the 
late nineteenth century. J Geophys Res Atmos 108(D14):4407. 
doi:10.1029/2002JD002670

Rossow WB, Schiffer RA (1999) Advances in understanding clouds 
from ISCCP. Bull Am Meteorol Soc 80:2261–2287

Stein K, Schneider N, Timmermann A, Jin FF (2010) Seasonal syn-
chronization of ENSO events in a linear stochastic model. J Clim 
23:5629–5643

Stuecker MF, Timmermann A, Jin FF, McGregor S, Ren HL (2013) A 
combination mode of the annual cycle and the El Nino/Southern 
Oscillation. Nat Geosci 6:540–544

Tziperman E, Cane MA, Zebiak SE (1995) Irregularity and locking 
to the seasonal cycle in an ENSO prediction model as explained 
by the quasi-periodicity route to chaos. J Atmos Sci 52:293–306

Waliser DE, Blanke B, Neelin JD, Gautier C (1994) Shortwave Feed-
backs and El-Nino-Southern-Oscillation-forced ocean and cou-
pled ocean–atmosphere experiments. J Geophys Res Oceans 
99:25109–25125

Wang WM, McPhaden MJ (2000) The surface-layer heat balance in 
the equatorial Pacific Ocean. Part II: interannual variability. J 
Phys Oceanogr 30:2989–3008

Yu Y, Dommenget D, Frauen C, Wang G, Wales S (2015) ENSO 
dynamics and diversity resulting from the recharge oscilla-
tor interacting with the slab ocean. Clim Dyn. doi:10.1007/
s00382-015-2667-1

Zhu J, Kumar A, Huang B (2015) The relationship between ther-
mocline depth and SST anomalies in the eastern equatorial 
Pacific: seasonality and decadal variations. Geophys Res Lett 
42(11):4507–4515

http://dx.doi.org/10.1029/2002JD002670
http://dx.doi.org/10.1007/s00382-015-2667-1
http://dx.doi.org/10.1007/s00382-015-2667-1

	The seasonally changing cloud feedbacks contribution to the ENSO seasonal phase-locking
	Abstract 
	1 Introduction
	2 Observations, models and methods
	3 Observed seasonal phase-locking
	4 Slab ocean seasonal phase locking
	5 Recharge oscillator seasonal phase locking
	6 Summary and discussion
	Acknowledgments 
	References




