ON THE GENERAL POSITION SUBSET SELECTION PROBLEM

MICHAEL S. PAYNE AND DAVID R. WOOD

Abstract. Let \(f(n, \ell) \) be the maximum integer such that every set of \(n \) points in the plane with at most \(\ell \) collinear contains a subset of \(f(n, \ell) \) points with no three collinear. First we prove that if \(\ell \leq O(\sqrt{n}) \) then \(f(n, \ell) \geq \Omega(\sqrt{n \ln n}) \). Second we prove that if \(\ell \leq O(n^{(1-\epsilon)/2}) \) then \(f(n, \ell) \geq \Omega(\sqrt{n \log n}) \), which implies all previously known lower bounds on \(f(n, \ell) \) and improves them when \(\ell \) is not fixed.

A set of points in the plane is in general position if it contains no three collinear points. The general position subset selection problem asks, given a finite set of points in the plane with at most \(\ell \) collinear, how big is the largest subset in general position? More precisely, we wish to determine the largest integer \(f(n, \ell) \) such that every set of \(n \) points in the plane with at most \(\ell \) collinear contains a subset of \(f(n, \ell) \) points in general position. Throughout this paper we assume \(\ell \geq 3 \).

The problem was originally posed by Erdős, first for the case \(\ell = 3 \) [4], and later in a more general form [5]. Füredi [6] showed that the density version of the Hales–Jewett theorem [7] implies that \(f(n, \ell) \leq o(n) \), and that a result of Phelps and Rödl [13] on independent sets in partial Steiner triple systems implies that \(f(n, 3) \geq \Omega(\sqrt{n \ln n}) \). Until recently, the best known lower bound for \(\ell \geq 4 \) was \(f(n, \ell) \geq \sqrt{2n/(\ell - 2)} \), given by a greedy selection. Lefmann [11] has shown that for fixed \(\ell \), \(f(n, \ell) \geq \Omega(\sqrt{n \ln n}) \). In fact, his results are more general, but we postpone discussion of generalisations of the problem until the end of the paper.

We give improved lower bounds on \(f(n, \ell) \) when \(\ell \) is not fixed, with the improvement being most significant for values of \(\ell \) around \(\sqrt{n} \). In relation to the general position subset selection problem (and its relatives), Braß, Moser and Pach [2, page 318] write, "To make any further progress, one needs to explore the geometric structure of the problem." We do this by using the Szemeredi–Trotter theorem [17]. Our main tool is the following lemma.

Lemma 1. Let \(P \) be a set of \(n \) points in the plane with at most \(\ell \) collinear. Then the number of collinear triples in \(P \) is at most \(c(n^2 \ln \ell + \ell^2 n) \) for some constant \(c \).

Proof. For \(2 \leq i \leq \ell \), let \(s_i \) be the number of lines containing exactly \(i \) points in \(P \). A well-known corollary of the Szemeredi–Trotter theorem [17] states that for some
constant \(c \geq 1 \), for all \(i \geq 2 \),
\[
\sum_{j \geq i} s_j \leq c \left(\frac{n^2}{i^3} + \frac{n}{i} \right).
\]
Thus the number of collinear triples is
\[
\ell \sum_{i=2}^{\ell} \binom{i}{3} s_i \leq \ell \sum_{i=2}^{\ell} i^2 \sum_{j=i}^{\ell} s_j \\
\leq \ell \sum_{i=2}^{\ell} c i^2 \left(\frac{n^2}{i^3} + \frac{n}{i} \right) \\
\leq c \sum_{i=2}^{\ell} \left(\frac{n^2}{i} + in \right) \\
\leq c(n^2 \ln \ell + \ell^2 n).
\]
\[\square\]

A longer proof using similar techniques to those used by the authors in [12] shows that the constant \(c \) in Lemma 1 is at most 12. We omit these details. Also, note that Lefmann [10] proved Lemma 1 in the case of the \(\sqrt{n} \times \sqrt{n} \) grid (via a direct counting argument).

To apply Lemma 1 it is useful to consider the 3-uniform hypergraph \(H(P) \) determined by a set of points \(P \), with vertex set \(P \), and an edge for each collinear triple in \(P \). A subset of \(P \) is in general position if and only if it is an independent set in \(H(P) \). The size of the largest independent set in a hypergraph \(H \) is denoted \(\alpha(H) \).

Spencer [15] proved the following lower bound on the size of the largest independent set in an \(r \)-uniform hypergraph.

Lemma 2. Let \(H \) be an \(r \)-uniform hypergraph with \(n \) vertices and \(m \) edges. If \(m < n/r \) then \(\alpha(H) > n/2 \). If \(m \geq n/r \) then \(\alpha(H) > \frac{r - 1}{r^{r/(r-1)}} \frac{n}{(m/n)^{1/(r-1)}} \).

Lemmas 1 and 2 imply our first result, which says that if \(\ell \leq O(\sqrt{n}) \) then \(f(n, \ell) \geq \Omega(\sqrt{\frac{n}{\ln \ell}}) \).

Theorem 3. Let \(P \) be a set of \(n \) points with at most \(\ell \) collinear, for some \(\ell \leq O(\sqrt{n}) \). Then \(P \) contains a set of \(\Omega(\sqrt{\frac{n}{\ln \ell}}) \) points in general position.

Proof. Let \(m \) be the number of edges in \(H(P) \). By Lemma 1, \(m/n \leq 3 n \ln \ell \) for some constant \(b \). Now apply Lemma 2 with \(r = 3 \). If \(m < n/3 \) then \(\alpha(H(P)) > n/2 \), and we are done. Otherwise,
\[
\alpha(H(P)) > \frac{2n}{3^{3/2}(m/n)^{1/2}} \geq \frac{2n}{3^{3/2} \sqrt{bn \ln \ell}} = \frac{2}{\sqrt{27b}} \sqrt{\frac{n}{\ln \ell}}.
\]
\[\square\]
Theorem 3 answers, up to a logarithmic factor, a symmetric Ramsey style version of the general position subset selection problem posed by Gowers [9]. He asked for the minimum cardinality $GP(q)$ of a set P in the plane required to ensure that P contains q collinear points or q points in general position. Gowers noted that $\Omega(q^2) \leq GP(q) \leq O(q^2)$. Theorem 3 with $\ell = q - 1$ and $n = GP(q)$ implies that $\Omega(\sqrt{GP(q)/\ln(q-1)}) \leq q$ and so $GP(q) \leq O(q^2 \ln q)$.

The following lemma of Sudakov [16, Proposition 2.3] is a corollary of a result of Duke, Lefmann and Rödl [3].

Lemma 4. Let H be a 3-uniform hypergraph on n vertices with m edges. Let $t \geq \sqrt{m/n}$ and suppose there exists an $\epsilon > 0$ such that the number of edges containing any fixed pair of vertices of H is at most $t^{1-\epsilon}$. Then $\alpha(H) \geq \Omega(\sqrt{n \log \ell n})$. We use Lemma 1 and Lemma 4 to prove our second result, which says that if $\ell \leq O(n(1-\epsilon)/2)$ then $f(n, \ell) \geq \Omega(\sqrt{n \log \ell n})$. Note that for fixed ℓ, this implies the previously known lower bound on $f(n, \ell)$.

Theorem 5. Fix constants $\epsilon > 0$ and $d > 0$. Let P be a set of n points in the plane with at most ℓ collinear points, where $3 \leq \ell \leq (dn)^{(1-\epsilon)/2}$. Then P contains a set of $\Omega(\sqrt{n \log \ell n})$ points in general position.

Proof. Let m be the number of edges in $H(P)$. By Lemma 1, for some constant $c \geq 1$,

$$m \leq c\ell^2 n + cn^2 \ln \ell < cdn^2 + cn^2 \ln \ell \leq (d+1)cn^2 \ln \ell.$$

Define $t := \sqrt{(d+1)cn \ln \ell}$. Thus $t \geq \sqrt{m/n}$. Each pair of vertices in H is in less than ℓ edges of H, and

$$\ell \leq (dn)^{(1-\epsilon)/2} < ((d+1)cn \ln \ell)^{(1-\epsilon)/2} = t^{1-\epsilon}.$$

Thus the assumptions in Lemma 4 are satisfied. Hence, H contains an independent set of size $\Omega(\sqrt{n \log \ell n})$. We have

$$\frac{n}{t} \sqrt{\ln t} = \sqrt{n} \sqrt{\ln \ell} = \sqrt{n} \sqrt{\ln (d+1) cn \ln \ell} \geq \sqrt{\frac{n}{(d+1) c \ln \ell}} \sqrt{\frac{1}{2} \ln n} = \sqrt{\frac{1}{2(d+1) c} \frac{n \ln n}{\ln \ell}} = \Omega(\sqrt{n \log \ell n}).$$

Thus P contains a subset of $\Omega(\sqrt{n \log \ell n})$ points in general position.

For completeness, we now mention a natural generalisation of the general position subset selection problem. Erdős [5] asked, given $k < \ell$, determine the largest integer $f(n, \ell, k)$ such that every set of n points in the plane with at most ℓ collinear contains a subset of $f(n, \ell, k)$ points with at most k collinear. Thus $f(n, \ell) = f(n, \ell, 2)$.

Braß [1] considered this question for fixed $\ell = k + 1$, and showed that
$$\Omega_k(n^{(k-1)/k} (\ln n)^{1/k}) \leq f(n, k + 1, k) \leq o(n).$$
This can be seen as a generalisation of the results of Füredi [6] for $f(n, 3, 2)$. As in Füredi’s work, the lower bound comes from a result on partial Steiner systems [14], and the upper bound comes from the density Hales–Jewett theorem [8]. Lefmann [11] further generalised these results for fixed ℓ and k by showing that
$$f(n, \ell, k) \geq \Omega_{\ell,k}(n^{(k-1)/k} (\ln n)^{1/k}).$$
The density Hales–Jewett theorem also implies the general bound $f(n, \ell, k) \leq o(n)$.

References

Department of Mathematics and Statistics,
The University of Melbourne
Melbourne, Australia

E-mail address: m.payne3@pgrad.unimelb.edu.au

E-mail address: woodd@unimelb.edu.au