LAYERED SEPARATORS IN MINOR-CLOSED FAMILIES WITH APPLICATIONS

Vida Dujmović † Pat Morin ‡ David R. Wood §

Abstract. Graph separators are a ubiquitous tool in graph theory and computer science. However, in some applications, their usefulness is limited by the fact that the separator can be as large as $\Omega(\sqrt{n})$ in graphs with n vertices. This is the case for planar graphs, and more generally, for proper minor-closed families. We study a special type of graph separator, called a layered separator, which may have linear size in n, but has bounded size with respect to a different measure, called the width. We prove, for example, that planar graphs and graphs of bounded Euler genus admit layered separators of bounded width. More generally, we characterise the minor-closed classes that admit layered separators of bounded width as those that exclude a fixed apex graph as a minor.

We use layered separators to prove $O(\log n)$ bounds for a number of problems where $O(\sqrt{n})$ was a long standing previous best bound. This includes the nonrepetitive chromatic number and queue-number of graphs with bounded Euler genus. We extend these results to all proper minor-closed families, with a $O(\log n)$ bound on the nonrepetitive chromatic number, and a $\log^{O(1)} n$ bound on the queue-number. Only for planar graphs were $\log^{O(1)} n$ bounds previously known. Our results imply that every graph from a proper minor-closed class has a 3-dimensional grid drawing with $n \log^{O(1)} n$ volume, whereas the previous best bound was $O(n^{3/2})$.

June 7, 2013. Revised: April 15, 2015

† School of Computer Science and Electrical Engineering, University of Ottawa, Ottawa, Canada (vida.dujmovic@uottawa.ca). Research supported by NSERC and the Ontario Ministry of Research and Innovation.

‡ School of Computer Science, Carleton University, Ottawa, Canada (morin@scs.carleton.ca). Research supported by NSERC.

§ School of Mathematical Sciences, Monash University, Melbourne, Australia (david.wood@monash.edu). Research supported by the Australian Research Council.

A short version of this paper and reference [22] was presented at the 54th Annual Symposium on Foundations of Computer Science (FOCS ’13).
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>3</td>
</tr>
<tr>
<td>1.1</td>
<td>Layered Separations</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>Queue-Number and 3-Dimensional Grid Drawings</td>
<td>5</td>
</tr>
<tr>
<td>1.3</td>
<td>Nonrepetitive Graph Colourings</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>Tree Decompositions and Separations</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>Graphs on Surfaces</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>Clique Sums</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>The Graph Minor Structure Theorem</td>
<td>14</td>
</tr>
<tr>
<td>6</td>
<td>Rich Decompositions and Shadow Complete Layerings</td>
<td>19</td>
</tr>
<tr>
<td>7</td>
<td>Track and Queue Layouts</td>
<td>21</td>
</tr>
<tr>
<td>8</td>
<td>3-Dimensional Graph Drawing</td>
<td>23</td>
</tr>
<tr>
<td>9</td>
<td>Nonrepetitive Colourings</td>
<td>24</td>
</tr>
<tr>
<td>10</td>
<td>Reflections</td>
<td>26</td>
</tr>
<tr>
<td>A</td>
<td>Separators in a Tree Decomposition</td>
<td>32</td>
</tr>
<tr>
<td>B</td>
<td>Layered Treewidth to Treewidth</td>
<td>33</td>
</tr>
<tr>
<td>C</td>
<td>Recursive Separators</td>
<td>33</td>
</tr>
<tr>
<td>D</td>
<td>Track Layout Construction</td>
<td>36</td>
</tr>
</tbody>
</table>
1 Introduction

Graph separators are a ubiquitous tool in graph theory and computer science since they are key
to many divide-and-conquer and dynamic programming algorithms. Typically, the smaller the
separator the better the results obtained. For instance, many problems that are \(\mathcal{NP} \)-complete
for general graphs have polynomial time solutions for classes of graphs that have bounded size
separators—that is, graphs of bounded treewidth.

By the classical result of Lipton and Tarjan \cite{lipton1979}, every \(n \)-vertex planar graph has a separator of
size \(O(\sqrt{n}) \). More generally, the same is true for all proper minor-closed classes\(^1\), as proved
by Alon et al. \cite{alon1992}. While these results have found widespread use, separators of size
\(\Theta(\sqrt{n}) \), or non-constant separators in general, are not small enough to be useful in some applications.

In this paper we study a type of graph separator, called layered separators, that may have
\(\Omega(n) \) vertices but have bounded size with respect to a different measure. In particular, layered
separators intersect each layer of some predefined vertex layering in a bounded number of
vertices. We prove that many classes of graphs admit such separators, and we show how they
can be used to obtain logarithmic bounds for a variety of applications for which \(O(\sqrt{n}) \) was
the best known long-standing bound. These applications include nonrepetitive graph colourings,
track layouts, queue layouts and 3-dimensional grid drawings of graphs. In addition, layered
separators lend themselves to simple proofs.

In the remainder of the introduction, we define layered separators, and describe our results on
the classes of graphs that admit them. Following that, we describe the implications that these
results have on the above-mentioned applications.

1.1 Layered Separations

A \emph{layering} of a graph \(G \) is a partition \((V_0, V_1, \ldots, V_t) \) of \(V(G) \) such that for every edge \(vw \in
E(G) \), if \(v \in V_i \) and \(w \in V_j \), then \(|i - j| \leq 1 \). Each set \(V_i \) is called a \emph{layer}. For example, for a
vertex \(r \) of a connected graph \(G \), if \(V_i \) is the set of vertices at distance \(i \) from \(r \), then \((V_0, V_1, \ldots) \)
is a layering of \(G \), called the \emph{bfs layering} of \(G \) starting from \(r \). A \emph{bfs tree} of \(G \) rooted at \(r \) is a
spanning tree of \(G \) such that for every vertex \(v \) of \(G \), the distance between \(v \) and \(r \) in \(G \) equals
the distance between \(v \) and \(r \) in \(T \). Thus, if \(v \in V_i \) then the \(vr \)-path in \(T \) contains exactly one
vertex from layer \(V_j \) for \(j \in \{0, \ldots, i\} \).

A \emph{separation} of a graph \(G \) is a pair \((G_1, G_2) \) of subgraphs of \(G \) such that \(G = G_1 \cup G_2 \). In
particular, there is no edge between \(V(G_1) - V(G_2) \) and \(V(G_2) - V(G_1) \). The \emph{order} of a
separation \((G_1, G_2) \) is \(|V(G_1 \cap G_2)| \).

\(^1\)A graph \(H \) is a \emph{minor} of a graph \(G \) if a graph isomorphic to \(H \) can be obtained from a subgraph of \(G \) by contracting
edges. A class \(\mathcal{G} \) of graphs is \emph{minor-closed} if \(H \in \mathcal{G} \) for every minor \(H \) of \(G \) for every graph \(G \in \mathcal{G} \). A minor-closed
class is \emph{proper} if it is not the class of all graphs.
A graph G admits layered separations of width ℓ with respect to a layering (V_0, V_1, \ldots, V_t) of G if for every set $S \subseteq V(G)$, there is a separation (G_1, G_2) of G such that:

- for $i \in \{0, 1, \ldots, t\}$, layer V_i contains at most ℓ vertices in $V(G_1 \cap G_2)$, and
- both $V(G_1) - V(G_2)$ and $V(G_2) - V(G_1)$ contain at most $\frac{2}{3}|S|$ vertices in S.

Here the set $V(G_1 \cap G_2)$ is called a layered separator of width ℓ of $G[S]$. Note that these separators do not necessarily have small order, in particular $V(G_1 \cap G_2)$ can have $\Omega(n)$ vertices.

Layered separations are implicit in the seminal work of Lipton and Tarjan [49] on separators in planar graphs, and in many subsequent papers (such as [1, 39]). This definition was first made explicit by Dujmović et al. [23], who showed that a result of Lipton and Tarjan [49] implies that every planar graph admits layered separations of width 2. This result was used by Lipton and Tarjan as a subroutine in their $O(\sqrt{n})$ separator result. We generalise this result for planar graphs to graphs embedded on arbitrary surfaces. In particular, we prove that graphs of Euler genus g admit layered separations of width $O(g)$ (Theorem 10 in Section 3). A key to this proof is the notion of a layered tree decomposition, which is of independent interest, and is introduced in Section 2.

We further generalise this result by exploiting Robertson and Seymour’s graph minor structure theorem. Roughly speaking, a graph G is almost embeddable in a surface Σ if by deleting a bounded number of ‘apex’ vertices, the remaining graph can be embedded in Σ, except for a bounded number of ‘vortices’, where crossings are allowed in a well-structured way; see Section 5 where all these terms are defined. Robertson and Seymour proved that every graph from a proper minor-closed class can be obtained from clique-sums of graphs that are almost embeddable in a surface of bounded Euler genus. Here, apex vertices can be adjacent to any vertex in the graph. However, such freedom is not possible for graphs that admit layered separations of bounded width. For example, the planar $\sqrt{n} \times \sqrt{n}$ grid plus one dominant vertex (adjacent to every other vertex) does not admit layered separations of width $o(\sqrt{n})$ (see Section 5). We define the notion of strongly almost embeddable graphs, in which apex vertices are only allowed to be adjacent to vortices and other apex vertices. With this restriction, we prove that graphs obtained from clique-sums of strongly almost embeddable graphs admits layered separations of bounded width (Theorem 19 in Section 5). A recent structure theorem of Dvořák and Thomas [34] says that H-minor-free graphs have this structure, for each apex graph H. (A graph H is apex if $H - v$ is planar for some vertex v.) We conclude that a minor-closed class \mathcal{G} admits layered separations of bounded width if and only if \mathcal{G} excludes some fixed apex graph. Then, in all the applications that we consider, we deal with (unrestricted) apex vertices separately, leading to $O(\log n)$ or $\log^{O(1)} n$ bounds for every proper minor-closed family. These extensions depend on

The Euler genus of a surface Σ is $2 - \chi$, where χ is the Euler characteristic of Σ. Thus the orientable surface with h handles has Euler genus $2h$, and the non-orientable surface with c cross-caps has Euler genus c. The Euler genus of a graph G is the minimum Euler genus of a surface in which G embeds. See [51] for background on graphs embedded in surfaces.
two tools of independent interest (rich tree decompositions and shadow complete layerings) that are presented in Section 6.

1.2 Queue-Number and 3-Dimensional Grid Drawings

Let G be a graph. In a linear ordering \preceq of $V(G)$, two edges vw and xy are nested if $v < x < y < w$. A k-queue layout of a graph G consists of a linear ordering \preceq of $V(G)$ and a partition E_1, \ldots, E_k of $E(G)$, such that no two edges in each set E_i are nested with respect to \preceq. The queue-number of a graph G is the minimum integer k such that G has a k-queue layout, and is denoted by $qn(G)$. Queue layouts were introduced by Heath and Rosenberg [45, 46] and have since been widely studied. They have applications in parallel process scheduling, fault-tolerant processing, matrix computations, and sorting networks; see [29, 55] for surveys.

A number of classes of graphs are known to have bounded queue-number. For example, every tree has a 1-queue layout [46], every outerplanar graph has a 2-queue layout [45], every series-parallel graph has a 3-queue layout [57], every graph with bandwidth b has a $\lceil \frac{b}{2} \rceil$-queue layout [46], every graph with pathwidth p has a p-queue layout [26], and more generally every graph with bounded treewidth has bounded queue-number [26]. All these classes have bounded treewidth. Only a few highly structured graphs of unbounded treewidth, such as grids and cartesian products [69], are known to have bounded queue-number. In particular, it is open whether planar graphs have bounded queue-number, as conjectured by Heath et al. [45, 46].

The dual concept of a queue layout is a stack layout, introduced by Ollmann [53] and commonly called a book embedding. It is defined similarly, except that no two edges in the same set are allowed to cross with respect to the vertex ordering. Stack-number (also known as book thickness or page-number) is bounded for planar graphs [73], for graphs of bounded Euler genus [50], and for every proper minor-closed graph family [7]. A recent construction of bounded degree monotone expanders by Bourgain [9, 10] has bounded stack-number and bounded queue-number; see [25, 28, 33].

Until recently, the best known upper bound for the queue-number of planar graphs was $O(\sqrt{n})$. This upper bound follows easily from the fact that planar graphs have pathwidth at most $O(\sqrt{n})$. In a breakthrough result, this bound was reduced to $O(\log^2 n)$ by Di Battista, Frati, and Pach [18], which was further improved by Dujmovič [22] to $O(\log n)$ using a simple proof based on layered separators. In particular, Dujmovič [22] proved that every n-vertex graph that admits layered separations of width ℓ has $O(\ell \log n)$ queue-number. Since every planar graph admits layered separations of width 2, planar graphs have $O(\log n)$ queue-number [22]. Moreover, we immediately obtain logarithmic bounds on the queue-number for the graph families described in Section 1.1. In particular, we prove that graphs with Euler genus g have $O(g \log n)$ queue-number (Theorem 27), and graphs that exclude a fixed apex minor have $O(\log n)$ queue-number (Theorem 28). Furthermore, we extend this result to all proper minor-closed families with an upper bound of $\log^{O(1)} n$ (Theorem 30). The previously best known bound for all these families,
except for planar graphs, was $O(\sqrt{n})$.

One motivation for studying queue layouts is their connection with 3-dimensional graph drawing. A 3-dimensional grid drawing of a graph G represents the vertices of G by distinct grid points in \mathbb{Z}^3 and represents each edge of G by the open segment between its endpoints, such that no two edges intersect. The volume of a 3-dimensional grid drawing is the number of grid points in the smallest axis-aligned grid-box that encloses the drawing. For example, Cohen et al. [13] proved that the complete graph K_n has a 3-dimensional grid drawing with volume $O(n^3)$ and this bound is optimal. Pach et al. [54] proved that every graph with bounded chromatic number has a 3-dimensional grid drawing with volume $O(n^2)$, and this bound is optimal for $K_{n/2,n/2}$. More generally, Bose et al. [8] proved that every 3-dimensional grid drawing of an n-vertex m-edge graph has volume at least $\frac{1}{8}(n+m)$. Dujmović and Wood [30] proved that every graph with bounded maximum degree has a 3-dimensional grid drawing with volume $O(n^{3/2})$, and the same bound holds for graphs from a proper minor-closed class. In fact, every graph with bounded degeneracy has a 3-dimensional grid drawing with $O(n^{3/2})$ volume [32]. Dujmović et al. [26] proved that every graph with bounded treewidth has a 3-dimensional grid drawing with volume $O(n)$. Whether planar graphs have 3-dimensional grid drawings with $O(n)$ volume is a major open problem, due to Felsner et al. [38]. The best known bound on the volume of 3-dimensional grid drawings of planar graphs is $O(n \log n)$ by Dujmović [22]. We prove a $O(n \log n)$ volume bound for graphs of bounded Euler genus (Theorem 32), and more generally, for apex-minor-free graphs (Theorem 33). Most generally, we prove an $n \log^O(1) n$ volume bound for every proper minor-closed family (Theorem 34).

All our results about queue layouts are proved in Section 7, and all our results about 3-dimensional grid drawings are proved in Section 8.

1.3 Nonrepetitive Graph Colourings

A vertex colouring of a graph is nonrepetitive if there is no path for which the first half of the path is assigned the same sequence of colours as the second half. More precisely, a k-colouring of a graph G is a function ψ that assigns one of k colours to each vertex of G. A path $(v_1, v_2, \ldots, v_{2t})$ of even order in G is repetitively coloured by ψ if $\psi(v_i) = \psi(v_{t+i})$ for $i \in \{1, \ldots, t\}$. A colouring ψ of G is nonrepetitive if no path of G is repetitively coloured by ψ. Observe that a nonrepetitive colouring is proper, in the sense that adjacent vertices are coloured differently. The nonrepetitive chromatic number $\pi(G)$ is the minimum integer k such that G admits a nonrepetitive k-colouring.

The seminal result in this area is by Thue [65], who in 1906 proved that every path is nonrepetitively 3-colourable. Nonrepetitive colourings have recently been widely studied; see the surveys [12, 41, 42]. A number of graph classes are known to have bounded nonrepetitive chromatic number. In particular, trees are nonrepetitively 4-colourable [11, 48], outerplanar graphs are nonrepetitively 12-colourable [5, 48], and more generally, every graph with treewidth k is nonrepetitively 4^k-colourable [48]. Graphs with maximum degree Δ are nonrepetitively $O(\Delta^2)$-
colourable [2, 24, 41, 44].

Perhaps the most important open problem in the field of nonrepetitive colourings is whether planar graphs have bounded nonrepetitive chromatic number [2]. The best known lower bound is 11, due to Ochem [23]. Dujmović et al. [23] showed that layered separations can be used to construct nonrepetitive colourings. In particular, every \(n\)-vertex graph that admits layered separations of width \(\ell\) is nonrepetitively \(O(\ell \log n)\)-colourable [23]. Applying the result for planar graphs mentioned above, Dujmović et al. [23] concluded that every \(n\)-vertex planar graph is nonrepetitively \(O(\log n)\)-colourable. We generalise this result to conclude that every graph with Euler genus \(g\) is nonrepetitively \(O(g + \log n)\)-colourable (Theorem 38). The previous best bound for graphs of bounded genus was \(O(\sqrt{n})\), which is obtained by an easy application of the standard \(O(\sqrt{n})\) separator result for graphs of bounded genus. We further generalise this result to conclude a \(O(\log n)\) bound for arbitrary proper minor-closed classes (Theorem 40).

All our results about nonrepetitive graph colouring are proved in Section 9.

2 Tree Decompositions and Separations

Graphs decompositions, especially tree decompositions, are a key to our results. For graphs \(G\) and \(H\), an \(H\)-decomposition of \(G\) is a collection \((B_x \subseteq V(G) : x \in V(H))\) of sets of vertices in \(G\) (called bags) indexed by the vertices of \(H\), such that:

1. for every edge \(vw\) of \(G\), some bag \(B_x\) contains both \(v\) and \(w\), and
2. for every vertex \(v\) of \(G\), the set \(\{x \in V(H) : v \in B_x\}\) induces a non-empty connected subgraph of \(H\).

The width of a decomposition is the size of the largest bag minus 1. If \(H\) is a tree, then an \(H\)-decomposition is called a tree decomposition. The treewidth of a graph \(G\) is the minimum width of any tree decomposition of \(G\). Tree decompositions were first introduced by Halin [43] and independently by Robertson and Seymour [60]. \(H\)-decompositions, for general graphs \(H\), were introduced by Diestel and Kühn [20]; also see [72].

Separators and treewidth are closely connected, as shown by the following two results (see Appendix A).

Lemma 1 (Robertson and Seymour [60], (2.5) & (2.6)). If \(S\) is a set of vertices in a graph \(G\), then for every tree decomposition of \(G\) there is a bag \(B\) such that each connected component of \(G - B\) contains at most \(\frac{1}{2}|S|\) vertices in \(S\), which implies that \(G\) has a separation \((G_1, G_2)\) with \(V(G_1 \cap G_2) = B\) and both \(G_1 - V(G_2)\) and \(G_2 - V(G_1)\) contain at most \(\frac{2}{3}|S|\) vertices in \(S\).

Lemma 2 (Reed [56], Fact 2.7). Assume that for every set \(S\) of vertices in a graph \(G\), there is a separation \((G_1, G_2)\) of \(G\) such that \(|V(G_1 \cap G_2)| \leq k\) and both \(V(G_1) - V(G_2)\) and \(V(G_2) - V(G_1)\) contain at most \(\frac{3}{4}|S|\) vertices in \(S\). Then \(G\) has treewidth less than \(4k\).
We now define the *layered width* of a decomposition, which is the key original definition of this paper. The **layered width** of an \(H \)-decomposition \((B_x : x \in V(H)) \) of a graph \(G \) is the minimum integer \(\ell \) such that, for some layering \((V_0, V_1, \ldots, V_t) \) of \(G \), each bag \(B_x \) contains at most \(\ell \) vertices in each layer \(V_i \). The **layered treewidth** of a graph \(G \) is the minimum layered width of a tree decomposition of \(G \). Note that if we only consider layerings in which every vertex is in a single layer, then layered treewidth equals treewidth plus 1.

The following result, which is implied by Lemma 1, shows that bounded layered treewidth leads to layered separations of bounded width; see Theorem 21 for a converse result.

Lemma 3. Every graph with layered treewidth \(\ell \) admits layered separations of width at most \(\ell \).

The **diameter** of a connected graph \(G \) is the maximum distance of two vertices in \(G \). Layered tree decompositions lead to tree decompositions of bounded width for graphs of bounded diameter.

Lemma 4. If a connected graph \(G \) has diameter \(d \), treewidth \(k \) and layered treewidth \(\ell \), then \(k < \ell(d+1) \).

Proof. Every layering of \(G \) has at most \(d+1 \) layers. Thus each bag in a tree decomposition of layered width \(\ell \) contains at most \(\ell(d+1) \) vertices. The claim follows.

Similarly, a graph of bounded diameter that admits layered separations of bounded width has bounded treewidth.

Lemma 5. If a connected graph \(G \) has diameter \(d \), treewidth \(k \) and admits layered separations of width \(\ell \), then \(k < 4\ell(d+1) \).

Proof. Since \(G \) admits layered separations of width \(\ell \), there is a layering of \(G \) such that for every set \(S \subseteq V(G) \), there is a separation \((G_1, G_2)\) of \(G \) such that each layer contains at most \(\ell \) vertices in \(V(G_1 \cap G_2) \), and both \(V(G_1) - V(G_2) \) and \(V(G_2) - V(G_1) \) contain at most \(\frac{2}{3}|S| \) vertices in \(S \). Since \(G \) has diameter \(d \), the number of layers is at most \(d+1 \). Thus \(|V(G_1 \cap G_2)| \leq (d+1)\ell \). The claim follows from Lemma 2.

Lemmas 4 and 5 can essentially be rewritten in the language of ‘local treewidth’, which was first introduced by Eppstein [36] under the guise of the ‘treewidth-diameter’ property. A graph class \(\mathcal{G} \) has **bounded local treewidth** if there is a function \(f \) such that for every graph \(G \) in \(\mathcal{G} \), for every vertex \(v \) of \(G \) and for every integer \(r \geq 0 \), the subgraph of \(G \) induced by the vertices at distance at most \(r \) from \(v \) has treewidth at most \(f(r) \); see [14, 16, 36, 40]. If \(f(r) \) is a linear function, then \(\mathcal{G} \) has **linear local treewidth**.

Lemma 6. If every graph in some class \(\mathcal{G} \) has layered treewidth at most \(\ell \), then \(\mathcal{G} \) has linear local treewidth with \(f(r) = \ell(2r+1) - 1 \).
Proof. Given a vertex v in a graph $G \in \mathcal{G}$, and given an integer $r \geq 0$, let G' be the subgraph of G induced by the set of vertices at distance at most r from v. By assumption, G has a tree decomposition of layered width ℓ with respect to some layering (V_0, V_1, \ldots, V_t). If $v \in V_i$ then $V(G') \subseteq V_{i-r} \cup \cdots \cup V_{i+r}$. Thus G' contains at most $(2r+1)\ell$ vertices in each bag. Hence G has treewidth at most $(2r+1)\ell - 1$, and \mathcal{G} has linear local treewidth.

Lemma 7. If every graph in some class \mathcal{G} admits layered separations of width at most ℓ, then \mathcal{G} has linear local treewidth with $f(r) < 4\ell(2r+1)$.

Proof. Given a vertex v in a graph $G \in \mathcal{G}$, and given an integer $r \geq 0$, let G' be the subgraph of G induced by the set of vertices at distance at most r from v. By assumption, there is a layering (V_0, V_1, \ldots, V_t) of G such that for every set $S \subseteq V(G)$, there is a separation (G_1, G_2) of G such that each layer contains at most ℓ vertices in $V(G_1 \cap G_2)$, and both $V(G_1) - V(G_2)$ and $V(G_2) - V(G_1)$ contain at most $\frac{\ell}{4}|S|$ vertices in S. If $v \in V_i$ then $V(G') \subseteq V_{i-r} \cup \cdots \cup V_{i+r}$. Thus $|V(G_1 \cap G_2 \cap G')| \leq (2r+1)\ell$. By Lemma 2, G' has treewidth less than $4(2r+1)\ell$. The claim follows.

We conclude this section with a few observations about layered treewidth.

First we bound the number of edges in a graph G with layered treewidth k. Let S be a leaf bag in a tree decomposition of G with layered width k. Let T be the neighbouring bag. If $S \subseteq T$ then delete S and repeat. Otherwise there is a vertex v in $S \setminus T$. Say v is in layer V_i. Then every neighbour of v is in $S \cap (V_{i-1} \cup V_i \cup V_{i+1}) \setminus \{v\}$, which has size at most $3k-1$. Thus G has minimum degree at most $3k-1$, which implies that G has at most $(3k-1)n$ edges. The following example shows that this bound is roughly tight. For integers $p \gg k \geq 2$, let G be the graph with vertex set $\{(x, y) : x, y \in \{1, \ldots, p\}\}$, where distinct vertices (x, y) and (x', y') are adjacent if $|y - y'| \leq 1$ and $|x - x'| \leq k - 1$. For $y \in \{1, \ldots, p\}$, let $V_y := \{(x, y) : x \in \{1, \ldots, p\}\}$. Then (V_1, V_2, \ldots, V_p) is a layering of G. For $x \in \{1, \ldots, p-k+1\}$, let $B_x := \{(x', y) : x' \in \{x, \ldots, x+k-1\}, y \in \{1, \ldots, p\}\}$. Then $B_1, B_2, \ldots, B_{p-k+1}$ is a tree decomposition of G with layered width k. Apart from vertices near the boundary, every vertex of G has degree $6k - 4$. Thus $|E(G)| = (3k-2)n - O(k \sqrt{n})$.

Finally, note that layered treewidth is not a minor-closed parameter. For example, if G is the 3-dimensional $n \times n \times 2$ grid graph, then it is easily seen that G has layered treewidth at most 3, but G contains a K_n minor [71], and K_n has layered treewidth $\lceil \frac{n}{2} \rceil$.

3 Graphs on Surfaces

This section constructs layered tree decompositions of graphs with bounded Euler genus. The following definitions and simple lemma will be useful. A triangulation of a surface is a loopless...
multigraph embedded in the surface, such that each face is bounded by three edges. We emphasise that parallel edges not bounding a single face are allowed. For a subgraph G' of G, let $F(G')$ be the set of faces of G incident with at least one vertex of G'. Let G^* be the dual of G. That is, $V(G^*) = F(G)$ where $fg \in E(G^*)$ whenever some edge of G is incident with both f and g (for all distinct faces $f, g \in F(G)$). Thus the edges of G are in 1–1 correspondence with the edges of G^*. Let T be a subtree of G. An edge $vw \in E(G)$ is a chord of T if $v, w \in V(T)$ and $vw \notin E(T)$. An edge $vw \in E(G)$ is a half-chord of T if $|\{v, w\} \cap V(T)| = 1$. An edge of G^* dual to a chord of G is called a dual-chord. An edge of G^* dual to a half-chord of G is called a dual-half-chord.

Lemma 8. Let T be a non-empty subtree of a triangulation G of a surface. Let H be the subgraph of G^* with vertex set $F(T)$ and edge set the dual-chords and dual-half-chords of T. Then H is connected. Moreover, $H - e$ is connected for each dual-half-chord e of T.

Proof. Consider the following walk W in T. Choose an arbitrary edge $\alpha \beta$ in T, and initialise $W := (\alpha, \beta)$. Apply the following rule to choose the next vertex in W. Suppose that $W = (\alpha, \beta_1, \ldots, x, y)$. Let yz be the edge of T incident with y clockwise from yx in the cyclic ordering of edges incident to y defined by the embedding of T. (It is possible that $x = z$.) Then append z to W. Stop when the edge $\alpha \beta$ is traversed in this order for the second time. Clearly each edge of T is traversed by W exactly two times (once in each direction). Let W' be the walk in H obtained from W as follows. Consider three consecutive vertices x, y, z in W. Let f_1, f_2, \ldots, f_k be the sequence of faces from yx to yz in the clockwise order of faces incident with y. Construct W' from W by replacing y by f_1, f_2, \ldots, f_k (and doing this simultaneously at each vertex y in W). Each such face f_i is incident with y, and is thus a vertex of H. Moreover, for $i \in \{1, \ldots, k-1\}$, the edge $f_i f_{i+1}$ of G^* is dual to a chord or half-chord of T, and thus $f_i f_{i+1}$ is an edge of H. Hence W' is a walk in H. Every face of G^* incident with at least one vertex in T appears in W'. Thus W' is a spanning walk in H. Therefore H is connected, as claimed.

Let H' be the subgraph of H formed by the dual-half-chords of T. We now show that H' is 2-regular. Consider a dual-half-chord fg of T. Let vw be the corresponding half-chord of G, where $v \in V(T)$ and $w \notin V(T)$. Say u is the third vertex incident to f. If $u \in V(T)$ then uv is not a half-chord of T and uw is a half-chord of T, implying that the only other neighbour of f in H' (in addition to g) is the other face incident to uw (in addition to f). On the other hand, if $u \notin V(T)$ then uv is a half-chord of T and uw is not a half-chord of T, implying that the only other neighbour of f in H' (in addition to g) is the other face incident to uw (in addition to f). Hence f has degree 2 in H', and H' is 2-regular. Therefore, if e is a dual-half-chord of T, then e is in a cycle, and $H - e$ is connected.

The following theorem is the main result of this section.

Theorem 9. Every graph G with Euler genus g has layered treewidth at most $2g + 3$.
Proof. We may assume that G is a triangulation of a surface with Euler genus g. Let r be a vertex of G. Let $F(G)$ be the set of faces of G. Say G has n vertices. By Euler’s formula, $|F(G)| = 2n + 2g - 4$ and $|E(G)| = 3n + 3g - 6$. Let (V_0, V_1, \ldots, V_i) be the bfs layering of G starting from r. Let T be a bfs tree of G rooted at r. For each vertex v of G, let P_v be the vertex set of the vr-path in T. Thus if $v \in V_i$, then P_v contains exactly one vertex in V_j for $j \in \{0, \ldots, i\}$.

Let D be the subgraph of G^* with vertex set $F(G)$, where two vertices are adjacent if the corresponding faces share an edge not in T. Thus $|V(D)| = |F(G)| = 2n + 2g - 4$ and $|E(D)| = |E(G)| - |E(T)| = (3n + 3g - 6) - (n - 1) = 2n + 3g - 5$. Since $V(T) = V(G)$, each edge of G is either an edge of T or is a chord of T. Thus D is the graph H defined in Lemma 8. By Lemma 8, D is connected.

Let T^* be a spanning tree of D. Thus $|E(T^*)| = |V(D)| - 1 = 2n + 2g - 5$. Let $X := E(D) - E(T^*)$. Thus $|X| = (2n + 3g - 5) - (2n + 2g - 5) = g$. For each face $f = xyz$ of G, let $C_f := \cup \{P_a \cup P_b : ab \in X\} \cup P_x \cup P_y \cup P_z$.

Since $|X| = g$ and each P_v contains at most one vertex in each layer, C_f contains at most $2g + 3$ vertices in each layer.

We claim that $(C_f : f \in F(G))$ is a T^*-decomposition of G. For each edge vw of G, if f is a face incident to vw then v and w are in C_f. This proves condition (1) in the definition of T^*-decomposition.

We now prove condition (2). It suffices to show that for each vertex v of G, if F' is the set of faces f of G such that v is in C_f, then the induced subgraph $T^*[F']$ is connected and non-empty. Each face incident to v is in F', thus F' is non-empty. Let T' be the subtree of T rooted at v.

Figure 1: Construction of H in Lemma 8.
If some edge xy in X is a half-chord or chord of T', then v is in $P_x \cup P_y$, implying that v is in every bag, and $T^*[F'] = T^*$ is connected. Now assume that no half-chord or chord of T' is in X. Thus a face f of G is in F' if and only if f is incident with a vertex in T^*; that is, $F' = F(G)$. If $v = r$, then $T' = T$ and $F' = F(G)$, implying $T^*[F'] = T^*$, which is connected. Now assume that $v \neq r$. Let p be the parent of v in T. Let H be the graph defined in Lemma 8 with respect to T'. So H has vertex set F' and edge set the dual-chords and dual-half-chords of T'. Each chord or half-chord of T' is an edge of $G - (E(T) \cup X)$, except for pv, which is a half-chord of T' (since $p \notin V(T')$). Let e be the edge of H dual to pv. By Lemma 8, $T^*[F'] = H - e$ is connected, as desired.

Therefore $(C_f : f \in F(G))$ is a T^*-decomposition of G with layered width at most $2g + 3$.

Several notes on Theorem 9 are in order.

- A spanning tree in an embedded graph with an 'interdigitating' spanning tree in the dual was introduced for planar graphs by von Staudt [67] in 1847, and is sometimes called a tree-cotree decomposition [37]. This idea was generalised for orientable surfaces by Biggs [6] and for non-orientable surfaces by Richter and Shank [58]; also see [64].
- Lemma 3 and Theorem 9 imply the following result for layered separators.

Theorem 10. Every graph with Euler genus g admits layered separations of width $2g + 3$.

Sergey Norin [personal communication, 2014] proved that every n-vertex graph G with layered treewidth k has treewidth at most $2\sqrt{kn}$ (see Appendix B). Thus Theorem 9 implies:

Theorem 11. Every n-vertex graph with Euler genus g has treewidth at most $2\sqrt{(2g + 3)n}$.

Lemma 1 then implies that n-vertex graphs of Euler genus g have separators of order $O(\sqrt{gn})$, as proved in [1, 21, 37, 39]. Gilbert et al. [39] gave examples of such graphs with no $o(\sqrt{gn})$ separator, and thus with treewidth $\Omega(\sqrt{gn})$ (by Lemma 1). Hence each of the upper bounds in Theorem 9–11 are within a constant factor of optimal.

Note that the proof of Theorem 9 uses ideas from many previous proofs about separators in embedded graphs [1, 37, 39]. For example, Aleksandrov and Djidjev [1] call the graph D in the proof of Theorem 9 a separation graph.

- If we apply Theorem 9 to a graph with radius d, where r is a central vertex, then each bag consists of $2g + 3$ paths ending at r, each of length at most d. Thus each bag contains at most $(2g + 3)d + 1$ vertices. We obtain the following result, first proved in the planar case by Robertson and Seymour [59] and implicitly by Baker [4], and in general by Eppstein [36] with a $O(gd)$ bound. Eppstein’s proof also uses the tree-cotree decomposition; see [35, 37] for related work.
Theorem 12. Every graph with Euler genus \(g \) and radius \(d \) has treewidth at most \((2g+3)d \). In particular, every planar graph with radius \(d \) has treewidth at most \(3d \).

- The proof of Theorem 9 gives the following stronger result that will be useful later, where \(Q = \bigcup \{ P_a \cup P_b : ab \in X \} \).

Theorem 13. Let \(r \) be a vertex in a graph \(G \) with Euler genus \(g \). Then there is a tree decomposition \(T \) of \(G \) with layered width at most \(2g + 3 \) with respect to some layering in which the first layer is \(\{ r \} \). Moreover, there is a set \(Q \subseteq V(G) \) with at most \(2g \) vertices in each layer, such that \(T \) restricted to \(G - Q \) has layered width at most \(3 \) with respect to the same layering.

4 Clique Sums

We now extend the above results to more general graph classes via the clique-sum operation. For compatibility with this operation, we introduce the following concept that is slightly stronger than having bounded layered treewidth. A clique is a set of pairwise adjacent vertices in a graph. Say a graph \(G \) is \(\ell \)-good if for every clique \(K \) of size at most \(\ell \) in \(G \) there is a tree decomposition of \(G \) of layered width at most \(\ell \) with respect to some layering of \(G \) in which \(K \) is the first layer.

Theorem 14. Every graph \(G \) with Euler genus \(g \) is \((2g + 3)\)-good.

Proof. Given a clique \(K \) of size at most \(2g + 3 \) in \(G \), let \(G' \) be the graph obtained from \(G \) by contracting \(K \) into a single vertex \(r \). Then \(G' \) has Euler genus at most \(g \). Theorem 13 gives a tree decomposition of \(G' \) of layered width at most \(2g + 3 \) with respect to some layering of \(G' \) in which \(\{ r \} \) is the first layer. Replace the first layer by \(K \), and replace each instance of \(r \) in the tree decomposition of \(G' \) by \(K \). We obtain a tree decomposition of \(G \) of layered width at most \(2g + 3 \) with respect to some layering of \(G \) in which \(K \) is the first layer (since \(|K| \leq 2g + 3 \)). Thus \(G \) is \((2g + 3)\)-good. \(\square \)

Let \(C_1 = \{ v_1, \ldots, v_k \} \) be a \(k \)-clique in a graph \(G_1 \). Let \(C_2 = \{ w_1, \ldots, w_k \} \) be a \(k \)-clique in a graph \(G_2 \). Let \(G \) be the graph obtained from the disjoint union of \(G_1 \) and \(G_2 \) by identifying \(v_i \) and \(w_i \) for \(i \in \{ 1, \ldots, k \} \), and possibly deleting some edges in \(C_1 (= C_2) \). Then \(G \) is a \(k \)-clique sum of \(G_1 \) and \(G_2 \). If \(k \leq \ell \) then \(G \) is a \((\leq \ell)\)-clique sum of \(G_1 \) and \(G_2 \).

Lemma 15. For \(\ell \geq k \), if \(G \) is a \((\leq k)\)-clique-sum of \(\ell \)-good graphs \(G_1 \) and \(G_2 \), then \(G \) is \(\ell \)-good.

Proof. Let \(K \) be the given clique of size at most \(\ell \) in \(G \). Without loss of generality, \(K \) is in \(G_1 \). Since \(G_1 \) is \(\ell \)-good, there is a tree decomposition \(T_1 \) of \(G_1 \) of layered width at most \(\ell \) with respect to some layering of \(G_1 \) in which \(K \) is the first layer. Let \(X := V(G_1 \cap G_2) \). Thus \(X \) is a clique in \(G_1 \) and in \(G_2 \). Hence \(X \) is contained in at most two consecutive layers of the above layering of \(G_1 \). Let \(X' \) be the subset of \(X \) in the first of these two layers. Note that if \(K \cap X \neq \emptyset \)
then \(X' = K \cap X \). Since \(|X'| \leq k \leq \ell \) and since \(G_2 \) is \(\ell \)-good, there is a tree decomposition \(T_2 \) of \(G_2 \) with layered width at most \(\ell \) with respect to some layering of \(G_2 \) in which \(X' \) is the first layer. Thus the second layer of \(G_2 \) contains \(X \setminus X' \). Now, the layerings of \(G_1 \) and \(G_2 \) can be overlaid, with the layer containing \(X' \) in common, and the layer containing \(X \setminus X' \) in common. By the definition of \(X' \), it is still the case that the first layer is \(K \). Let \(T \) be the tree decomposition of \(G \) obtained from the disjoint union of \(T_1 \) and \(T_2 \) by adding an edge between a bag in \(T_1 \) containing \(X \) and a bag in \(T_2 \) containing \(X \). (Each clique is contained in some bag of a tree decomposition.) For each bag \(B \) of \(T \) the intersection of \(B \) with a single layer consists of the same set of vertices as the intersection of \(B \) and the corresponding layer in the layering of \(G_1 \) or \(G_2 \). Hence \(T \) has layered width at most \(\ell \).

\[\square \]

We now describe some graph classes for which Lemma 15 is immediately applicable. Wagner [68] proved that every \(K_5 \)-minor-free graph can be constructed from \((\leq 3)\)-clique sums of planar graphs and \(V_8 \), where \(V_8 \) is the graph obtained from an 8-cycle by adding an edge between opposite vertices. A bfs layering shows that \(V_8 \) is 3-good. By Theorem 14, every planar graph is 3-good. Thus, by Lemma 15, every \(K_5 \)-minor-free graph is 3-good. By Lemma 3, such a graph has layered treewidth at most 3, and admits layered separations of width 3. Wagner [68] also proved that every \(K_{3,3} \)-minor-free graph can be constructed from \((\leq 2)\)-clique sums of planar graphs and \(K_5 \). Since \(K_5 \) is 4-good and every planar graph is 3-good, every \(K_{3,3} \)-minor-free graph is 4-good, has layered treewidth at most 4, and admits layered separations of width 4. For a number of particular graphs \(H \), Truemper [66] characterised the \(H \)-minor-free graphs in terms of \((\leq 3)\)-clique sums of planar graphs and various small graphs. The above methods apply here also; we omit these details. More generally, a graph \(H \) is single-crossing if it has a drawing in the plane with at most one crossing. For example, \(K_5 \) and \(K_{3,3} \) are single-crossing. Robertson and Seymour [61] proved that for every single-crossing graph \(H \), every \(H \)-minor-free graph can be constructed from \((\leq 3)\)-clique sums of planar graphs and graphs of treewidth at most \(\ell \), for some constant \(\ell = \ell(H) \geq 3 \). It follows from the above results that every \(H \)-minor-free graph is \(\ell \)-good, has layered treewidth at most \(\ell \), and admits layered separations of width \(\ell \).

5 The Graph Minor Structure Theorem

This section introduces the graph minor structure theorem of Robertson and Seymour. This theorem shows that every graph in a proper minor-closed class can be constructed using four ingredients: graphs on surfaces, vortices, apex vertices, and clique-sums. We show that, with a restriction on the apex vertices, every graph that can be constructed using these ingredients has bounded layered treewidth, and thus admits layered separations of bounded width.

Let \(G \) be a graph embedded in a surface \(\Sigma \). Let \(F \) be a facial cycle of \(G \) (thought of as a subgraph of \(G \)). An \(F \)-vortex is an \(F \)-decomposition \((B_x \subseteq V(H) : x \in V(F))\) of a graph \(H \) such that \(V(G \cap H) = V(F) \) and \(x \in B_x \) for each \(x \in V(F) \). For \(g, p, a \geq 0 \) and \(k \geq 1 \), a graph \(G \) is \((g, p, k, a)\)-almost-embeddable if for some set \(A \subseteq V(G) \) with \(|A| \leq a\), there are graphs
G_0, G_1, \ldots, G_s for some $s \in \{0, \ldots, p\}$ such that:

- $G - A = G_0 \cup G_1 \cup \cdots \cup G_s$,
- G_1, \ldots, G_s are pairwise vertex disjoint;
- G_0 is embeddable in a surface of Euler genus at most g,
- there are s pairwise (vertex-)disjoint facial cycles F_1, \ldots, F_s of G_0, and
- for $i \in \{1, \ldots, s\}$, there is an F_i-vortex $(B_x \subseteq V(G_i) : x \in V(F_i))$ of G_i of width at most k.

The vertices in A are called apex vertices. They can be adjacent to any vertex in G.

A graph is k-almost-embeddable if it is (k, k, k, k)-almost-embeddable. The following graph minor structure theorem by Robertson and Seymour is at the heart of graph minor theory. In a tree decomposition $(B_x \subseteq V(G) : x \in V(T))$ of a graph G, the torso of a bag B_x is the subgraph obtained from $G[B_x]$ by adding all edges vw where $v, w \in B_x \cap B_y$ for some edge $xy \in E(T)$.

Theorem 16 (Robertson and Seymour [62]). For every fixed graph H there is a constant $k = k(H)$ such that every H-minor-free graph is obtained by clique-sums of k-almost-embeddable graphs. Alternatively, every H-minor-free graph has a tree decomposition in which each torso is k-almost embeddable.

This section explores which graphs described by the graph minor structure theorem admit layered separations of bounded width. As stated earlier, it is not the case that all such graphs admit layered separations of bounded width. For example, let G be the graph obtained from the $\sqrt{n} \times \sqrt{n}$ grid by adding one dominant vertex. Thus, G has diameter 2, contains no K_6-minor, and has treewidth at least \sqrt{n}. By Lemma 5, if G admits layered separations of width ℓ, then $\ell \in \Omega(\sqrt{n})$.

We will show that the following restriction to the definition of almost-embeddable will lead to graph classes that admit layered separations of bounded width. A graph G is strongly (g, p, k, a)-almost-embeddable if it is (g, p, k, a)-almost-embeddable and there is no edge between an apex vertex and a vertex in $G_0 - (G_1 \cup \cdots \cup G_s)$. That is, each apex vertex is only adjacent to other apex vertices or vertices in the vortices. A graph is strongly k-almost-embeddable if it is strongly (k, k, k, k)-almost-embeddable.

Theorem 17. Every strongly (g, p, k, a)-almost-embeddable graph G is $(a + (k+1)(2g+2p+3))$-good.

Proof. We use the notation from the definition of strongly (g, p, k, a)-almost-embeddable. We may assume that G is connected, and except for F_1, \ldots, F_s, each face of G_0 is a triangle, where
G_0 might contain parallel edges not bounding a single face. Let K be the given clique in G of size at most $a + (k + 1)(2g + 2p + 3)$ (in the definition of good).

Construct a layering (V_0, V_1, \ldots, V_t) of G as follows. Let $V_0 := K$ and let

$$V_1 := (N_G(K) \cup A \cup V(G_1 \cup \cdots \cup G_s)) \setminus K.$$

For $i = 2, 3, \ldots$, let V_i be the set of vertices of G that are not in $V_0 \cup \cdots \cup V_{i-1}$ and are adjacent to some vertex in V_{i-1}. Thus (V_0, V_1, \ldots, V_t) is a layering of G (for some t).

Let $K' := (K \cap V(G_0) \setminus V(F_1 \cup \cdots \cup F_s)$ be the part of K embedded in the surface and avoiding the vortices. If $K' \neq \emptyset$ then let r be one vertex in K', otherwise r is undefined.

Let G_0' be the triangulation obtained from G_0 as follows. For $i \in \{1, \ldots, s\}$, add a new vertex r_i inside face F_i (corresponding to vortex G_i) and add an edge between r_i and each vertex of F_i. Let $n := |V(G_0')|$.

We now construct a spanning forest T of G_0'. Declare r (if defined) and r_1, \ldots, r_s to be the roots of T. For $i \in \{1, \ldots, s\}$, make each vertex in $V(F_i)$ adjacent to r_i in T. By definition, these edges are in G_0'. Now, make each vertex in $K' \setminus \{r\}$ adjacent to r in T. Since K' is a clique, these edges are in G_0'. Every vertex v in $V(G_0') \cap V_1$ that is not already in T is adjacent to K'; make each such vertex v adjacent to a neighbour in K' in T. Every vertex in $V(G_0') \cap V_1$ is now in T (either as a root or as a child or grandchild of a root). Now, for $i = 2, 3, \ldots$, for each vertex v in $V(G_0') \cap V_i$, choose a neighbour w of v in V_{i-1}, and add the edge vw to T. Now, T is a spanning forest of G_0' with $s + 1$ connected components, and thus with $n - s$ or $n - s - 1$ edges.

Let D be the graph with vertex set $F(G_0')$ where two vertices of D are adjacent if the corresponding faces share an edge in $G_0' \setminus E(T)$. Thus G_0' has $3n + 3g - 6$ edges and $2n + 2g - 4$ faces. Hence $|V(D)| = 2n + 2g - 4$ and $|E(D)| = |E(G_0')| - |E(T)| \leq (3n + 3g - 6) - (n - s - 1) = 2n + 3g + s - 5$.

By the same argument used in the proof of Theorem 9, D is connected. Let T^* be a spanning tree of D. Let $X := E(D) \setminus E(T^*)$. Note that $|X| \leq (2n + 3g + s - 5) - (2n + 2g - 4 - 1) = g + s$.

For each vertex $x \in V(G_0')$, let P_x be the path in T between x and the root of the connected component of T containing x. By construction, P_x includes at most one vertex in G_0' in each layer V_i with $i \geq 1$. If P_x is in the component of T rooted at r, then let $P_x^+ := V(P_x) \setminus K$. Otherwise, P_x is in the component of T rooted at r_i for some $i \in \{1, \ldots, s\}$. Then P_x contains exactly one vertex $v \in V(F_i \cap P_x)$. Let $P_x^+ := (V(P_x) \setminus \{v\}) \cup B_v$, where B_v is the bag indexed by v in the vortex G_i. Thus P_x^+ is a set of vertices in G with at most $k + 1$ vertices in each layer V_i with $i \geq 1$ (since $|B_v| \leq k + 1$). For each face $f = uvw$ of G_0', let

$$C_f := \{P_x^+ \cup P_y^+ : xy \in X\} \cup P_u^+ \cup P_v^+ \cup P_w^+ \cup A \cup K.$$

Thus C_f contains at most $a + (k + 1)(2g + 2s + 3)$ vertices in each layer V_i (since $|K| \leq a + (k + 1)(2g + 2s + 3)$).
We now prove that \((C_f : f \in F(G_0'))\) is a \(T^*\)-decomposition of \(G\). (This makes sense since \(V(T^*) = F(G_0')\).) First, we prove condition (1) in the definition of \(T^*\)-decomposition for each edge \(vw\) of \(G\). If \(v \in A \cup K\), then \(v\) is in every bag and \(w\) is in some bag (proved below), implying \(v\) and \(w\) are in a common bag. Now assume that \(v \notin A \cup K\) and \(w \notin A \cup K\) by symmetry. If \(vw \in E(G_0)\), then \(v, w \in C_f\) for each of the two faces \(f\) of \(G_0\) incident to \(vw\). Otherwise \(vw \in E(G_i)\) for some \(i \in \{1, \ldots, s\}\). Then \(v, w \in B_x\) for some vertex \(x \in V(F_i)\), implying that \(v, w \in C_f\) for each face \(f\) of \(G_0\) incident to \(x\) (and there is such a face, for example, the one including \(r_i\)). This proves condition (1) in the definition of \(T^*\)-decomposition.

We now prove condition (2) in the definition of \(T^*\)-decomposition for each vertex \(v\) of \(G\). We consider three cases: (a) \(v\) is in \(A \cup K\), (b) \(v\) is in \(G_0 - K - V(G_1 \cup \cdots \cup G_s)\), or (c) \(v\) is in some vortex \(G_i\).

(a) If \(v \in A \cup K\), then \(v\) is in every bag, and condition (2) is satisfied for \(v\).

(b) Say \(v\) is in \((G_0 - K) - V(G_1 \cup \cdots \cup G_s)\). Let \(F'\) be the set of faces \(f\) of \(G_0\) such that \(v\) is in \(C_f\). Each face incident to \(v\) is in \(F'\), thus \(F'\) is non-empty. It now suffices to prove that the induced subgraph \(T^*[F']\) is connected. Let \(T'\) be the subtree of \(T\) rooted at \(v\). If some edge \(xy\) in \(X\) is a half-chord or chord of \(T'\), then \(v\) is in \(P_x \cup P_y\), implying that \(v\) is in every bag, and \(T^*[F'] = T^*\) is connected. Now assume that no half-chord or chord of \(T'\) is in \(X\). Then a face \(f\) of \(G_0\) is in \(F'\) if and only if \(f\) is incident with a vertex in \(T'\); that is, \(F' = F(T')\). Let \(H\) be the graph defined in Lemma 8 with respect to \(T'\). That is, \(H\) has vertex set \(F'\) and edge set the dual-chords and dual-half-chords of \(T'\). By Lemma 8, \(H\) is connected. Since \(v\) is in in \(G_0 - K\), we have \(v\) is not a root of \(T\). Let \(p\) be the parent of \(v\) in \(T\). Each chord or half-chord of \(T'\) is an edge of \(G - (E(T) \cup X)\), except for \(pv\), which is a half-chord of \(T'\) (since \(p \notin V(T')\)). Let \(e\) be the edge of \(H\) dual to \(pv\). By Lemma 8, \(T^*[F'] = H - e\) is connected, as desired.

(c) Say \(v\) is in \(G_i\) for some \(i \in \{1, \ldots, s\}\). Let \(F'\) be the set of faces \(f\) of \(G_0\) such that \(v\) is in \(C_f\). It suffices to prove that the induced subgraph \(T^*[F']\) is connected and non-empty. Let \(Z := \{z \in V(F_i) : v \in B_z\}\), where \(B_z\) is the bag of \(G_i\) corresponding to \(z\). By the definition of a vortex, \(Z\) induces a connected non-empty subgraph of the cycle \(F_i\). Say \(Z = (z_1, z_2, \ldots, z_q)\) ordered by \(F_i\) where \(q \geq 1\). For \(j \in \{1, \ldots, q\}\), let \(T_j\) be the subtree of \(T\) rooted at \(z_j\). Let \(F_j'\) be the set of faces of \(G_0\) incident to some vertex in \(T_j\). By construction, \(T^*[F'] = \bigcup_j T^*[F_j']\). By the argument used in part (b) applied to \(z_j\), \(T^*[F_j']\) is connected and non-empty. Since \(F_j'\) and \(F_{j+1}'\) have the face \(r_iz_jz_{j+1}\) in common for \(j \in \{1, \ldots, q - 1\}\), we have \(T^*[F'] = \bigcup_j T^*[F_j']\) is connected and non-empty, as desired.

Therefore \((C_f : f \in F(G_0'))\) is a \(T^*\)-decomposition of \(G\), and it has layered width at most \(a + (k + 1)(2g + 2s + 3)\).

It is easily seen that every clique in a \((g, p, k, a)\)-almost-embeddable graph has order at most \(a + 2k + \lfloor \frac{1}{2}(7 + \sqrt{1 + 24g}) \rfloor\), which is at most \(a + (k + 1)(2g + 2p + 3)\) since \(k \geq 1\) and \(p \geq 0\). Thus Lemma 3, Lemma 15 and Theorem 17 together imply:
Theorem 18. Every graph obtained by clique-sums of strongly \((g, p, k, a)\)-almost-embeddable graphs is \(a + (k + 1)(2g + 2p + 3)\)-good, has layered treewidth at most \(a + (k + 1)(2g + 2p + 3)\), and admits layered separations of width \(a + (k + 1)(2g + 2p + 3)\).

Lemma 4 and Theorem 18 together imply:

Theorem 19. Let \(G\) be a graph obtained by clique-sums of strongly \(k\)-almost-embeddable graphs. Then:

(a) \(G\) is \((4k^2 + 8k + 3)\)-good,

(b) \(G\) has layered treewidth at most \(4k^2 + 8k + 3\),

(c) \(G\) admits layered separations of width \(4k^2 + 8k + 3\), and

(d) if \(G\) has diameter \(d\) then \(G\) has treewidth less than \((4k^2 + 8k + 3)(d + 1)\).

Theorem 19(d) improves upon a result by Grohe [40, Proposition 10] who proved an upper bound on the treewidth of \(d \cdot f(k)\), where \(f(k) \approx k^k\). Moreover, this result of Grohe [40] assumes there are no apex vertices. That is, it is for clique-sums of \((k, k, k, 0)\)-almost-embeddable graphs.

Recall that a graph \(H\) is apex if \(H - v\) is planar for some vertex \(v\) of \(H\). Dvoráčk and Thomas [34] proved a structure theorem for general \(H\)-minor-free graphs, which in the case of apex graphs \(H\), says that \(H\)-minor-free graphs are obtained from clique-sums of strongly \(k\)-almost-embeddable graphs, for some \(k = k(H)\); see [17] for related claims. Thus Theorem 19 implies:

Theorem 20. For each fixed apex graph \(H\) there is a constant \(\ell = \ell(H)\) such that every \(H\)-minor-free graph has layered treewidth at most \(\ell\) and admits layered separations of width \(\ell\).

We now characterise the minor-closed classes with bounded layered treewidth.

Theorem 21. The following are equivalent for a proper minor-closed class of graphs \(\mathcal{G}\):

(1) every graph in \(\mathcal{G}\) has bounded layered treewidth,

(2) every graph in \(\mathcal{G}\) admits layered separations of bounded width,

(3) \(\mathcal{G}\) has linear local treewidth,

(4) \(\mathcal{G}\) has bounded local treewidth,

(5) \(\mathcal{G}\) excludes a fixed apex graph as a minor,

(6) every graph in \(\mathcal{G}\) is obtained from clique-sums of strongly \(k\)-almost-embeddable graphs (for fixed \(k\)).
Proof. Lemma 3 shows that (1) implies (2). Lemma 7 shows that (2) implies (3), which implies (4) by definition. Eppstein [36] proved that (4) and (5) are equivalent; see [15] for an alternative proof. As mentioned above, Dvorák and Thomas [34] proved that (5) implies (6). Theorem 19(b) proves that (6) implies (1). □

Note that Demaine and Hajiaghayi [16] previously proved that (3) and (4) are equivalent.

6 Rich Decompositions and Shadow Complete Layerings

As observed in Section 5, it is not the case that graphs in every proper minor-closed class admit layered separations of bounded width. However, in this section we introduce some tools (namely, rich tree decompositions and shadow complete layerings) that enable our methods based on layered tree decompositions to be extended to conclude results about graphs in any proper minor-closed class. See Theorems 30 and 40 for two applications of the results in this section.

Consider a layering \((V_0, V_1, \ldots, V_t)\) of a graph \(G\). Let \(H\) be a connected component of \(G[V_i \cup V_{i+1} \cup \cdots \cup V_t]\), for some \(i \in \{1, \ldots, t\}\). The shadow of \(H\) is the set of vertices in \(V_{i-1}\) adjacent to \(H\). The layering is shadow complete if every shadow is a clique. This concept was introduced by Kündgen and Pelsmajer [48] and implicitly by Dujmović et al. [26]. It is a key to the proof that graphs of bounded treewidth have bounded nonrepetitive chromatic number [48] and bounded track-number [26].

A tree decomposition \((B_x \subseteq V(G) : x \in V(T))\) of a graph \(G\) is \(k\)-rich if \(B_x \cap B_y\) is a clique in \(G\) on at most \(k\) vertices, for each edge \(xy \in E(T)\). The following lemma generalises a result by Kündgen and Pelsmajer [48], who proved it when each bag of the tree decomposition is a clique (that is, for chordal graphs). We allow bags to induce more general graphs, and in subsequent sections we apply this lemma with each bag inducing an \(\ell\)-almost embeddable graph (Theorems 30 and 40).

For a subgraph \(H\) of a graph \(G\), a tree decomposition \((C_y \subseteq V(H) : y \in V(F))\) of \(H\) is contained in a tree decomposition \((B_x \subseteq V(G) : x \in V(T))\) of \(G\) if for each bag \(C_y\) there is bag \(B_x\) such that \(C_y \subseteq B_x\).

Lemma 22. Let \(G\) be a graph with a \(k\)-rich tree decomposition \(T\) for some \(k \geq 1\). Then \(G\) has a shadow complete layering \((V_0, V_1, \ldots, V_t)\) such that every shadow has size at most \(k\), and for each \(i \in \{0, \ldots, t\}\), the subgraph \(G[V_i]\) has a \((k - 1)\)-rich tree decomposition contained in \(T\).

Proof. We may assume that \(G\) is connected with at least one edge. Say \(T = (B_x \subseteq V(G) : x \in V(T))\) is a \(k\)-rich tree decomposition of \(G\). If \(B_x \subseteq B_y\) for some edge \(xy \in E(T)\), then contracting \(xy\) into \(y\) (and keeping bag \(B_y\)) gives a new \(k\)-rich tree decomposition of \(G\). Moreover, if a tree decomposition of a subgraph of \(G\) is contained in the new tree decomposition of \(G\), then
it is contained in the original. Thus, we may assume that $B_x \not\subseteq B_y$ and $B_y \not\subseteq B_x$ for each edge $xy \in V(T)$.

Let G' be the graph obtained from G by adding an edge between every pair of vertices in a common bag (if the edge does not already exist). Let r be a vertex of G. Let α be a node of T such that $r \in B_\alpha$. Root T at α. Now every non-root node of T has a parent node. Let $V_0 := \{r\}$. Let t be the eccentricity of r in G'. For $i \in \{1, \ldots, t\}$, let V_i be the set of vertices of G at distance i from r in G'. Since G is connected, G' is connected. Thus (V_0, V_1, \ldots, V_t) is a layering of G' and also of G (since $G \subseteq G'$).

Since each bag B_x is a clique in G', V_1 is the set of vertices of G in bags that contain r (not including r itself). More generally, V_i is the set of vertices of G in bags that intersect V_{i-1} but are not in $V_0 \cup \cdots \cup V_{i-1}$.

Define $B'_\alpha := B_\alpha \setminus \{r\}$ and $B''_\alpha := \{r\}$. For a non-root node $x \in V(T)$ with parent node y, define $B'_x := B_x \setminus B_y$ and $B''_x := B_x \cap B_y$. Since $B_x \not\subseteq B_y$, we have $B'_x \neq \emptyset$. One should think that B'_x is the set of vertices that first appear in B_x when traversing down the tree decomposition from the root, while B''_x is the set of vertices in B_x that appear above x in the tree decomposition.

Consider a node x of T. Since B_x is a clique in G', B_x is contained in at most two consecutive layers. Consider (not necessarily distinct) vertices $u, v \in B'_x$, which is not empty. Then the distance between u and r in G' equals the distance between v and r in G'. Thus B'_x is contained in one layer, say $V_{\ell(x)}$. Let w be the neighbour of v in some shortest path between B'_x and r in G'. Then w is in $B''_x \cap V_{\ell(x)-1}$. In conclusion, each bag B_x is contained in precisely two consecutive layers, $V_{\ell(x)-1} \cup V_{\ell(x)}$, such that $\emptyset \neq B'_x \subseteq V_{\ell(x)}$ and $B_x \cap V_{\ell(x)-1} \subseteq B''_x \neq \emptyset$.

Also, observe that if y is an ancestor of x in T, then $\ell(y) \leq \ell(x)$. We call this property (\ast).

We now prove that $G[V_i]$ has the desired $(k-1)$-rich tree decomposition. Since $G[V_0]$ has one vertex and no edges, this is trivial for $i = 0$. Now assume that $i \in \{1, \ldots, t\}$. Let T_i be the subgraph of T induced by the nodes x such that $\ell(x) \leq i$. By property (\ast), T_i is a (connected) subtree of T. We claim that $T_i := (B_x \cap V_i : x \in V(T_i))$ is a T_i-decomposition of $G[V_i]$. First we prove that for each vertex $v \in V_i$ is in some bag of T_i. Let x be the node of T closest to α, such that $v \in B_x$. Then $v \in B'_x$ and $\ell(x) = i$. Hence v is in the bag $B_x \cap V_i$ of T_i, as desired. Now we prove that for each edge $vw \in E(G[V_i])$, both v and w are in a common bag of T_i. Let x be the node of T closest to α, such that $v \in B_x$. Let y be the node of T closest to α, such that $w \in B_y$. Since $vw \in E(G)$, there is a bag B_z containing both v and w, and z is a descendent of both x and y in T (by the definition of x and y). Thus, without loss of generality, x is on the $y\alpha$-path in T. Thus $w \in B'_y$ and $y \in V(T_i)$. Moreover, v is also in B_y (since v and w are in a common bag of T). Thus, v and w are in the bag $B_y \cap V_i$ of T_i, as desired. Finally, we prove that for each vertex $v \in V_i$, the set of bags in T_i that contain v correspond to a (connected) subtree of T_i. By assumption, this property holds in T. Let X be the subgraph of T whose corresponding bags in T contain v. Let x be the root of X. Then $v \in B_x$ and $\ell(x) = i$. By property (\ast), we have $\ell(z) \in \{i, i+1\}$ for each node z in X. Moreover, again by property
An X-crossing Conversely, Dujmović et al. [27] proved that of y is a X be the root of G. v to some vertex (k - 1) vertices. Certainly, it is a clique on at most k vertices, since T is k-rich. Now, \(\ell(x) \leq i \) (since \(x \in V(T_i) \)). If \(\ell(x) < i \) then \(B_z \cap V_i = \emptyset \), and we are done. Now assume that \(\ell(x) = i \). Thus \(B'_x \subseteq V_i \) and \(B'_x \neq \emptyset \). Let v be a vertex in \(B'_x \). Let w be the neighbour of v on a shortest path in \(G' \) between v and r. Thus w is in \(B''_x \cap V_{i-1} \). Thus \(|B''_x \cap V_i| \leq k - 1 \), as desired. Hence \(T_i \) is \((k-1) \)-rich.

We now prove that \((V_0, V_1, \ldots, V_t) \) is shadow complete. Let H be a connected component of \(G[V_i \cup V_{i+1} \cup \cdots \cup V_t] \) for some \(i \in \{1, \ldots, \ell\} \). Let X be the subgraph of T whose corresponding bags in T intersect \(V(H) \). Since H is connected, X is indeed a connected subtree of T. Let x be the root of X. Consider a vertex w in the shadow of H. That is, \(w \in V_{i-1} \) and w is adjacent to some vertex v in \(V(H) \cap V_i \). Let y be the node closest to x in X, such that \(v \in B_y \). Then \(v \in B'_y \) and \(w \in B''_y \). Thus \(\ell(y) = i \). Consider a node z in X. Then \(B_z \subseteq V_{\ell(z)-1} \cup V_{\ell(z)} \) and some vertex in \(B_z \) is in \(V(H) \) and is thus in \(V_i \cup V_{i+1} \cup \cdots \cup V_t \). Thus \(\ell(z) \geq i \). On the other hand, if in addition z is in the \(xy \)-path in X, then \(\ell(z) \leq \ell(y) = i \) by property (\(\ast \)), implying \(\ell(z) = i \). Thus \(w \in B''_x \) for each such node z. In particular, \(w \in B''_x \). Since \(B''_x \) is a clique, the shadow of H is a clique. Hence \((V_0, V_1, \ldots, V_t) \) is shadow complete. Moreover, since \(|B''_x| \leq k \), the shadow of H has size at most k.

\[\square \]

7 Track and Queue Layouts

The results of this section are expressed in terms of track layouts of graphs, which is a type of graph layout closely related to queue layouts and 3-dimensional grid drawings. A vertex \(|I| \)-colouring of a graph G is a partition \(\{V_i : i \in I\} \) of \(V(G) \) such that for every edge \(vw \in E(G) \), if \(v \in V_i \) and \(w \in V_j \) then \(i \neq j \). The elements of the set I are colours, and each set \(V_i \) is a colour class. Suppose that \(\preceq_i \) is a total order on each colour class \(V_i \). Then each pair \((V_i, \preceq_i) \) is a track, and \(\{(V_i, \preceq_i) : i \in I\} \) is an \(|I| \)-track assignment of G.

An X-crossing in a track assignment consists of two edges \(vw \) and \(xy \) such that \(v \preceq_i x \) and \(y \preceq_j w \), for distinct colours \(i \) and \(j \). A t-track assignment of G that has no X-crossings is called a t-track layout of G. The minimum t such that a graph G has t-track layout is called the track-number of G, denoted by \(\text{tn}(G) \). Dujmović et al. [26] proved that

\[qm(G) \leq \text{tn}(G) - 1. \]

Conversely, Dujmović et al. [27] proved that \(\text{tn}(G) \leq f(qm(G)) \) for some function \(f \). In this sense, queue-number and track-number are tied.
As described in Section 1.2, Dujmović [22] recently showed that layered separators can be used to construct queue layouts. In fact, the construction produces a track layout, which with (1) gives the desired bound for queue layouts.

Lemma 23 ([22]). If a graph G admits layered separations of width ℓ then

$$q_n(G) < t_n(G) \leq 3\ell(\lceil \log_{3/2} n \rceil + 1).$$

Recall the following result discussed in Section 1.1.

Lemma 24 ([23, 49]). Every planar graph admits layered separations of width 2.

Lemmas 23 and 24 imply the following result of Dujmović [22].

Theorem 25 ([22]). Every n-vertex planar graph G satisfies

$$q_n(G) < t_n(G) \leq 6\lceil \log_{3/2} n \rceil + 6.$$

This bound on $q_n(G)$ was improved to $q_n(G) \leq 4\lceil \log_{3/2} n \rceil$ by Fabrizio Frati [personal communication, 2013].

Now consider queue and track layouts of graphs with Euler genus g. Theorem 10 and Lemma 23 imply that $q_n(G) < t_n(G) \in O(g \log n)$. This bound can be improved to $O(g + \log n)$ as follows. A straightforward extension of the proof of Lemma 23 gives the following result (see Appendix C for a proof):

Lemma 26. Let T be a tree decomposition of a graph G, such that there is a set $Q \subseteq V(G)$ with at most ℓ_1 vertices in each layer of some layering of G, and T restricted to $G - Q$ has layered width at most ℓ_2 with respect to the same layering. Then

$$q_n(G) < t_n(G) \leq 3\ell_1 + 3\ell_2(1 + \log_{3/2} n).$$

Theorem 13 and Lemma 26 with $\ell_1 = 2g$ and $\ell_2 = 3$ imply the following generalisation of the above results.

Theorem 27. For every n-vertex graph with Euler genus g,

$$q_n(G) < t_n(G) \leq 6g + 9(1 + \log_{3/2} n).$$

Theorem 20 and Lemma 23 imply the following further generalisation.

Theorem 28. For each fixed apex graph H, for every n-vertex H-minor-free graph G,

$$q_n(G) < t_n(G) \leq O(\log n).$$
We now extend this result to arbitrary proper minor-closed classes. Dujmović et al. [26] implicitly proved that if a graph G has a shadow complete layering such that each layer induces a graph with track-number at most c and each shadow has size at most s, then G has track-number at most $3c^{s+1}$ (see Appendix D). Iterating this result gives the next lemma.

Lemma 29 ([26]). For some number c, let G_0 be a class of graphs with track-number at most c. For $k \geq 1$, let G_k be a class of graphs that have a shadow complete layering such that each shadow has size at most k, and each layer induces a graph in G_{k-1}. Then every graph in G_k has track-number and queue-number at most $3^{(k+2)!}(k+1)!c^{(k+1)!}$.

Theorem 30. For every fixed graph H, every H-minor-free n-vertex graph has track-number and queue-number at most $\log^{O(1)} n$.

Proof. Let G_0 be an H-minor-free graph on n vertices. By Theorem 16, there are constants $k \geq 1$ and $\ell \geq 1$ depending only on H, such that G_0 is a spanning subgraph of a graph G that has a k-rich tree decomposition T such that each bag induces an ℓ-almost embeddable subgraph of G. Note that G_0, G, T and n remain fixed throughout the proof.

For $j \in \{0, \ldots, k\}$, let G_j be the set of induced subgraphs of G that have a j-rich tree decomposition contained in T. Note that G itself is in G_k.

Consider a graph $G' \in G_0$. Then G' is the union of disjoint subgraphs of G, each of which is ℓ-almost embeddable. To layout one ℓ-almost embeddable graph, put each of the at most ℓ apex vertices on its own track, and layout the remaining graph with $3(4\ell^2 + 8\ell + 3)(\lceil \log_{3/2} n \rceil + 1)$ tracks by Theorem 19 and Lemma 23. (Here we do not use the clique-sums in Theorem 19.) Of course, the track-number of a graph is the maximum track-number of its connected components. Thus G' has track-number at most $\ell + 3(4\ell^2 + 8\ell + 3)(\lceil \log_{3/2} n \rceil + 1)$.

Consider $G' \in G_j$ for some $j \in \{1, \ldots, k\}$. Thus G' is an induced subgraph of G with a j-rich tree decomposition contained in T. By Lemma 22, G' has a shadow complete layering (V_0, \ldots, V_t) such that every shadow has size at most j, and for each layer V_i, the induced subgraph $G'[V_i]$ has a $(j-1)$-rich tree decomposition T_i contained in T. Thus $G'[V_i]$ is in G_{j-1}.

By Lemma 29 with $c = \ell + 3(4\ell^2 + 8\ell + 3)(\lceil \log_{3/2} n \rceil + 1)$, our graph G has track-number at most $3^{(k+2)!}(\ell + 3(4\ell^2 + 8\ell + 3)(\lceil \log_{3/2} n \rceil + 1))^{(k+1)!}$, which is in $\log^{O(1)} n$ since k and ℓ are constants (depending only on H).

The claimed bound on queue-number follows from (1). \qed

8 3-Dimensional Graph Drawing

This section presents our results for 3-dimensional graph drawings, which are based on the following connection between track layouts and 3-dimensional graph drawings.
Lemma 31 ([26, 30]). If a c-colourable n-vertex graph G has a t-track layout, then G has 3-dimensional grid drawings with $O(t^2n)$ volume and with $O(c^7tn)$ volume.

Every graph with Euler genus g is $O(\sqrt{g})$-colourable [47]. Thus Theorem 27 and Lemma 31 imply:

Theorem 32. Every n-vertex graph with Euler genus g has a 3-dimensional grid drawing with volume $O(g^{7/2}(g + \log n)n)$.

For fixed H, every H-minor-free graph is $O(1)$-colourable. Thus, Theorem 28 and Lemma 31 imply:

Theorem 33. For each fixed apex graph H, every n-vertex H-minor-free graph has a 3-dimensional grid drawing with volume $O(n \log n)$.

Lemma 31 and Theorem 30 extend this theorem to arbitrary proper minor-closed classes:

Theorem 34. For each fixed graph H, every H-minor-free n-vertex graph has a 3-dimensional grid drawing with volume $n \log^O(1)n$.

The best previous upper bound on the volume of 3-dimensional grid drawings of graphs with bounded Euler genus or H-minor-free graphs was $O(n^{3/2})$ [30].

9 Nonrepetitive Colourings

This section proves our results for nonrepetitive colourings. Recall the following two results by Dujmović et al. [23] discussed in Section 1.3. (Theorem 36 is implied by Lemmas 24 and 35.)

Lemma 35 ([23]). If an n-vertex graph G admits layered separations of width ℓ then

$$\pi(G) \leq 4\ell(1 + \log_{3/2} n) .$$

Theorem 36 ([23]). For every n-vertex planar graph G,

$$\pi(G) \leq 8(1 + \log_{3/2} n) .$$

Now consider nonrepetitive colourings of graphs G with Euler genus g. Theorem 10 and Lemma 35 imply that $\pi(G) \leq O(g \log n)$. This bound can be improved to $O(g + \log n)$ as follows. A straightforward extension of the proof of Lemma 35 gives the following result (see Appendix C for a proof):
Lemma 37. Let \(T \) be a tree decomposition of a graph \(G \), such that there is a set \(Q \subseteq V(G) \) with at most \(\ell_1 \) vertices in each layer of some layering of \(G \), and \(T \) restricted to \(G - Q \) has layered width at most \(\ell_2 \) with respect to the same layering. Then
\[
\pi(G) \leq 4\ell_1 + 4\ell_2(1 + \log_{3/2} n) .
\]

Theorem 13 and Lemma 37 with \(\ell_1 = 2g \) and \(\ell_2 = 3 \) imply the following generalisation of the above results.

Theorem 38. For every \(n \)-vertex graph with Euler genus \(g \),
\[
\pi(G) \leq 8g + 12(1 + \log_{3/2} n) .
\]

To generalise Theorem 38, we employ a result by Kündgen and Pelsmajer [48]. They proved that if a graph \(G \) has a shadow complete layering such that the graph induced by each layer is nonrepetitively \(c \)-colourable, then \(G \) is nonrepetitively \(4c \)-colourable [48, Theorem 6]. Iterating this result gives the next lemma.

Lemma 39 ([48]). For some number \(c \), let \(G_0 \) be a class of graphs with nonrepetitive chromatic number at most \(c \). For \(k \geq 1 \), let \(G_k \) be a class of graphs that have a shadow complete layering such that each layer induces a graph in \(G_{k-1} \). Then every graph in \(G_k \) has nonrepetitive chromatic number at most \(c4^k \).

The next theorem is our main result about nonrepetitive colourings.

Theorem 40. For every fixed graph \(H \), every \(H \)-minor-free \(n \)-vertex graph is nonrepetitively \(O(\log n) \)-colourable.

Proof. Let \(G_0 \) be an \(H \)-minor-free graph on \(n \) vertices. By Theorem 16, there are constants \(k \geq 1 \) and \(\ell \geq 1 \) depending only on \(H \), such that \(G_0 \) is a spanning subgraph of a graph \(G \) that has a \(k \)-rich tree decomposition \(T \) such that each bag induces an \(\ell \)-almost embeddable subgraph of \(G \). Note that \(G_0 \), \(G \), \(T \) and \(n \) remain fixed throughout the proof.

For \(j \in \{0, \ldots, k\} \), let \(G_j \) be the set of induced subgraphs of \(G \) that have a \(j \)-rich tree decomposition contained in \(T \). Note that \(G \) itself is in \(G_k \).

Consider a graph \(G' \in G_0 \). Then \(G' \) is the union of disjoint subgraphs of \(G \), each of which is \(\ell \)-almost embeddable. To nonrepetitively colour one \(\ell \)-almost embeddable graph, give each of the at most \(\ell \) apex vertices its own colour and colour the remainder with \(4(4\ell^2 + 8\ell + 3)(1 + \log_{3/2} n) \) colours by Theorem 19 and Lemma 35. (Here we do not use the clique-sums in Theorem 19.) Of course, colours can be reused on distinct connected components. Thus \(G' \) is nonrepetitively \((\ell + 4(4\ell^2 + 8\ell + 3)(1 + \log_{3/2} n))\)-colourable.

Consider some \(G' \in G_j \) for some \(j \in \{1, \ldots, k\} \). Thus \(G' \) is an induced subgraph of \(G \) with a \(j \)-rich tree decomposition contained in \(T \). By Lemma 22, \(G' \) has a shadow complete layering
(V_0, \ldots, V_t) such that for each layer V_i, the induced subgraph $G'[V_i]$ has a $(j - 1)$-rich tree decomposition T_i contained in T. Thus $G'[V_i]$ is in G_{j-1}.

By Lemma 39 with $c = \ell + 4(4\ell^2 + 8\ell + 3)(1 + \log_3 n)$, our graph G is nonrepetitively $4^k(\ell + 4(4\ell^2 + 8\ell + 3)(1 + \log_3 n))$-colourable, as is G_0, since G_0 is a subgraph of G. \hfill \square

10 Reflections

1. The notion of local treewidth has been very successful in the field of approximation algorithms and bidimensionality [4, 14, 16, 40]. Given that layered tree decompositions can be thought of as a global structure for graphs of bounded local treewidth, it would be interesting to see if layered treewidth has applications to approximation algorithms and bidimensionality.

2. What can be said about the layered treewidth of various non-minor-closed graph classes?

3. The similarity between queue/track layouts and nonrepetitive colourings is remarkable given how different the definitions seem at first glance. Both parameters have bounded expansion [52] and admit very similar properties with respect to subdivisions [31, 52]. Many proof techniques work for both queue/track layouts and nonrepetitive colourings, in particular layered separations and shadow-complete layerings. One exception is that graphs of bounded maximum degree have bounded nonrepetitive chromatic number [2, 24, 41, 44], whereas graphs of bounded maximum degree have unbounded track- and queue-number [70]. It would be interesting to prove a more direct relationship. Do graphs of bounded track/queue-number have bounded nonrepetitive chromatic number? More specifically, do 1-queue graphs have bounded nonrepetitive chromatic number? And do 3-track graphs have bounded nonrepetitive chromatic number?

4. Finally, we mention the work of Shahrokhi [63] who introduced a definition equivalent to layered treewidth. (We became aware of reference [63] when it was posted on the arXiv in 2015.) Shahrokhi [63] was motivated by questions completely different from those in the present paper. In our language, he proved that for every graph G with layered treewidth k, there is a graph G_1 with clique cut width at most $2k - 1$ and a chordal graph G_2 such that $G = G_1 \cap G_2$. Shahrokhi [63] then proved that every planar graph G has layered treewidth at most 4, implying that there is a graph G_1 with clique cut width at most 7 and a chordal graph G_2 such that $G = G_1 \cap G_2$. Theorem 9 with $g = 0$ improves these bounds from 4 to 3 and thus from 7 to 5. All our other results about layered treewidth can be applied in this domain as well.

Acknowledgements

Thanks to Zdenek Dvorák, Gwenaël Joret, Sergey Norin, Bruce Reed and Paul Seymour for helpful discussions. This research was partially completed at Bellairs Research Institute in Barbados.

26
References

A Separators in a Tree Decomposition

For completeness we include the following proof:

Proof of Lemma 1. Let \((B_x \subseteq V(G) : x \in V(T))\) be a \(T\)-decomposition of a graph \(G\), for some tree \(T\). Let \(S \subseteq V(G)\). Our goal is to prove that there is a bag \(B\) such that each connected component of \(G - B\) contains at most \(\frac{1}{2}|S|\) vertices in \(S\).

Consider an edge \(xy\) of \(T\). Let \(T(x, y)\) and \(T(y, x)\) be the components of \(T - xy\) that respectively contain \(x\) and \(y\). Let \(G(x, y)\) be the subgraph of \(G - B_y\) induced by the union of the bags associated with nodes in \(T(x, y)\). Define \(G(y, x)\) analogously. Observe that each vertex of \(G\) is in exactly one of \(G(x, y)\), \(G(y, x)\) and \(B_x \cap B_y\). Without loss of generality, \(G(x, y)\) contains at most \(\frac{1}{2}|S|\) vertices in \(S\). Orient \(xy\) from \(x\) to \(y\).

Since \(T\) is a tree, there is a node \(y\) of \(T\), such that each edge of \(T\) incident to \(y\) is oriented towards \(y\). That is, for each neighbour \(x\) of \(y\) in \(T\), the subgraph \(G(x, y)\) contains at most \(\frac{1}{2}|S|\) vertices in \(S\). Thus, each connected component of \(G - B_y\) contains at most \(\frac{1}{2}|S|\) vertices in \(S\), and \(B_y\) is the desired bag. This proves the first claim.

We now show that \(G\) has a separation \((G_1, G_2)\) with \(V(G_1 \cap G_2) = B\) and both \(G_1 - V(G_2)\) and \(G_2 - V(G_1)\) contain at most \(\frac{2}{3}|S|\) vertices in \(S\). Partition the components of \(G - B_y\) into two parts \(P\) and \(Q\) to minimise the maximum number of vertices in \(S\) in one of the parts. Let \(p\) and \(q\) be the number of vertices in \(S\) in \(P\) and \(Q\) respectively, where \(p \geq q\). Suppose that \(p > \frac{2}{3}|S|\). Thus \(q < \frac{1}{3}|S| < \frac{1}{2}p\). Each component in \(P\) contains at most \(\frac{1}{2}|S|\) vertices in \(S\). Thus
P has at least two components and therefore has a component C that contains at least 1 and at most $\frac{1}{2}p$ vertices in S. Let P', Q' be the partition obtained by moving C from P to Q. Thus P' contains less vertices in S than P. And Q' contains at most $q + \frac{1}{2}p$ vertices in S, which is less than p. This contradicts the choice of P, Q. Hence $q \leq p \leq \frac{2}{3}|S|$. Thus G contains the desired separation.

\[\Box\]

B Layered Treewidth to Treewidth

The following result is due to Sergey Norin [personal communication, 2014].

Theorem 41. Every n-vertex graph G with layered treewidth k has treewidth at most $2\sqrt{kn}$.

Proof. Let V_1, V_2, \ldots, V_t be the layering in a tree decomposition of G with layered width k. Let $p := \lceil \sqrt{n/k} \rceil$. For $j \in \{1, \ldots, p\}$, let $W_j := V_j \cup V_{p+j} \cup V_{2p+j} \cup \cdots$. Thus W_1, W_2, \ldots, W_p is a partition of $V(G)$. For some $j \in \{1, \ldots, p\}$ we have $|W_j| \leq \frac{n}{p} \leq \sqrt{kn}$. Each connected component of $G - W_j$ is contained within $p - 1$ consecutive layers, and therefore has treewidth at most $k(p-1) - 1 \leq \sqrt{kn}$. Hence $G - W_j$ has treewidth at most \sqrt{kn}. Adding W_j to every bag gives a tree decomposition of G with width at most $\sqrt{kn} + |W_j| \leq 2\sqrt{kn}$. \[\Box\]

C Recursive Separators

Here we prove Lemmas 26 and 37. The method, which is based on recursive application of layered separations, is a straightforward generalisation of the method of Dujmović et al. [23] for nonrepetitive colouring and of Dujmović [22] for track layouts. Both lemmas have the same starting assumptions: Let V_1, V_2, \ldots, V_p be a layering of a graph G. Let \mathcal{T} be a tree decomposition of G, such that there is a set $Q \subseteq V(G)$ with at most ℓ_1 vertices in each layer V_i, and \mathcal{T} restricted to $G - Q$ has layered treewidth at most ℓ_2 with respect to V_1, V_2, \ldots, V_p.

For each vertex $v \in Q$, let $\text{depth}(v) := 0$. For $i \in \{1, \ldots, p\}$, injectively label the vertices in $V_i \cap Q$ by $1, 2, \ldots, \ell_1$. Let label(v) be the label assigned to each vertex $v \in V_i \cap Q$. By assumption, $G - Q$ has layered treewidth at most ℓ_2 and thus admits layered separations of width ℓ_2 by Lemma 3. Now run the following recursive algorithm COMPUTE$(V(G) \setminus Q, 1)$.

33
The recursive application of \textsc{Compute} determines a rooted binary tree T, where each node of T corresponds to one call to \textsc{Compute}. Associate each vertex whose depth and label is computed in a particular call to \textsc{Compute} with the corresponding node of T. (Observe that the depth and label of each vertex is determined exactly once.) Note that the maximum depth is at most $1 + \log_{3/2} n$.

\textbf{Proof of Lemma 26.} Our goal is to prove that $\tn(G) \leq 3\ell_1 + 3\ell_2(1 + \log_{3/2} n)$. The tracks are indexed by triples of integers as follows. Colour each vertex v by $(\text{col}(v), \text{depth}(v), \text{label}(v))$, where $\text{col}(v) := i \mod 3$ if $v \in V_i$, and depth and label are computed above. This defines a track assignment for G. We now order each track. Consider two vertices $v \in V_i$ and $w \in V_j$ on the same track; that is, $(\text{col}(v), \text{depth}(v), \text{label}(v)) = (\text{col}(w), \text{depth}(w), \text{label}(w))$. If $i < j$ then place $v < w$ in the track. If $j < i$ then place $w < v$ in the track. Now assume that $i = j$. If v and w are associated with the same node of T, since $i = j$ we have label$(v) \neq$ label(w), which is a contradiction. Now assume v and w are associated with distinct nodes of T with least common ancestor α. Say S was the input set corresponding to α, and (G_1, G_2) was the corresponding separation of $G - Q$. Without loss of generality, $v \in (V(G_1) - V(G_2)) \cap S$ and $w \in (V(G_2) - V(G_1)) \cap S$. Place $v < w$ in the track. It is easily seen that each track is totally ordered by \leq.

We now show there is no X-crossing. Suppose that edges vw and xy form an X-crossing, where $(\text{col}(v), \text{depth}(v), \text{label}(v)) = (\text{col}(x), \text{depth}(x), \text{label}(x))$ and $(\text{col}(w), \text{depth}(w), \text{label}(w)) = (\text{col}(y), \text{depth}(y), \text{label}(y))$ and $v < x$ and $y < w$. Say $v \in V_a$ and $w \in V_b$ and $x \in V_c$ and $y \in V_d$. Since vw and xy are edges, $|a - b| \leq 1$ and $|c - d| \leq 1$. Since $\text{col}(v) = \text{col}(x)$ and $\text{col}(w) = \text{col}(y)$ we have $a \equiv c \mod 3$ and $b \equiv d \mod 3$. Since $v < x$ and $y < w$ we have $a \leq c$ and $d \leq b$. If $a < c$ then $a + 3 \leq c \leq d + 1 \leq b + 1 \leq a + 2$, which is a contradiction. Similarly, if $d < b$ then $d + 3 \leq b \leq a + 1 \leq c + 1 \leq d + 2$, which is a contradiction. Now assume
that \(a = c\) and \(d = b\). Without loss of generality, \(\text{depth}(v) = \text{depth}(x) \leq \text{depth}(w) = \text{depth}(y)\). Since \(\text{label}(v) = \text{label}(x)\) and \(v \neq x\), we have \(v\) and \(x\) are associated with distinct nodes of \(T\). Let \(\alpha\) be the least common ancestor of these nodes of \(T\). Say \(S\) was the input set corresponding to \(\alpha\), and \((G_1,G_2)\) was the corresponding separation of \(G - Q\). Since \(v < x\) we have \(v \in (V(G_1) - V(G_2)) \cap S\) and \(x \in (V(G_2) - V(G_1)) \cap S\). Since \(\text{depth}(v) \leq \text{depth}(w)\) and \(vw\) is an edge, \(w \in (V(G_1) - V(G_2)) \cap S\). Similarly, since \(\text{depth}(x) \leq \text{depth}(y)\) and \(xy\) is an edge, \(y \in (V(G_2) - V(G_1)) \cap S\). Therefore the algorithm places \(x < y\) on their track, which is a contradiction. Hence no two edges form an X-crossing. The number of tracks is at most \(3\ell_1 + 3\ell_2(1 + \log_{3/2} n)\).

\(\square\)

Proof of Lemma 37. Our goal is to prove that \(\pi(G) \leq 4\ell_1 + 4\ell_2(1 + \log_{3/2} n)\). Kündgen and Pelsmajer [48] proved that for every layering of a graph \(G\), there is a (not necessarily proper) 4-colouring of \(G\) such that for every repetitively coloured path \((v_1,v_2,\ldots,v_{2t})\), the subpaths \((v_1,v_2,\ldots,v_t)\) and \((v_{t+1},v_{t+2},\ldots,v_{2t})\) have the same layer pattern (that is, for \(i \in \{1,\ldots,t\}\), vertices \(v_i\) and \(v_{t+i}\) are in the same layer). Let \(\text{col}\) be a such a 4-colouring. Now colour each vertex \(v\) by \(\text{col}(v),\text{depth}(v),\text{label}(v)\), where \text{depth} and \text{label} are computed above. Suppose on the contrary that \((v_1,v_2,\ldots,v_{2t})\) is a repetitively coloured path in \(G\). Then \((v_1,v_2,\ldots,v_t)\) and \((v_{t+1},v_{t+2},\ldots,v_{2t})\) have the same layer pattern. In addition, \(\text{depth}(v_i) = \text{depth}(v_{t+i})\) and \(\text{label}(v_i) = \text{label}(v_{t+i})\) for all \(i \in \{1,\ldots,t\}\). Let \(v_i\) and \(v_{t+i}\) be vertices in this path with minimum depth. Since \(v_i\) and \(v_{t+i}\) are in the same layer and have the same label, these two vertices were not labelled at the same step of the algorithm. Let \(x\) and \(y\) be the two nodes of \(T\) respectively associated with \(v_i\) and \(v_{t+i}\). Let \(z\) be the least common ancestor of \(x\) and \(y\) in \(T\). Say node \(z\) corresponds to call \text{Compute}(B,d). Thus \(v_i\) and \(v_{t+i}\) are in \(B\) (since if a vertex \(v\) is in \(B\) in the call to \text{Compute} associated with some node \(q\) of \(T\), then \(v\) is in \(B\) in the call to \text{Compute} associated with each ancestor of \(q\) in \(T\)). Let \((G_1,G_2)\) be the separation in \text{Compute}(B,d). Since \(\text{depth}(v_i) = \text{depth}(v_{t+i}) > d\), neither \(v_i\) nor \(v_{t+i}\) are in \(V(G_1 \cap G_2)\). Since \(z\) is the least common ancestor of \(x\) and \(y\), without loss of generality, \(v_i \in V(G_1) - V(G_2)\) and \(v_{t+i} \in V(G_2) - V(G_1)\). Thus some vertex \(v_j\) in the subpath \((v_{i+1},v_{i+2},\ldots,v_{i+\ell_i-1})\) is in \(V(G_1 \cap G_2)\). If \(v_j \in B\) then \(\text{depth}(v_j) = d\). If \(v_j \notin B\) then \(\text{depth}(v_j) < d\). In both cases, \(\text{depth}(v_j) < \text{depth}(v_i) = \text{depth}(v_{t+i})\), which contradicts the choice of \(v_i\) and \(v_{t+i}\). Hence there is no repetitively coloured path in \(G\). There are \(4\ell_1\) colours at depth 0 and \(4\ell_2\) colours at every other depth. Since the maximum depth is at most \(1 + \log_{3/2} n\), the number of colours is at most \(4\ell_1 + 4\ell_2(1 + \log_{3/2} n)\).

\(\square\)

Note that in both Lemmas 26 and 37 we may replace \(\log_{3/2} n\) by \(\log_2 n\) by using separators (and the first part of Lemma 1) instead of separations (as in the second part of Lemma 1).
D Track Layout Construction

Here we sketch a proof of a result used in Section 7 that is implicit in the work of Dujmović et al. [26].

Lemma 42 (Dujmović et al. [26]). If a graph G has a shadow complete layering V_1, \ldots, V_t such that each layer induces a graph with track-number at most c and each shadow has size at most s, then G has track-number at most $3c^s+1$.

Proof Sketch. Let T be the graph obtained from G by contracting each connected component of each subgraph $G[V_i]$ into a single node. For each node x of T, let H_x be the corresponding connected component. Let V_i^t be the vertices of T arising from V_i. Thus V_1^t, \ldots, V_t^t is a layering of T. For each node $y \in V_i^t$ where $i \in \{1, \ldots, t\}$, let C_y be the set of neighbours of H_y in V_{i-1}. We may assume that $C_y \neq \emptyset$. Since the given layering is shadow complete, C_y is a clique, called the parent clique of y. Now C_y is contained in a single connected component H_x of $G[V_{i-1}]$, for some node $x \in V_{i-1}$. Call x the parent node and H_x the parent component of y. This shows that each node in V_i^t has exactly one neighbour in V_{i-1}^t, which implies that T is a forest. As illustrated in Figure 2, T has a 3-track layout T_0, T_1, T_2.

![Figure 2: A 3-track layout of T.](image)

By assumption, for each node x of T, there is a c-track layout of H_x. For a clique C of H_x of size at most s, define the signature of C to be the set of (at most s) tracks that contain C. Since there is no X-crossing, the set of cliques of H_x with the same signature can be linearly ordered $C_1 \prec \cdots \prec C_p$, such that if v and w are vertices in the same track, and in distinct cliques C_i and C_j with $i < j$, then $v \not\prec w$ in that track. Call this a clique ordering.

Replace each track T_j of T by c sub-tracks, and replace each node $x \in T_j$ by the c-track layout of H_x. This defines a $3c$ track assignment for G. Clearly an edge in some H_x crosses no other edge. Two edges between a parent component H_x and the same child component H_y do not form an X-crossing, since the endpoints in H_x of such edges form a clique (the parent clique of y), and therefore are in distinct tracks. The only possible X-crossing is between edges ab and cd, where a and c are in some parent component H_x, and b and d are in distinct child components H_y and H_z, respectively.
To solve this problem, when determining the 3-track layout of T, the child nodes of each node x are ordered in their track so that $y < z$ whenever the parent cliques C_y and C_z have the same signature, and $C_y < C_z$ in the clique ordering. Then group the child nodes of x according to the signatures of their parent cliques, and for each signature σ, use a distinct set of c tracks for the child components whose parent cliques have signature σ. Now the ordering of the child components with the same signature agrees with the clique ordering of their parent cliques, and therefore agrees with the ordering of any neighbours in the parent component. It follows that there is no X-crossing. The number of tracks is at most $3c$ times the number of signatures, which is at most $\sum_{i=1}^{s} \binom{c}{i} \leq c^s$. In total there are at most $3c \cdot c^s$ tracks. \qed

This proof makes no effort to reduce the number of tracks. Various tricks due to Dujmović et al. [26] and Di Giacomo et al. [19] make a modest improvement.