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Abstract. A three-dimensional (straight-line grid) drawing of a graph
represents the vertices by points in Z

3 and the edges by non-crossing
line segments. This research is motivated by the following open problem
due to Felsner, Liotta, and Wismath [Graph Drawing ’01, Lecture Notes
in Comput. Sci., 2002]: does every n-vertex planar graph have a three-
dimensional drawing with O(n) volume? We prove that this question is
almost equivalent to an existing one-dimensional graph layout problem.
A queue layout consists of a linear order σ of the vertices of a graph,
and a partition of the edges into queues, such that no two edges in
the same queue are nested with respect to σ. The minimum number of
queues in a queue layout of a graph is its queue-number. Let G be an
n-vertex member of a proper minor-closed family of graphs (such as a
planar graph). We prove that G has a O(1) × O(1) × O(n) drawing if
and only if G has O(1) queue-number. Thus the above question is almost
equivalent to an open problem of Heath, Leighton, and Rosenberg [SIAM
J. Discrete Math., 1992], who ask whether every planar graph has O(1)
queue-number? We also present partial solutions to an open problem
of Ganley and Heath [Discrete Appl. Math., 2001], who ask whether
graphs of bounded tree-width have bounded queue-number? We prove
that graphs with bounded path-width, or both bounded tree-width and
bounded maximum degree, have bounded queue-number. As a corollary
we obtain three-dimensional drawings with optimal O(n) volume, for
series-parallel graphs, and graphs with both bounded tree-width and
bounded maximum degree.

1 Introduction

A celebrated result independently due to de Fraysseix, Pach, and Pollack [6] and
Schnyder [27] states that every n-vertex planar graph has a (two-dimensional)
straight-line grid drawing with O(n2) area. Motivated by applications in informa-
tion visualisation, VLSI circuit design and software engineering, there is a grow-
ing body of research in three-dimensional graph drawing (see [12] for example).
One might expect that in three dimensions, planar graphs would admit straight-
line grid drawings with o(n2) volume. However, this question has remained an
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elusive open problem. The main contribution of this paper is to prove that this
question of three-dimensional graph drawing is almost equivalent to an existing
one-dimensional graph layout problem regarding queue layouts. Furthermore, we
establish new relationships between queue-number, tree-width and path-width;
and obtain O(n) volume three-dimensional drawings of series-parallel graphs,
and graphs with both bounded tree-width and bounded degree.

1.1 Definitions and Notation

Throughout this paper, all graphs G are undirected, simple, connected, and finite
with vertex set V (G) and edge set E(G). The number of vertices and maximum
degree of G are respectively denoted by n = |V (G)| and ∆(G). For all disjoint
subsets A, B ⊆ V (G), the bipartite subgraph of G with vertex set A ∪ B and
edge set {vw ∈ E(G) : v ∈ A, w ∈ B} is denoted by G[A, B].

A tree-decomposition of a graph G consists of a tree T and a collection {Tx :
x ∈ V (T )} of subsets Tx (called bags) of V (G) indexed by the nodes of T such
that:

–
⋃

x∈V (T )

Tx = V (G),

– ∀ edges vw ∈ E(G), ∃ node x ∈ V (T ) such that {v, w} ⊆ Tx, and
– ∀ nodes x, y, z ∈ V (T ), if y is on the xz-path in T , then Tx ∩ Tz ⊆ Ty.

The width of a tree-decomposition is one less than the maximum size of a bag.
A path-decomposition is a tree-decomposition where the tree T is a path. The
path-width (respectively, tree-width) of a graph G, denoted by pw(G) (tw(G)), is
the minimum width of a path- (tree-) decomposition of G.

1.2 Three-Dimensional Straight-Line Grid Drawing

A three-dimensional straight-line grid drawing of a graph, henceforth called a
three-dimensional drawing, represents the vertices by distinct points in Z

3, and
represents each edge as a line-segment between its end-vertices, such that edges
only intersect at common end-vertices. In contrast to the case in the plane, it is
well known that every graph has a three-dimensional drawing. We therefore are
interested in optimising certain measures of the aesthetic quality of a drawing. If
a three-dimensional drawing is contained in an axis-aligned box with side lengths
X − 1, Y − 1 and Z − 1, then we speak of an X × Y × Z drawing with volume
X · Y · Z. We study three-dimensional drawings with small volume.

Cohen, Eades, Lin, and Ruskey [5] proved that every graph has a three-
dimensional drawing with O(n3) volume, and this bound is asymptotically tight
for the complete graph Kn. Calamoneri and Sterbini [4] proved that every 4-
colourable graph has a three-dimensional drawing with O(n2) volume. Generalis-
ing this result, Pach, Thiele, and Tóth [23] proved that every k-colourable graph,
for fixed k ≥ 2, has a three-dimensional drawing with O(n2) volume, and that
this bound is asymptotically optimal for the complete bipartite graph with equal
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sized bipartitions. The first linear volume bound was established by Felsner, Wis-
math, and Liotta [14], who proved that every outerplanar graph has a drawing
with O(n) volume. Poranen [25] proved that series-parallel digraphs have up-
ward three-dimensional drawings with O(n3) volume, and that this bound can
be improved to O(n2) and O(n) in certain special cases. di Giacomo, Liotta, and
Wismath [7] proved that series-parallel graphs with maximum degree three have
three-dimensional drawings with O(n) volume. Dujmović, Morin, and Wood [12]
proved that every graph G has a three-dimensional drawing with O(n · pw(G)2)
volume. This implies O(n log2 n) volume drawings for graphs of bounded tree-
width, such as series-parallel graphs.

Since a planar graph G is 4-colourable and has pw(G) ∈ O(
√

n), by the above
results of Calamoneri and Sterbini [4], Pach et al. [23], and Dujmović et al. [12],
every planar graph has a three-dimensional drawing with O(n2) volume. This
result also follows from the classical algorithms of de Fraysseix et al. [6] and
Schnyder [27] for producing plane grid drawings. This paper is motivated by the
following open problem due to Felsner et al. [14].

Open Problem 1 ([14]). Does every planar graph have a three-dimensional
drawing with O(n) volume? In fact, any o(n2) bound would be of interest.

In this paper we prove that Open Problem 1 is almost equivalent to an
existing open problem in the theory of queue layouts.

1.3 Queue Layouts

For a graph G, a linear order of V (G) is called a vertex-ordering of G. A queue
layout of G consists of a vertex-ordering σ of G, and a partition of E(G) into
queues, such that no two edges in the same queue are nested with respect to σ.
That is, there are no edges vw and xy in a single queue with v <σ x <σ y <σ w.
The minimum number of queues in a queue layout of G is called the queue-
number of G, and is denoted by qn(G). A similar concept is that of a stack
layout (or book embedding), which consists of a vertex-ordering of G, and a
partition of E(G) into stacks (or pages) such that there are no edges vw and
xy in a single stack with v <σ x <σ w <σ y. The minimum number of stacks
in a stack layout of G is called the stack-number (or page-number) of G, and is
denoted by sn(G).

Motivated by applications in VLSI layout, fault-tolerant processing, parallel
processing, matrix computations, and sorting networks, queue layouts have been
extensively studied [19, 20, 24, 26, 29]. Heath and Rosenberg [20] characterised
graphs admitting 1-queue layouts as the ‘arched leveled planar’ graphs, and
proved that it is NP-complete to recognise such graphs. This result is in contrast
to the situation for stack layouts — the graphs admitting 1-stack layouts are
precisely the outerplanar graphs, which can be recognised in polynomial time. On
the other hand, it is NP-hard to minimise the number of stacks in a stack layout
which respects a given vertex-ordering [17]. However the analogous problem for
queue layouts can be solved as follows. As illustrated in Fig. 1, a k-rainbow
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Fig. 1. A rainbow of five edges in a vertex-ordering.

in a vertex-ordering σ consists of a matching {viwi : 1 ≤ i ≤ k} such that
v1 <σ v2 <σ · · · <σ vk <σ wk <σ wk−1 <σ · · · <σ w1.

A vertex-ordering containing a k-rainbow needs at least k queues. A straight-
forward application of Dilworth’s Theorem [9] proves the converse. That is, a
fixed vertex-ordering admits a k-queue layout where k is the size of the largest
rainbow. (Heath and Rosenberg [20] describe an O(m log log n) time algorithm
to compute the queue assignment.) Thus determining qn(G) can be viewed as
the following vertex layout problem.

Lemma 1 ([20]). The queue-number qn(G) of a graph G is the minimum, taken
over all vertex-orderings σ of G, of the maximum size of a rainbow in σ.

The relationship between tree-width and stack and queue layouts has previ-
ously been studied in [16, 26]. Rengarajan and Veni Madhavan [26] prove that a
graph of tree-width at most two (that is, a graph with series-parallel biconnected
components [2]) has a 2-stack layout and a 3-queue layout. In the special case
of an outerplanar graph a 2-queue layout is constructed. More generally, Ganley
and Heath [16] prove that the stack-number sn(G) ≤ tw(G)+1, and ask whether
a similar relationship holds for the queue-number.

Open Problem 2 ([16]). Does every graph of bounded tree-width have
bounded queue-number?

2 Our Results

This paper contributes the following two theorems. The first, proved in Section 3,
provides a partial answer to Open Problem 2.

Theorem 1. The following classes of graphs have bounded queue-number:
(1 ) graphs of bounded path-width, and
(2 ) graphs of bounded tree-width and bounded maximum degree.
In particular, qn(G) ≤ pw(G) and qn(G) ≤ 36 tw(G)∆(G) for every graph G.

A similar upper bound to (1) is obtained by Heath and Rosenberg [20], who
show that every graph G has qn(G) ≤ 
 1

2bw(G)�, where bw(G) is the bandwidth
of G. In many cases this result is weaker than (1) since pw(G) ≤ bw(G) (see
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[8]). Note that since pw(G) ∈ O(tw(G) · log n) [2], the queue-number qn(G) ∈
O(tw(G) · log n).

Theorem 2 below relates the volume of a three-dimensional drawing of a
graph to its queue-number, and is proved in Section 4. While our motivation is for
three-dimensional drawings of planar graphs, the theorem applies to any proper
minor-closed family of graphs; that is, a graph family which is not the class
of all graphs, and is closed under edge-contraction, edge-deletion, and deleting
isolated vertices.

Theorem 2. Let G be a proper minor-closed family of graphs, and let F (n)
be a set of functions closed under taking polynomials (for example, O(1) or
O(polylog n)). For every graph G ∈ G, G has a F (n) × F (n) × O(n) drawing if
and only if G has queue number qn(G) ∈ F (n).

Graphs with constant queue-number include de Bruijn graphs, FFT and
Beneš network graphs [20]. By the above-mentioned result of Rengarajan and
Veni Madhavan [26], and since graphs with tree-width at most some constant
form a proper minor-closed family, Theorems 1 and 2 together imply the follow-
ing. Part (2) is proved without using queue layouts in [12].

Corollary 1. The following graphs have three-dimensional drawings with O(n)
volume:
(1 ) de Bruijn graphs, FFT and Beneš network graphs,
(2 ) graphs of bounded path-width [12],
(3 ) graphs of tree-width at most two (series-parallel graphs), and
(4 ) graphs of bounded tree-width and bounded maximum degree.

Corollary 1 improves and/or generalises the above-mentioned results for
three-dimensional drawings of outerplanar graphs, series-parallel graphs, and
graphs of bounded tree-width in [7, 12, 14, 25]. Note that the algorithm by Fel-
sner et al. [14] closely parallels the construction of 2-queue layouts of outerplanar
graphs due to Rengarajan and Veni Madhavan [26], both of which are based on
breadth-first search, as is one of our proofs to follows.

3 Queue Layouts and Tree-Width

In this section we prove Theorem 1. Consider a vertex-ordering σ of a graph G.
The vertex cut in σ at a vertex v ∈ V (G) is defined to be |{x ∈ V (G) : ∃xy ∈
E(G), x ≤σ v <σ y}|. The vertex separation number of G is the minimum, taken
over all vertex-orderings σ of G, of a maximum vertex cut in σ. A k-rainbow in
σ implies σ has a vertex cut of size k. Thus the queue-number of a graph is at
most its vertex separation number by Lemma 1. The next result immediately
follows, since the vertex separation number of a graph equals its path-width (see
[8]).

Lemma 2. Graphs of bounded path-width have bounded queue-number. In par-
ticular, qn(G) ≤ pw(G) for every graph G.
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To establish our next result we employ a structure called a tree-partition
[3, 10, 11, 18, 28]. Let G be a graph, let T be a tree, and let {Tx : x ∈ V (T )} be a
partition of V (G) into sets (called bags) indexed by the nodes of T . We denote the
bag containing a vertex v ∈ V (G) by Tα(v). The pair (T, {Tx}) is a tree-partition
of G if for every edge vw ∈ E(G), either α(v) = α(w) or α(v)α(w) ∈ E(T ). We
call vw an intra-bag edge if α(v) = α(w) and an inter-bag edge otherwise. The
width of the tree-partition is the maximum size of a bag Tx. The tree-partition-
width of a graph G, denoted by tpw(G), is the minimum width of a tree-partition
of G. Note that tree-partition-width has also been called strong tree-width [3, 28].

Lemma 3. Graphs of bounded tree-partition-width, which includes graphs of
bounded tree-width and bounded maximum degree, have bounded queue-number.
In particular, qn(G) ≤ 3

2 tpw(G) ≤ 36 tw(G)∆(G) for every graph G.

Proof. Let (T, {Tx}) be a tree-partition of G with width tpw(G). Let π be a
vertex-ordering of T determined by a lexicographical breadth-first-search of T
starting from an arbitrary root node. Then no two edges of T are nested in
π. (This is why trees have queue-number one.) Also observe that each node
x ∈ V (T ) has at most one incident edge xy with y <π x.

Let σ be a vertex-ordering of G such that v <σ w implies α(v) ≤π α(w).
Suppose edges e1 and e2 of G are nested in σ. If e1 and e2 are both intra-bag
edges then their end-vertices are all in a common bag. Thus there are at most
1
2 tpw(G) intra-bag edges in a rainbow of σ. If e1 and e2 are both inter-bag edges
then the left end-vertex of e1 and the left end-vertex of e2 are in a common bag.
Thus there are at most tpw(G) inter-bag edges in a rainbow of σ. Therefore a
rainbow in σ can have at most 3

2 tpw(G) edges.
The result follows from Lemma 1, and since Ding and Oporowski [10] proved

that tpw(G) ≤ 24 tw(G)∆(G) for every graph G. �
Lemmata 2 and 3 establish Theorem 1.

4 Queue Layouts and Three-Dimensional Drawings

In this section we prove Theorem 2. Our proof depends on the following structure
introduced by Dujmović et al. [12]. An ordered k-layering of a graph G consists
of a partition V1, V2, . . . , Vk of V (G) into layers, and a total order <i of each Vi,
such that for every edge vw, if v <i w then there is no vertex x with v <i x <i w.
The span of an edge vw is |i − j| where v ∈ Vi and w ∈ Vj . An intra-layer edge
is an edge with zero span. An X-crossing consists of two edges vw and xy such
that for distinct layers i and j, v <i x and y <j w. Dujmović et al. [12] proved
the following (see Fig. 2).

Lemma 4 ([12]). Let F (n) be a set of functions closed under taking polynomi-
als. Then a graph G has a F (n) × F (n) × O(n) drawing if and only if G has
an ordered k-layering with no X-crossing, for some k ∈ F (n). Furthermore, if
G has an ordered layering with no X-crossing and maximum edge span s then G
has a O(s) × O(s) × O(n) drawing.
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Fig. 2. A three-dimensional drawing produced from an ordered layering with no X-
crossing; vertices in each layer are placed on a vertical ‘rod’.

Fig. 3. An ordered 2-layering and a 1-queue layout of a bipartite graph.

Dujmović et al. [12] proved that a graph G has an ordered (pw(G)+1)-layering
with no X-crossing. That G has a three-dimensional drawing with O(n ·pw(G)2)
volume follows from Lemma 4. A result of Felsner et al. [14] also fits into this
framework. To construct three-dimensional drawings of outerplanar graphs with
O(n) volume, they proved that such a graph has an ordered layering with no
X-crossing and maximum edge span at most one. Note that the plane grid graph,
which has Θ(

√
n) path-width and tree-width, has an obvious ordered layering

with no X-crossing and maximum edge span one. The ‘nested triangles’ graph
which provides an Ω(n2) lower bound on the area of plane grid drawings [6], has
an ordered 3-layering with no X-crossing. Thus both of these important examples
of planar graphs have three-dimensional drawings with O(n) volume.

Lemma 4 implies that Theorem 2 can be proved if we show that qn(G) ∈ F (n)
if and only if G has an ordered k-layering with no X-crossing, for some k ∈ F (n).
The next lemma highlights the inherent relationship between ordered layerings
and queue layouts. Its proof follows immediately from the definitions (see Fig. 3).

Lemma 5. A bipartite graph G = (A, B; E) has an ordered 2-layering with no
X-crossing and no intra-layer edges if and only if G has a 1-queue layout such
that in the corresponding vertex-ordering, the vertices in A appear before the
vertices in B.

We now show that a queue layout can be obtained from an ordered lay-
ering with no X-crossing. This result can be viewed as a generalisation of the
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Fig. 4. Maximum rainbow in a vertex-ordering from an ordered layering.

construction of a 2-queue layout of an outerplanar graph by Rengarajan and
Veni Madhavan [26] (with s = 1).

Lemma 6. Let G be a graph with an ordered k-layering {(Vi, <i) : 1 ≤ i ≤ k}
with no X-crossing and maximum edge span s. Then qn(G) ≤ s+1, and if there
are no intra-layer edges then qn(G) ≤ s.

Proof. Let σ = V1, . . . , Vk, with each Vi ordered by <i. Let R be the largest
rainbow in σ. By Lemma 5, between each pair of layers there is at most one edge
in R. A simple inductive argument shows that there is at most s non-intra-layer
edges in R; see Fig. 4. No two intra-layer edges are nested in σ. Thus R has at
most s + 1 edges. By Lemma 1, qn(G) ≤ s + 1. If there are no intra-layer edges
then R has at most s edges and qn(G) ≤ s. �

We now prove a converse result to Lemma 6. Consider an ordered k-layering
with no X-crossing and no intra-layer edges. It is easily seen that the subgraph
induced by two layers is a forest of caterpillars. A slightly smaller family of
graphs is a forest of stars. A proper vertex-colouring of a graph is called a star
colouring if each bichromatic subgraph is a forest of stars; that is, every path
on four vertices receives at least three distinct colours. The minimum number of
colours in a star colouring of a graph G is called the star chromatic number of
G, and is denoted by χst(G). Nešetřil and Ossona de Mendez [22] proved that
every planar graph G has χst(G) ≤ 30. Many other graph families have bounded
star chromatic number, including graphs with bounded maximum degree [1],
and graphs with bounded tree-width [15]. In particular, Fertin et al. [15] proved
that χst(G) ≤ 1

2 tw(G)(tw(G) + 3) + 1. More generally, Nešetřil and Ossona de
Mendez [22] proved that G has bounded star chromatic number if and only if G
is a member of a proper minor-closed family of graphs. In this case, χst(G) is at
most a quadratic function of the maximum chromatic number of a minor of G.

Lemma 7. Let G be a graph with star chromatic number χst(G) ≤ c, and queue-
number qn(G) ≤ q. Then G has an ordered t-layering with no X-crossing where

t ≤ c
(
2(c − 1)q + 1

)c−1
.

Proof. Let V1, . . . , Vc be the colour classes of a star colouring of G. Pemmaraju
[24] proved that a q-queue graph layout can be ‘separated’ by a vertex c-colouring
to produce a 2(c − 1)q-queue layout with the vertices in each colour class con-
secutive in the vertex-ordering. (The proof is a straightforward application of
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Lemma 1.) Applying this result to the given queue layout and star colouring,
we obtain a q′-queue layout of G with vertex-ordering σ = V1, . . . , Vc, where
q′ = 2(c − 1)q.

For every vertex v ∈ Vi, 1 ≤ i ≤ c, and j ∈ {1, . . . , c} \ {i}, let dj(v) be
the degree of v in G[Vi, Vj ]. Define the jth label of v, denoted by φj(v), as
follows. If dj(v) ≥ 2 then let φj(v) = ‘r’ (v is the root of a star in G[Vi, Vj ]). If
dj(v) = 1 then let φj(v) be the queue containing the edge in G[Vi, Vj ] incident
to v. If dj(v) = 0 then let φj(v) be some arbitrary queue. Let the label of v ∈ Vi

be φ(v) = (φ1(v), . . . , φi−1(v), φi+1(v), . . . , φc(v)). Let Si be the set of possible
labels for a vertex in Vi. Then |Si| = (q′ + 1)c−1.

Now group the vertices with the same colour and the same label. Let Vi,L =
{v ∈ Vi : φ(v) = L} for all labels L ∈ Si and 1 ≤ i ≤ c, and consider each Vi,L

to be ordered by σ. Thus {Vi,L : 1 ≤ i ≤ c, L ∈ Si} is an ordered layering of G.
We denote the jth label of L ∈ Si by L[j].

Consider a subgraph G[Vi,P , Vj,Q] for some 1 ≤ i < j ≤ c and labels P ∈ Si

and Q ∈ Sj . We claim that all edges in G[Vi,P , Vj,Q] are in a single queue. If
P [j] = ‘r’ and Q[i] = ‘r’ then G[Vi,P , Vj,Q] has no edges. If P [j] = ‘r’ and
Q[i] = qa for some queue qa, then all edges in G[Vi,P , Vj,Q] are in qa. Similarly,
if Q[i] = ‘r’ and P [j] = qa for some queue qa, then all edges in G[Vi,P , Vj,Q]
are in qa. Finally, consider the case in which P [j] = qa and Q[i] = qb for some
queues qa and qb. If a �= b then there are no edges in G[Vi,P , Vj,Q], and if a = b
then all edges in G[Vi,P , Vj,Q] are in queue qa(= qb). In each case, all edges in
G[Vi,P , Vj,Q] are in a single queue. By Lemma 5, Vi,P and Vj,Q form an ordered
2-layering of G[Vi,P , Vj,Q] with no X-crossing. In general, {Vi,L : 1 ≤ i ≤ c, L ∈
Si} is an ordered layering of G with no X-crossing. The number of layers is
c(q′ + 1)c−1 = c(2(c − 1)q + 1)c−1. �

Lemmata 4, 6 and 7 together with the result of Nešetřil and Ossona de
Mendez [22] establish Theorem 2.

5 Conclusion

Theorem 2 implies that a planar graph has a three-dimensional drawing with
O(n) volume if it has O(1) queue-number. Thus an affirmative answer to the
following open problem due to Heath et al. [19] would solve Open Problem 1. In
fact, the two problems are almost equivalent. It is possible, however, that a planar
graph has non-constant queue-number, yet has say a O(n1/3)×O(n1/3)×O(n1/3)
drawing.

Open Problem 3 ([19, 20]). Does every planar graph have O(1) queue-
number?

In 1992, Heath and Rosenberg [20] and Heath et al. [19] conjectured that
every planar graph does have O(1) queue-number. More recently, Pemmaraju
[24] provided ‘evidence’ that the planar graph obtained by repeated stellation
of K3 (that is, by adding a degree three vertex to every face) has non-constant
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queue-number. This graph does have O(log n) queue-number [24]. Pemmaraju
[24] and Heath [private communication, 2002] conjecture that every planar graph
has O(log n) queue-number. By Theorem 2, this would imply that every planar
graph has a three-dimensional drawing with O(n polylog n) volume. Note that
if the stellated K3 graph, which has tree-width three, has non-constant queue-
number then Open Problem 2 would also have a negative answer [16].

The best known upper bound on the queue-number of a planar graph is
O(

√
n), which follows from Lemma 2 and the fact that the path-width of a planar

graph is O(
√

n) (see [2]). This result can also be proved using a variant of the
randomised algorithm of Malitz [21] (see [19]), or the derandomised algorithm
of Shahrokhi and Shi [29].

As a final word, we estimate the constants in the O(n) volume bound of
Corollary 1. Take a graph G with bounded tree-width tw(G) ≤ k and bounded
maximum degree ∆(G) ≤ d. Then χst(G) ≤ 1

2k2 + o(k2) [15] and qn(G) ≤ 36kd
by Lemma 3. By Lemma 7, G has an ordered layering with no X-crossing and
approximately k2(36k3d)k2/2 layers. By Lemma 4, G has a three-dimensional
drawing with approximately O(k4(36k3d)k2 · n) volume. As another example, a
series-parallel graph G has tw(G) ≤ 2 [2], qn(G) ≤ 3 [26], and χst(G) ≤ 6 [15].
By Lemma 7, G has an ordered layering with no X-crossing and at most 6 · 315

layers. By Lemma 4, the constant in the O(n) volume bound of Corollary 1 for
series-parallel graphs is at least 36 · 3110 ≈ 2.9 × 1016. It is an interesting open
problem to construct linear volume three-dimensional drawings with a smaller
constant in the O(n) volume bound.
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Note added in proof: Dujmović and Wood [13] recently solved Open Prob-
lem 2. That is, graphs of bounded tree-width have bounded queue-number, and
hence have three-dimensional drawings with linear volume.
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S. Leipert, eds., Proc. 9th International Symp. on Graph Drawing (GD ’01), vol.
2265 of Lecture Notes in Comput. Sci., pp. 328–342, Springer, 2002.

[15] G. Fertin, A. Raspaud, and B. Reed, On star coloring of graphs. In
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