Complete graph minors and the graph minor structure theorem

Gwenaël Joreta, David R. Woodb

a Département d’Informatique, Université Libre de Bruxelles, Brussels, Belgium
b Department of Mathematics and Statistics, The University of Melbourne, Melbourne, Australia

\begin{abstract}

The graph minor structure theorem by Robertson and Seymour shows that every graph that excludes a fixed minor can be constructed by a combination of four ingredients: graphs embedded in a surface of bounded genus, a bounded number of vortices of bounded width, a bounded number of apex vertices, and the clique-sum operation. This paper studies the converse question: What is the maximum order of a complete graph minor in a graph constructed using these four ingredients? Our main result answers this question up to a constant factor.

\end{abstract}

1. Introduction

Robertson and Seymour \cite{RobertsonSeymour} proved a rough structural characterization of graphs that exclude a fixed minor. It says that such a graph can be constructed by a combination of four ingredients: graphs embedded in a surface of bounded genus, a bounded number of vortices of bounded width, a bounded number of apex vertices, and the clique-sum operation. Moreover, each of these ingredients is essential.

In this paper, we consider the converse question: What is the maximum order of a complete graph minor in a graph constructed using these four ingredients? Our main result answers this question up to a constant factor.

To state this theorem, we now introduce some notation; see Section 2 for precise definitions. For a graph G, let $\eta(G)$ denote the maximum integer n such that the complete graph K_n is a minor.
of G, sometimes called the Hadwiger number of G. For integers $g, p, k \geq 0$, let $\mathcal{G}(g, p, k)$ be the set of graphs obtained by adding at most p vertices, each with width at most k, to a graph embedded in a surface of Euler genus at most g. For an integer $a \geq 0$, let $\mathcal{G}(g, p, k, a)$ be the set of graphs G such that $G \setminus A \in \mathcal{G}(g, p, k)$ for some set $A \subseteq V(G)$ with $|A| \leq a$. The vertices in A are called apex vertices. Let $\mathcal{G}(g, p, k, a)^+$ be the set of graphs obtained from clique-sums of graphs in $\mathcal{G}(g, p, k, a)$.

The graph minor structure theorem of Robertson and Seymour [8] says that for every integer $t \geq 1$, there exist integers $g, p, k, a \geq 0$, such that every graph G with $\eta(G) \leq t$ is in $\mathcal{G}(g, p, k, a)^+$. We prove the following converse result.

Theorem 1.1. For some constant $c > 0$, for all integers $g, p, k, a \geq 0$, for every graph G in $\mathcal{G}(g, p, k, a)^+$,

$$\eta(G) \leq a + c(k + 1)\sqrt{g + p} + c.$$

Moreover, for some constant $c' > 0$, for all integers $g, a \geq 0$ and $p \geq 1$ and $k \geq 2$, there is a graph G in $\mathcal{G}(g, p, k, a)$ such that

$$\eta(G) \geq a + c'k\sqrt{g + p}.$$

Let $\text{RS}(G)$ be the minimum integer k such that G is a subgraph of a graph in $\mathcal{G}(k, k, k, k)^+$. The graph minor structure theorem [8] says that $\text{RS}(G) \leq f(\eta(G))$ for some function f independent of G. Conversely, Theorem 1.1 implies that $\eta(G) \leq f'(\text{RS}(G))$ for some (much smaller) function f'. In this sense, η and RS are “tied”. Note that such a function f' is widely understood to exist (see for instance Diestel [2, p. 340] and Lovász [5]). However, the authors are not aware of any proof. In addition to proving the existence of f', this paper determines the best possible function f' (up to a constant factor).

Following the presentation of definitions and other preliminary results in Section 2, the proof of the upper and lower bounds in Theorem 1.1 are respectively presented in Sections 3 and 4.

2. Definitions and preliminaries

All graphs in this paper are finite and simple, unless otherwise stated. Let $V(G)$ and $E(G)$ denote the vertex and edge sets of a graph G. For background graph theory see [2].

A graph H is a minor of a graph G if H can be obtained from a subgraph of G by contracting edges. (Note that, since we only consider simple graphs, loops and parallel edges created during an edge contraction are deleted.) An H-model in G is a collection $\{S_x : x \in V(H)\}$ of pairwise vertex-disjoint connected subgraphs of G (called branch sets) such that, for every edge $xy \in E(H)$, some edge in G joins a vertex in S_x to a vertex in S_y. Clearly, H is a minor of G if and only if G contains an H-model. For a recent survey on graph minors see [4].

Let $G[k]$ denote the lexicographic product of G with K_k, namely the graph obtained by replacing each vertex v of G with a clique C_v of size k, where for each edge $vw \in E(G)$, each vertex in C_v is adjacent to each vertex in C_w. Let $tw(G)$ be the treewidth of a graph G; see [2] for background on treewidth.

Lemma 2.1. For every graph G and integer $k \geq 1$, every minor of $G[k]$ has minimum degree at most $k \cdot tw(G) + k - 1$.

Proof. A tree decomposition of G can be turned into a tree decomposition of $G[k]$ in the obvious way: in each bag, replace each vertex by its k copies in $G[k]$. The size of each bag is multiplied by k; hence the new tree decomposition has width at most $k(w + 1) - 1 = kw + k - 1$, where w denotes the width of the original decomposition. Let H be a minor of $G[k]$. Since treewidth is minor-monotone,

$$tw(H) \leq tw(G[k]) \leq k \cdot tw(G) + k - 1.$$

The claim follows since the minimum degree of a graph is at most its treewidth. □

Note that Lemma 2.1 can be written in terms of contraction degeneracy; see [1,3].

Let G be a graph and let $\Omega = \{v_1, v_2, \ldots, v_\ell\}$ be a circular ordering of a subset of the vertices of G. We write $V(\Omega)$ for the set $\{v_1, v_2, \ldots, v_\ell\}$. A circular decomposition of G with perimeter Ω is
a multiset \(\{C(w) \subseteq V(G) : w \in V(\Omega) \} \) of subsets of vertices of \(G \), called bags, that satisfy the following properties:

- every vertex \(w \in V(\Omega) \) is contained in its corresponding bag \(C(w) \);
- for every vertex \(u \in V(G) \setminus V(\Omega) \), there exists \(w \in V(\Omega) \) such that \(u \) is in \(C(w) \);
- for every edge \(e \in E(G) \), there exists \(w \in V(\Omega) \) such that both endpoints of \(e \) are in \(C(w) \); and
- for each vertex \(u \in V(G) \), if \(u \in C(v_i), C(v_j) \) with \(i < j \) then \(u \in C(v_i), \ldots, C(v_j) \) or \(u \in C(v_{j+1}), \ldots, C(v_{i-1}) \).

(The last condition says that the bags in which \(u \) appears correspond to consecutive vertices of \(\Omega \).) The width of the decomposition is the maximum cardinality of a bag minus 1. The ordered pair \((G, \Omega) \) is called a vortex; its width is the minimum width of a circular decomposition of \(G \) with perimeter \(\Omega \).

A surface is a non-null compact connected 2-manifold without boundary. Recall that the Euler genus of a surface \(\Sigma \) is \(2 - \chi(\Sigma) \), where \(\chi(\Sigma) \) denotes the Euler characteristic of \(\Sigma \). Thus the orientable surface with \(h \) handles has Euler genus \(2h \), and the non-orientable surface with \(c \) cross-caps has Euler genus \(c \). The boundary of an open disc \(D \subset \Sigma \) is denoted by \(\partial D \).

See [6] for basic terminology and results about graphs embedded in surfaces. When considering a graph \(G \) embedded in a surface \(\Sigma \), we use \(G \) both for the corresponding abstract graph and for the subset of \(\Sigma \) corresponding to the drawing of \(G \). An embedding of \(G \) in \(\Sigma \) is 2-cell if every face is homeomorphic to an open disc.

Recall Euler’s formula: if an \(n \)-vertex \(m \)-edge graph is 2-cell embedded with \(f \) faces in a surface of Euler genus \(g \), then \(n - m + f = 2 - g \). Since \(2m \geq 3f \),

\[
m \leq 3n + 3g - 6,
\]

which in turn implies the following well-known upper bound on the Hadwiger number.

Lemma 2.2. If a graph \(G \) has an embedding in a surface \(\Sigma \) with Euler genus \(g \), then

\[
\eta(G) \leq \sqrt{6g + 4}.
\]

Proof. Let \(t := \eta(G) \). Then \(K_t \) has an embedding in \(\Sigma \). It is well known that this implies that \(K_t \) has a 2-cell embedding in a surface of Euler genus at most \(g \) (see [6]). Hence \(\left(\frac{t}{3} \right) \leq 3t + 3g - 6 \) by (1). In particular, \(t \leq \sqrt{6g + 4} \). \(\Box \)

Let \(G \) be an embedded multigraph, and let \(F \) be a facial walk of \(G \). Let \(v \) be a vertex of \(F \) with degree more than 3. Let \(e_1, \ldots, e_d \) be the edges incident to \(v \) in clockwise order around \(v \), such that \(e_1 \) and \(e_d \) are in \(F \). Let \(G' \) be the embedded multigraph obtained from \(G \) as follows. First, introduce a path \(x_1, \ldots, x_d \) of new vertices. Then for each \(i \in [1, d] \), replace \(v \) as the endpoint of \(e_i \) by \(x_i \). The clockwise ordering around \(x_1 \) is as described in Fig. 1. Finally delete \(v \). We say that \(G' \) is obtained from \(G \) by **splitting** \(v \) at \(F \). Each vertex \(x_i \) is said to belong to \(v \). By construction, \(x_i \) has degree at most 3. Observe that there is a one-to-one correspondence between facial walks of \(G \) and \(G' \). This process can be repeated at each vertex of \(F \). The embedded graph that is obtained is called
the splitting of G at F. And more generally, if F_1, \ldots, F_p are pairwise vertex-disjoint facial walks of G, then the embedded graph that is obtained by splitting each F_i is called the splitting of G at F_1, \ldots, F_p. (Clearly, the splitting of G at F_1, \ldots, F_p is unique.)

For $g, p, k \geq 0$, a graph G is (g, p, k)-almost embeddable if there exists a graph G_0 embedded in a surface Σ of Euler genus at most g, and there exist $q \leq p$ vertices $(G_1, \Omega_1), \ldots, (G_q, \Omega_q)$, each of width at most k, such that

- $G = G_0 \cup G_1 \cup \cdots \cup G_q$;
- the graphs G_1, \ldots, G_q are pairwise vertex-disjoint;
- $V(G_i) \cap V(G_0) = V(\Omega_i)$ for all $i \in \{1, q\}$; and
- there exist q disjoint closed discs in Σ whose interiors D_1, \ldots, D_q are disjoint from G_0, whose boundaries meet G_0 only in vertices, and such that $\text{bd}(D_i) \cap V(G_0) = V(\Omega_i)$ and the cyclic ordering Ω_i is compatible with the natural cyclic ordering of $V(\Omega_i)$ induced by $\text{bd}(D_i)$, for all $i \in \{1, q\}$.

Let $\mathcal{G}(g, p, k)$ be the set of (g, p, k)-almost embeddable graphs. Note that $\mathcal{G}(g, 0, 0)$ is exactly the class of graphs with Euler genus at most g. Also note that the literature defines a graph to be h-almost embeddable if it is (h, h, h)-almost embeddable. To enable more accurate results we distinguish the three parameters.

Let G_1 and G_2 be disjoint graphs. Let $\{v_1, \ldots, v_k\}$ and $\{w_1, \ldots, w_k\}$ be cliques of the same cardinality in G_1 and G_2 respectively. A clique-sum of G_1 and G_2 is any graph obtained from $G_1 \cup G_2$ by identifying v_i with w_i for each $i \in \{1, k\}$, and possibly deleting some of the edges $v_i v_j$.

The above definitions make precise the definition of $\mathcal{G}(g, p, k, a)^+$ given in the introduction. We conclude this section with an easy lemma on clique-sums.

Lemma 2.3. If a graph G is a clique-sum of graphs G_1 and G_2, then

$$\eta(G) \leq \max\{\eta(G_1), \eta(G_2)\}.$$

Proof. Let $t := \eta(G)$ and let S_1, \ldots, S_t be the branch sets of a K_t-model in G. If some branch set S_i were contained in $G_1 \setminus V(G_2)$, and some branch set S_j were contained in $G_2 \setminus V(G_1)$, then there would be no edge between S_i and S_j in G, which is a contradiction. Thus every branch set intersects $V(G_1)$, or every branch set intersects $V(G_2)$. Suppose that every branch set intersects $V(G_1)$. For each branch set S_i that intersects $G_1 \cap G_2$, remove from S_i all vertices in $V(G_2) \setminus V(G_1)$. Since $V(G_1) \cap V(G_2)$ is a clique in G_1, the modified branch sets yield a K_t-model in G_1. Hence $t \leq \eta(G_1)$. By symmetry, $t \leq \eta(G_2)$ in the case that every branch set intersects G_2. Therefore $\eta(G) \leq \max\{\eta(G_1), \eta(G_2)\}$. □

3. **Proof of upper bound**

The aim of this section is to prove the following theorem.

Theorem 3.1. For all integers $g, p, k \geq 0$, every graph G in $\mathcal{G}(g, p, k)$ satisfies

$$\eta(G) \leq 48(k + 1)\sqrt{g + p} + \sqrt{6g} + 5.$$

Combining this theorem with Lemma 2.3 gives the following quantitative version of the first part of Theorem 1.1.

Corollary 3.2. For every graph $G \in \mathcal{G}(g, p, k, a)^+$,

$$\eta(G) \leq a + 48(k + 1)\sqrt{g + p} + \sqrt{6g} + 5.$$

Proof. Let $G \in \mathcal{G}(g, p, k, a)^+$. Lemma 2.3 implies that $\eta(G) \leq \eta(G')$ for some graph $G' \in \mathcal{G}(g, p, k, a)$. Clearly, $\eta(G') \leq \eta(G' \setminus A) + a$, where A denotes the (possibly empty) apex set of G'. Since $G' \setminus A \in \mathcal{G}(g, p, k)$, the claim follows from Theorem 3.1. □
The proof of Theorem 3.1 uses the following definitions. Two subgraphs A and B of a graph G touch if A and B have at least one vertex in common or if there is an edge in G between a vertex in A and another vertex in B. We generalize the notion of minors and models as follows. For an integer $k \geq 1$, a graph H is said to be an (H, k)-minor of a graph G if there exists a collection $\{S_x \mid x \in V(H)\}$ of connected subgraphs of G (called branch sets), such that S_x and S_y touch in G for every edge $xy \in E(H)$, and every vertex of G is included in at most k branch sets in the collection. The collection $\{S_x \mid x \in V(H)\}$ is called an (H, k)-model in G. Note that for $k = 1$ this definition corresponds to the usual notions of H-minor and H-model. As shown in the next lemma, this generalization provides another way of considering H-minors in $G[k]$, the lexicographic product of G with K_k. (The easy proof is left to the reader.)

Lemma 3.3. Let $k \geq 1$. A graph H is an (H, k)-minor of a graph G if and only if H is a minor of $G[k]$.

For a surface Σ, let Σ_c be Σ with c cuffs added; that is, Σ_c is obtained from Σ by removing the interior of c pairwise disjoint closed discs. (It is well known that the locations of the discs are irrelevant.) When considering graphs embedded in Σ, we require the embedding to be 2-cell. We emphasize that this is a non-standard and relatively strong requirement; in particular, it implies that the graph is connected, and the boundary of each cuff intersects the graph in a cycle. Such cycles are called cuff-cycles.

For $g \geq 0$ and $c \geq 1$, a graph G is (g, c)-embedded if G has maximum degree $\Delta(G) \leq 3$ and G is embedded in a surface of Euler genus at most g with at most c cuffs added, such that every vertex of G lies on the boundary of the surface. (Thus the cuff-cycles induce a partition of the whole vertex set.) The graph G is (g, c)-embeddable if there exists such an embedding. Note that if C is a contractible cycle in a (g, c)-embedded graph, then the closed disc bounded by C is uniquely determined even if the underlying surface is the sphere (because there is at least one cuff).

Lemma 3.4. For every graph $G \in G(g, p, k)$ there exists a (g, p)-embeddable graph H with $\eta(G) \leq \eta(H[k + 1]) + \sqrt{6g} + 4$.

Proof. Let $t := \eta(G)$. Let S_1, \ldots, S_t be the branch sets of a K_t-model in G. Since $\eta(G)$ equals the Hadwiger number of some connected component of G, we may assume that G is connected. Thus we may ‘grow’ the branch sets until $V(S_1) \cup \cdots \cup V(S_t) = V(G)$.

Write $G = G_0 \cup G_1 \cup \cdots \cup G_q$ as in the definition of (g, p, k)-almost embeddable graphs. Thus G_0 is embedded in a surface Σ of Euler genus at most g, and $(G_1, \Omega_1), \ldots, (G_q, \Omega_q)$ are pairwise vertex-disjoint vortices of width at most k, for some $q \leq p$. Let D_1, \ldots, D_q be the proper interiors of the closed discs of Σ appearing in the definition.

Define r and reorder the branch sets, so that each S_i contains a vertex of some vortex if and only if $i \leq r$. If $t > r$, then S_{r+1}, \ldots, S_t is a K_{t-r}-model in the embedded graph G_0, and hence $t - r \leq \sqrt{6g} + 4$ by Lemma 2.2. Therefore, it suffices to show that $r \leq \eta(H[k + 1])$ for some (g, p)-embeddable graph H.

Modify G_0, G_0, and the branch sets S_1, \ldots, S_t as follows. First, remove from G_0 and G_0 every vertex of S_i for all $i \in [r + 1, t]$. Next, while some branch set S_i ($i \in [1, r]$) contains an edge uv in G_0 where u is in some vortex, but v is in no vortex, contract the edge uv into u (this operation is done in S_1, G, G_0). The above operations on G_0 are carried out in its embedding in the natural way. Now apply a final operation on G and G_0; for each $j \in [1, q]$ and each pair of consecutive vertices a and b in Ω_j, remove the edge ab if it exists, and embed the edge ab as a curve on the boundary of D_j.

When the above procedure is finished, every vertex of the modified G_0 belongs to some vortex. It should be clear that the modified branch sets S_1, \ldots, S_t still provide a model of K_t in G. Also observe that G_0 is connected; this is because $V(\Omega_j)$ induces a connected subgraph for each $j \in [1, q]$, and each vortex intersects at least one branch set S_i with $i \in [1, r]$. By the final operation, the boundary of the disc D_j of Σ intersects G_0 in a cycle C_j of G_0 with $V(C_j) = V(\Omega_j)$ and such that C_j (with the right orientation) defines the same cyclic ordering as Ω_j for every $j \in [1, q]$.

We claim that G_0 can be 2-cell embedded in a surface Σ' with Euler genus at most that of Σ, such that each C_j ($j \in [1, q]$) is a facial cycle of the embedding. This follows by considering the combinatorial embedding (that is, circular ordering of edges incident to each vertex, and edge signatures)
determined by the embedding in Σ (see [6]), and observing that under the above operations, the Euler genus of the combinatorial embedding does not increase, and facial walks remain facial walks (so that each C_j is a facial cycle). Now, removing the q open discs corresponding to these facial cycles gives a 2-cell embedding of G_0 in Σ'.

We now prove that $\eta(G_0[k+1]) > r$. For every $i \in [1, q]$, let $\{C(w) \subseteq V(G_i) : w \in V(\Omega_i)\}$ denote a circular decomposition of width at most k of the i-th vortex. For each $i \in [1, r]$, mark the vertices w of G_0 for which S_i contains at least one vertex in the bag $C(w)$ (recall that every vertex of G_0 is in the perimeter of some vortex), and define S'_i as the subgraph of G_0 induced by the marked vertices. It is easily checked that S'_i is a connected subgraph of G_0. Also, S'_i and S'_j touch in G_0 for all $i \neq j$.

Finally, a vertex of G_0 will be marked at most $k + 1$ times, since each bag has size at most $k + 1$. It follows that $\{S'_1, \ldots, S'_r\}$ is a $(K_r, k + 1)$-model in G_0, which implies by Lemma 3.3 that K_r is minor of $G_0[k + 1]$, as claimed.

Finally, let H be obtained from G_0 by splitting each vertex v of degree more than 3 along the cuff boundary that contains v. (Clearly the notion of splitting along a face extends to splitting along a cuff.) By construction, $\Delta(H) \leq 3$ and H is (g, q)-embedded. The $(K_r, k + 1)$-model of G_0 constructed above can be turned into a $(K_r, k + 1)$-model of H by replacing each branch set S'_i by the union, taken over the vertices $v \in V(S'_i)$, of the set of vertices in H that belong to v. Hence $r \leq \eta(G_0[k + 1]) \leq \eta(H[k + 1])$.

We need to introduce a few definitions. Consider a (g, c)-embedded graph G. An edge e of G is said to be a cuff or a non-cuff edge, depending on whether e is included in a cuff-cycle. Every non-cuff edge has its two endpoints in either the same cuff-cycle or in two distinct cuff-cycles. Since $\Delta(G) \leq 3$, the set of non-cuff edges is a matching.

A cycle C of G is an F-cycle where F is the set of non-cuff edges in C. A non-cuff edge e is contractible if there exists a contractible $\{e\}$-cycle, and is noncontractible otherwise. Two non-cuff edges e and f are homotopic if G contains a contractible $\{e, f\}$-cycle. Observe that if e and f are homotopic, then they have their endpoints in the same cuff-cycle(s), as illustrated in Fig. 2. We now prove that homotopy defines an equivalence relation on the set of noncontractible non-cuff edges of G.

Lemma 3.5. Let G be a (g, c)-embedded graph, and let e_1, e_2, e_3 be distinct noncontractible non-cuff edges of G, such that e_1 is homotopic to e_2 and to e_3. Then e_2 and e_3 are also homotopic. Moreover, given a contractible $\{e_1, e_2\}$-cycle C_{12} bounding a closed disc D_{12}, for some distinct $i, j \in \{1, 2, 3\}$, there is a contractible $\{e_i, e_j\}$-cycle bounding a closed disc containing e_1, e_2, e_3 and all noncontractible non-cuff edges of G contained in D_{12}.

Proof. Let C_{13} be a contractible $\{e_1, e_3\}$-cycle. Let P_{12}, Q_{12} be the two paths in the graph $C_{12} \setminus \{e_1, e_2\}$. Let P_{13}, Q_{13} be the two paths in the graph $C_{13} \setminus \{e_1, e_3\}$. Exchanging P_{13} and Q_{13} if necessary, we may denote the endpoints of e_i ($i = 1, 2, 3$) by u_i, v_i so that the endpoints of P_{12} and P_{13} are u_1, u_2 and u_1, u_3, respectively, and similarly, the endpoints of Q_{12} and Q_{13} are v_1, v_2 and v_1, v_3, respectively.

Let D_{13} be the closed disc bounded by C_{13}. Each edge of P_{1i} and Q_{1i} ($i = 2, 3$) is on the boundaries of both D_{1i} and a cuff; it follows that every non-cuff edge of G incident to an internal vertex of P_{1i}
or Q_{1i} is entirely contained in the disc D_{1i}. The paths P_{12} and P_{13} are subgraphs of a common cuff-cycle C_P, and Q_{12} and Q_{13} are subgraphs of a common cuff-cycle C_Q. Note that these two cuff-cycles could be the same.

Recall that non-cuff edges of G are independent (that is, have no endpoint in common). This will be used in the arguments below. We claim that

Claim:

Every noncontractible non-cuff edge f contained in D_{1i} has one endpoint in P_{1i} and the other in Q_{1i}, for each $i \in \{2, 3\}$.

The claim is immediate if $f \in \{e_1, e_3\}$. Now assume that $f \notin \{e_1, e_3\}$. The edge f is incident to at least one of P_{1i} and Q_{1i} since there is no vertex in the proper interior of D_{1i}. Without loss of generality, f is incident to P_{1i}. The edge f can only be incident to internal vertices of P_{1i}, since f is independent of e_1 and e_3. Say $f = xy$. If $x, y \in V(P_{1i})$ then the $\{f\}$-cycle obtained by combining the x-y subpath of P_{1i} with the edge f is contained in D_{1i} and thus is contractible. Hence f is a contractible non-cuff edge, a contradiction. This proves (2).

First we prove the lemma in the case where e_3 is incident to P_{12}. Since e_3 is incident to an internal vertex of P_{12}, it follows that e_3 is contained in D_{12}. This shows the second part of the lemma. To show that e_2 and e_3 are homotopic, consider the endpoint v_3 of e_3. Since e_3 is in D_{12} and $u_3 \in V(P_{12})$, we have $v_3 \in V(Q_{12})$ by (2). Now, combining the u_2-u_3 subpath of P_{12} and the v_2-v_3 subpath of Q_{12} with e_2 and e_3, we obtain an $\{e_2, e_3\}$-cycle contained in D_{12}, which is thus contractible. This shows that e_2 and e_3 are homotopic.

By symmetry, the above argument also handles the case where e_3 is incident to Q_{12}. Thus we may assume that e_3 is incident to neither P_{12} nor Q_{12}.

Suppose $P_{12} \subseteq P_{13}$. Then, by (2), all noncontractible non-cuff edges contained in D_{12} are incident to P_{12}, and thus also to P_{13}. Hence they are all contained in the disc D_{13}. Moreover, a contractible $\{e_2, e_3\}$-cycle can be found in the obvious way. Therefore the lemma holds in this case. Using symmetry, the same argument can be used if $P_{12} \subseteq Q_{13}$, $Q_{12} \subseteq P_{13}$, or $Q_{12} \subseteq Q_{13}$. Thus we may assume

$$P_{12} \not\subseteq P_{13}; \quad P_{12} \not\subseteq Q_{13}; \quad Q_{12} \not\subseteq P_{13}; \quad Q_{12} \not\subseteq Q_{13}. \quad (3)$$

Next consider P_{12} and P_{13}. If we orient these paths starting at u_1, then they either go in the same direction around C_P, or in opposite directions. Suppose the former. Then one path is a subpath of the other. Since by our assumption u_3 is not in P_{12}, we have $P_{12} \subseteq P_{13}$, which contradicts (3). Hence the paths P_{12} and P_{13} go in opposite directions around C_P. If $V(P_{12}) \cap V(P_{13}) \neq \{u_1\}$, then u_3 is an internal vertex of P_{12}, which contradicts our assumption on e_3. Hence

$$V(P_{12}) \cap V(P_{13}) = \{u_1\}. \quad (4)$$

By symmetry, the above argument shows that Q_{12} and Q_{13} go in opposite directions around C_Q (starting from v_1), which similarly implies

$$V(Q_{12}) \cap V(Q_{13}) = \{v_1\}. \quad (5)$$

Now consider P_{12} and Q_{13}. These two paths do not share any endpoint. If $C_P \neq C_Q$, then obviously the two paths are vertex-disjoint. If $C_P = C_Q$ and $V(P_{12}) \cap V(Q_{13}) \neq \emptyset$, then at least one of v_1 and v_3 is an internal vertex of P_{12}, because otherwise $P_{12} \subseteq Q_{13}$, which contradicts (3). However $v_1 \notin V(P_{12})$ since $v_1 \in V(Q_{12})$, and $v_3 \notin V(P_{12})$ by our assumption that e_3 is not incident to P_{12}. Hence, in all cases,

$$V(P_{12}) \cap V(Q_{13}) = \emptyset. \quad (6)$$

By symmetry,

$$V(Q_{12}) \cap V(P_{13}) = \emptyset. \quad (7)$$

It follows from (4)–(7) that C_{12} and C_{13} only have e_1 in common. This implies in turn that D_{12} and D_{13} have disjoint proper interiors. Thus the cycle $C_{23} := (C_{12} \cup C_{13}) - e_1$ bounds the disc obtained...
by gluing D_{12} and D_{13} along e_1. Hence C_{23} is an $\{e_2, e_3\}$-cycle of G bounding a disc containing e_3 and all edges contained in D_{12}. This concludes the proof. □

The next lemma is a direct consequence of Lemma 3.5. An equivalence class Q for the homotopy relation on the noncontractible non-cuff edges of G is trivial if $|Q| = 1$, and non-trivial otherwise.

Lemma 3.6. Let G be a (g,c)-embedded graph and let Q be a non-trivial equivalence class of the noncontractible non-cuff edges of G. Then there are distinct edges $e, f \in Q$ and a contractible (e, f)-cycle C of G, such that the closed disc bounded by C contains every edge in Q.

Our main tool in proving Theorem 3.1 is the following lemma, whose inductive proof is enabled by the following definition. Let G be a (g,c)-embedded graph and let $k \geq 1$. A graph H is a k-minor of G if there exists an $(H,4k)$-model $\{S_x: x \in V(H)\}$ in G such that, for every vertex $u \in V(G)$ incident to a noncontractible non-cuff edge e in a non-trivial equivalence class, the number of subgraphs in the model including u is at most k. Such a collection $\{S_x: x \in V(H)\}$ is said to be a k-model of H in G. This provides a relaxation of the notion of (H,k)-minor since some vertices of G could appear in up to $4k$ branch sets (instead of k). We emphasize that this definition depends heavily on the embedding of G.

Lemma 3.7. Let G be a (g,c)-embedded graph and let $k \geq 1$. Then every k-minor H of G has minimum degree at most $48k\sqrt{c} + g$.

Proof. Let $q(G)$ be the number of non-trivial equivalence classes of noncontractible non-cuff edges in G. We proceed by induction, firstly on $g + c$, then on $q(G)$, and then on $|V(G)|$. Now G is embedded in a surface of Euler genus $g' \leq g$ with $c' \leq c$ cuffs added. If $g' < g$ or $c' < c$ then we are done by induction. Now assume that $g' = g$ and $c' = c$.

We repeatedly use the following observation: If C is a contractible cycle of G, then the subgraph of G consisting of the vertices and edges contained in the closed disc D bounded by C is outerplanar, and thus has treewidth at most 2. This is because the proper interior of D contains no vertex of G (since all the vertices in G are on the cuff boundaries).

Let $\{S_x: x \in V(H)\}$ be a k-model of H in G. Let d be the minimum degree of H. We may assume that $d \geq 20k$, otherwise $d \leq 48k\sqrt{c} + g$ (since $c \geq 1$) and we are done. Also, it is enough to prove the lemma when H is connected, so assume this is the case.

Case 1: Some non-cuff edge e of G is contractible. Let C be a contractible $[e]$-cycle. Let u, v be the endpoints of e. Remove from G every vertex in $V(C) \setminus \{u, v\}$ and modify the embedding of G by redrawing the edge e where the path $C - e$ was. Thus e becomes a cuff-edge in the resulting graph G', and u and v both have degree 2. Also observe that G' is connected and remains simple (that is, this operation does not create loops or parallel edges). Since the embedding of G' is 2-cell, G' is (g, c)-embedded also.

If e_1 and e_2 are noncontractible non-cuff edges of G' that are homotopic in G', then e_1 and e_2 were also noncontractible and homotopic in G. Hence, $q(G') \leq q(G)$. Also, $|V(G')| < |V(G)|$ since we removed at least one vertex from G. Thus, by induction, every k-minor of G' has minimum degree at most $48k\sqrt{c} + g$. Therefore, it is enough to show that H is also a k-minor of G'.

Let G_1 be the subgraph of G lying in the closed disc bounded by C; observe that G_1 is outerplanar. Moreover, (G_1, G') is a separation of G with $V(G_1) \cap V(G') = \{u, v\}$. (That is, $G_1 \cup G' = G$ and $V(G_1) \setminus V(G') \neq \emptyset$ and $V(G') \setminus V(G_1) \neq \emptyset$.)

First suppose that $S_x \subseteq G_1 \setminus \{u, v\}$ for some vertex $x \in V(H)$. Let H' be the subgraph of H induced by the set of such vertices x. In H, the only neighbors of a vertex $x \in V(H')$ that are not in H' are vertices y such that S_y includes at least one of u, v. There are at most $2 \cdot 4k = 8k$ such branch sets S_y. Hence, H' has minimum degree at least $d - 8k \geq 12k$. However, H' is a minor of $G_1[4k]$ and hence has minimum degree at most $4k \cdot tw(G_1) + 4k - 1 \leq 12k - 1$ by Lemma 2.1, a contradiction.

It follows that every branch set $S_x (x \in V(H'))$ contains at least one vertex in $V(G')$. Let $S_i' = S_i \cap G'$. Using the fact that $u v \in E(G')$, it is easily seen that the collection $\{S_i': x \in V(H')\}$ is a k-model of H in G'.

Case 2: Some equivalence class Q is non-trivial. By Lemma 3.6, there are two edges $e, f \in Q$ and a contractible $[e, f]$-cycle C such that every edge in Q is contained in the disc bounded by C. Let P_1, P_2 be the two components of $C \setminus [e, f]$. These two paths either belong to the same cuff-cycle or to two distinct cuff-cycles of G.

Our aim is to eventually contract each of P_1, P_2 into a single vertex. However, before doing so we slightly modify G as follows. For each cuff-cycle C' intersecting C, select an arbitrary edge in $E(C') \setminus E(C)$ and subdivide it twice. Let G' be the resulting (g, c)-embedded graph. Clearly $q(G') = q(G)$, and there is an obvious k-model $\{S'_x : x \in V(H)\}$ of H in G': simply apply the same subdivision operation on the branch sets S_x.

Let G'_1 be the subgraph of G' lying in the closed disc D bounded by C. Observe that G'_1 is outer-planar with outercycle C. Suppose that some edge xy in $E(G'_1) \setminus E(C)$ has both its endpoints in the same path P_i, for some $i \in \{1, 2\}$. Then the cycle obtained by combining xy and the x-y path in P_i is a contractible cycle of G', and its only non-cuff edge is xy. The edge xy is thus a contractible edge of G', and hence also of G, a contradiction.

It follows that every non-cuff edge included in G'_1 has one endpoint in P_1 and the other in P_2. Hence, every such edge is homotopic to e and therefore belongs to Q.

Consider the k-model $\{S'_x : x \in V(H)\}$ of H in G' mentioned above. Let $e = uv$ and $f = u'v'$, with $u, u' \in V(P_1)$ and $v, v' \in V(P_2)$. Let $X := \{u, u', v, v'\}$. For each $w \in X$, the number of branch sets S'_w that include w is at most k, since e and f are homotopic noncontractible non-cuff edges.

Let $J := G'_1 \setminus X$. Note that $tw(J) \leq 2$ since G'_1 is outerplanar. Let $Z := \{x \in V(H) : S'_x \subseteq J\}$. First, suppose that $Z \neq \emptyset$. Every vertex of J is in at most $4k$ branch sets $S'_x (x \in Z)$. It follows that the induced subgraph $H[Z]$ is a minor of $J[4k]$.

If a non-cuff edge is contractible in G'' then it is also contractible in G', implying all non-cuff edges in G'' are noncontractible. Two non-cuff edges of G'' are homotopic in G'' if and only if they are in G'. It follows $q(G'') = q(G') - 1 = q(G) - 1$, since e is not homotopic to another non-cuff edge in G''. By induction, every k-minor of G'' has minimum degree at most $48k\sqrt{c + g}$. Thus, it suffices to show that H is also a k-minor of G''.

For $x \in V(H)$, let S''_x be obtained from S'_x by performing the same contraction operation as when defining G'' from G': every edge in $Q \setminus \{e\}$ is removed and every edge in $E(P_1) \cup E(P_2)$ is contracted. Using that every subgraph S''_x either is disjoint from $V(G'_1)$ or contains some vertex in X, it can be checked that S''_x is connected.

Consider an edge $xy \in E(H)$. We now show that the two subgraphs S''_x and S''_y touch in G''. Suppose S''_x and S''_y share a common vertex w. If $w \notin V(G'_1)$, then w is trivially included in both S''_x and S''_y. If $w \in V(G'_1)$, then each of S''_x and S''_y contains a vertex from X, and hence either u or v is included in both S''_x and S''_y, or u is included in one and v in the other. In the latter case uv is an edge of G' joining S''_x and S''_y. Now assume S''_x and S''_y are vertex-disjoint. Thus there is an edge $ww' \in E(G')$ joining these two subgraphs in G'. Again, if neither w nor w' belongs to $V(G'_1)$, then obviously ww' joins S''_x and S''_y in G''. If $w, w' \in V(G'_1)$, then each of S''_x and S''_y contains a vertex from X, and we are done exactly as previously. If exactly one of w, w' belongs to $V(G'_1)$, say w, then $w \in X$ and w' is the unique neighbor of w in G' outside $V(G'_1)$. The contraction operation naturally maps w to a vertex $m(w) \in \{u, v\}$. The edge $w'm(w)$ is included in G'' and thus joins S''_x and S''_y.

In order to conclude that $\{S''_x : x \in V(H)\}$ is a k-model of H in G'', it remains to show that, for every vertex $w \in V(G'')$, the number of branch sets including w is at most $4k$, and is at most k if
w is incident to a non-cuff edge homotopic to another non-cuff edge. This condition is satisfied if $w \notin \{u, v\}$, because two non-cuff edges of G' are homotopic in G'' if and only if they are in G'. Thus assume $w \in \{u, v\}$. By the definition of G'', the edge $e = uv$ is not homotopic to another non-cuff edge of G''. Moreover, for each $z \in X$, there are at most k branch sets S_x' ($x \in V(H)$) containing z. Since $|X| = 4$, it follows that there are at most $4k$ branch sets S_x' ($x \in V(H)$) containing w. Therefore, the condition holds also for w, and H is a k-minor of G''.

Case 3: There is at most one non-cuff edge. Because G is connected, this implies that G consists either of a unique cuff-cycle, or of two cuff-cycles joined by a non-cuff edge. In both cases, G has treewidth exactly 2. Since H is a minor of $G[4k]$, Lemma 2.1 implies that H has minimum degree at most $4k \cdot \text{tw}(G) + 4k - 1 = 12k - 1 \leq 48k \sqrt{\epsilon + g}$, as desired.

Case 4: Some cuff-cycle C contains three consecutive degree-2 vertices. Let u, v, w be three such vertices (in order). Note that C has at least four vertices, as otherwise $G = C$ and the previous case would apply. It follows $uw \notin E(G)$. Let G' be obtained from G by contracting the edge uv into the vertex u. In the embedding of G', the edge uw is drawn where the path uvw was; thus uw is a cuff-edge, and G' is (g, c)-embedded. We have $q(G') = q(G)$ and $|V(G')| < |V(G)|$, hence by induction, G' satisfies the lemma, and it is enough to show that H is a k-minor of G'.

Consider the k-model $(S_x; x \in V(H))$ of H in G. If $V(S_x) = \{v\}$ for some $x \in V(H)$, then x has degree at most $3 \cdot 4k - 1 = 12k - 1$, because $xv \in E(H)$ implies that S_x contains at least one of u, v, w. However this contradicts the assumption that H has minimum degree $d \geq 20k$. Thus every branch set S_x that includes v also contains at least one of u, w (since S_x is connected).

For $x \in V(H)$, let S_x' be obtained from S_x as expected: contract the edge uv if $uv \in E(S_x)$. Clearly S_x' is connected. Consider an edge $xy \in E(H)$. If S_x and S_y had a common vertex then so do S_x' and S_y'. If S_x and S_y were joined by an edge e, then either e is still in G' and joins S_x' and S_y', or $e = uv$ and $u \in V(S_x')$, $v \in V(S_y')$. Hence in each case S_x' and S_y' touch in G'. Finally, it is clear that $(S_x'; x \in V(H))$ meets remaining requirements to be a k-model of H in G', since $V(S_x') \subseteq V(S_x)$ for every $x \in V(H)$ and the homotopy properties of the non-cuff edges have not changed. Therefore, H is a k-minor of G'.

Case 5: None of the previous cases apply. Let t be the number of non-cuff edges in G (thus $t \geq 2$). Since there are no three consecutive degree-2 vertices, every cuff-edge is at distance at most 1 from a non-cuff edge. It follows that

$$|E(G)| \leq 9t.$$

(This inequality can be improved but is good enough for our purposes.)

For a facial walk F of the embedded graph G, let $nc(F)$ denote the number of occurrences of non-cuff edges in F. (A non-cuff edge that appears twice in F is counted twice.) We claim that $nc(F) \geq 3$. Suppose on the contrary that $nc(F) \leq 2$.

First suppose that F has no repeated vertex. Thus F is a cycle. If $nc(F) = 0$, then F is a cuff-cycle, every vertex of which is not incident to a non-cuff edge, contradicting the fact that G is connected with at least two non-cuff edges. If $nc(F) = 1$ then F is a contractible cycle that contains exactly one non-cuff edge e. Thus e is contractible, and Case 1 applies. If $nc(F) = 2$ then F is a contractible cycle containing exactly two non-cuff edges e and f. Thus e and f are homotopic. Hence there is a non-trivial equivalence class, and Case 2 applies.

Now assume that F contains a repeated vertex v. Let

$$F = (x_1, x_2, \ldots, x_{t-1}, x_t = v, x_{t+1}, x_{t+2}, \ldots, x_{2t-1}, x_j = v).$$

All of $x_1, x_{t+1}, x_{t+2}, x_{2t-1}$ are adjacent to v. Since $x_1 \neq x_{t-1}$ and $x_{t+1} \neq x_{2t-1}$ and $\deg(v) \leq 3$, we have $x_i = x_{i+1}$ or $x_i = x_{i-1}$. Without loss of generality, $x_{j-1} = x_{j+1}$. Thus the path $x_{j-1}v x_{j+1}$ is in the boundary of the cuff-cycle C that contains v. Moreover, the edge $v x_{j+1} = v x_{j-1}$ counts twice in $nc(F)$. Since $nc(F) \leq 2$, every edge on F except $v x_{j+1} = v x_{j-1}$ is a cuff-edge. Thus every edge in the walk $v, x_1, x_2, \ldots, x_{t-1}, x_t = v$ is in C, and hence $v, x_1, x_2, \ldots, x_{t-1}, x_t = v$ is the cycle C. Similarly, $x_1, x_2, \ldots, x_{j-2}, x_{j-1} = x_{j+1}$ is a cycle C' bounding some other cuff. Hence $v x_{j+1}$ is the only
non-cuff edge incident to C, and the same for C'. Therefore G consists of two cuff-cycles joined by a non-cuff edge, and Case 3 applies.

Therefore, $nc(F) \geq 3$, as claimed.

Let $n := |V(G)|$, $m := |E(G)|$, and f be the number of faces of G. It follows from Euler’s formula that

$$n - m + f + c = 2 - g.$$ \hspace{1cm} (9)

Every non-cuff edge appears exactly twice in faces of G (either twice in the same face, or once in two distinct faces). Thus

$$2t = \sum_{F \text{ face of } G} nc(F) \geq 3f.$$ \hspace{1cm} (10)

Since $n = m - t$, we deduce from (9) and (10) that

$$t = f + c + g - 2 \leq \frac{2}{3}t + c + g - 2.$$ \hspace{1cm}

Thus $t \leq 3(c + g)$, and $m \leq 9t \leq 27(c + g)$ by (8). This allows us, in turn, to bound the number of edges in $G[4k]$:

$$|E(G[4k])| = \binom{4k}{2} n + (4k)^2 m \leq (4k)^2 \cdot 2m \leq 54(4k)^2 (c + g) \leq 2(24k)^2 (c + g).$$

Since H is a minor of $G[4k]$, we have $|E(H)| \leq |E(G[4k])|$. Thus the minimum degree d of H can be upper bounded as follows:

$$2|E(H)| \geq d|V(H)| \geq d^2,$$

and hence

$$d \leq \sqrt{2|E(H)|} \leq \sqrt{2|E(G[4k])|} \leq \sqrt{2 \cdot 2(24k)^2 (c + g)} = 48k \sqrt{c + g},$$

as desired. \hfill \Box

Now we put everything together and prove Theorem 3.1.

Proof of Theorem 3.1. Let $G \in \mathcal{G}(g, p, k)$. By Lemma 3.4, there exists a (g, p)-embedded graph G' with $\eta(G) \leq \eta(G'[k + 1]) + \sqrt{6g} + 4$.

Let $t := \eta(G'[k + 1])$. Thus K_t is a $(k + 1)$-minor of G' by Lemma 3.3. Lemma 3.7 with $H = K_t$ implies that

$$\eta(G'[k + 1]) - 1 = t - 1 \leq 48(k + 1) \sqrt{g + p}.$$ \hspace{1cm}

Hence $\eta(G) \leq 48(k + 1) \sqrt{g + p} + \sqrt{6g} + 5$, as desired. \hfill \Box

4. Constructions

This section describes constructions of graphs in $\mathcal{G}(g, p, k, a)$ that contain large complete graph minors. The following lemma, which in some sense, is converse to Lemma 3.4 will be useful.

Lemma 4.1. Let G be a graph embedded in a surface with Euler genus at most g. Let F_1, \ldots, F_p be pairwise vertex-disjoint facial cycles of G, such that $V(F_1) \cup \cdots \cup V(F_p) = V(G)$. Then for all $k \geq 1$, some graph in $\mathcal{G}(g, p, k)$ contains $G[k]$ as a minor.

Proof. Let G' be the embedded multigraph obtained from G by replacing each edge vw of G by k^2 edges between v and w bijectively labeled from $\{(i, j) : i, j \in [1, k]\}$. Embed these new edges ‘parallel’
to the original edge vw. Let H_0 be the splitting of G' at F_1, \ldots, F_p. Edges in H_0 inherit their label in G'. For each $\ell \in [1, p]$, let J_ℓ be the face of H_0 that corresponds to F_ℓ (see Fig. 3).

Let H_ℓ be the graph with vertex set $V(J_\ell) \cup \{(v, i) : v \in V(F_\ell), i \in [1, k]\}$, where:

(a) each vertex x in J_ℓ that belongs to a vertex v in F_ℓ is adjacent to each vertex (v, i) in H_ℓ; and
(b) vertices (v, i) and (w, j) in H_ℓ are adjacent if and only if $v = w$ and $i \neq j$.

We now construct a circular decomposition $\{B(x) : x \in V(J_\ell)\}$ of H_ℓ with perimeter J_ℓ. For each vertex x in J_ℓ that belongs to a vertex v in F_ℓ, let $B(x)$ be the set $\{x\} \cup \{(v, i) : i \in [1, k]\}$ of vertices in H_ℓ. Thus $|B(x)| = k + 1$. For each type-(a) edge between x and (v, i), the endpoints are both in bag $B(x)$. For each type-(b) edge between (v, i) and (v, j) in H_ℓ, the endpoints are in every bag $B(x)$ where x belongs to v. Thus the endpoints of every edge in H_ℓ are in some bag $B(x)$. Thus $\{B(x) : x \in V(J_\ell)\}$ is a circular decomposition of H_ℓ with perimeter J_ℓ and width at most k.

Let H be the graph $H_0 \cup H_1 \cup \cdots \cup H_p$. Thus $V(H_0) \cap V(H_\ell) = V(J_\ell)$ for each $\ell \in [1, p]$. Since J_1, \ldots, J_p are pairwise vertex-disjoint facial cycles of H_0, the subgraphs H_1, \ldots, H_p are pairwise vertex-disjoint. Hence H is (g, p, k)-almost embeddable.

To complete the proof, we now construct a model $\{D_{v,i} : v^{(i)} \in V(G[k])\}$ of $G[k]$ in H, where $v^{(i)}$ is the i-th vertex in the k-clique of $G[k]$ corresponding to v. Fix an arbitrary total order \prec on $V(G)$. Consider a vertex $v^{(i)}$ of $G[k]$. Say v is in face F_ℓ. Add the vertex (v, i) of H_ℓ to $D_{v,i}$. For each edge $v^{(i)}w^{(j)}$ of $G[k]$ with $v \prec w$, by construction, there is an edge xy of H_0 labeled (i, j), such that x belongs to v and y belongs to w. Add the vertex x to $D_{v,j}$. Thus $D_{v,i}$ induces a connected star subgraph of H consisting of type-(a) edges in H_ℓ. Since every vertex in J_ℓ is incident to at most one labeled edge, $D_{v,i} \cap D_{w,j} = \emptyset$ for distinct vertices $v^{(i)}$ and $w^{(j)}$ of $G[k]$.

Consider an edge $v^{(i)}w^{(j)}$ of $G[k]$. If $v = w$ then $i \neq j$ and v is in some face F_ℓ, in which case a type-(b) edge in H_ℓ joins the vertex (v, i) in $D_{v,i}$ with the vertex (w, j) in $D_{w,j}$. Otherwise, without loss of generality, $v \prec w$ and by construction, there is an edge xy of H_0 labeled (i, j), such that x belongs to v and y belongs to w. By construction, x is in $D_{v,i}$ and y is in $D_{w,j}$. In both cases there is an edge of H between $D_{v,i}$ and $D_{w,j}$. Hence the $D_{v,i}$ are the branch sets of a $G[k]$-model in H. □

Our first construction employs just one vortex and is based on an embedding of a complete graph.

Lemma 4.2. For all integers $g \geq 0$ and $k \geq 1$, there is an integer $n \geq k\sqrt{6g}$ such that K_n is a minor of some $(g, 1, k)$-almost embeddable graph.

Proof. The claim is vacuous if $g = 0$. Assume that $g \geq 1$. The map color theorem [7] implies that K_m triangulates some surface if and only if $m \bmod 6 \in \{0, 1, 3, 4\}$, in which case the surface has Euler...
genus $\frac{1}{6}(m - 3)(m - 4)$. It follows that for every real number $m_0 \geq 2$ there is an integer m such that
$m_0 \leq m \leq m_0 + 2$ and K_m triangulates some surface of Euler genus $\frac{1}{6}(m - 3)(m - 4)$. Apply this result
with $m_0 = \sqrt{6g} + 1$ for the given value of g. We obtain an integer m such that $\sqrt{6g} + 1 \leq m \leq \sqrt{6g} + 3$
and K_m triangulates a surface Σ of Euler genus $g' := \frac{1}{6}(m - 3)(m - 4)$. Since $m - 4 < m - 3 \leq \sqrt{6g}$,
we have $g' \leq g$. Every triangulation has facewidth at least 3. Thus, deleting one vertex from the
embedding of K_m in Σ gives an embedding of K_{m-1} in Σ, such that some facial cycle contains every
vertex. Let $n := (m - 1)k \geq k\sqrt{6g}$. Lemma 4.1 implies that $K_{m-1}|k| \cong K_n$ is a minor of some $(g', 1,k)$-
almost embeddable graph. \hfill \Box

Now we give a construction based on grids. Let L_n be the $n \times n$ planar grid graph. This graph has
vertex set $[1, n] \times [1, n]$ and edge set $\{(x, y)(x', y') : |x - x'| + |y - y'| = 1\}$. The following lemma is
well known; see [9].

Lemma 4.3. K_{nk} is a minor of $L_n[2k]$ for all $k \geq 1$.

Proof. For $x, y \in [1, n]$ and $z \in [1, 2k]$, let (x, y, z) be the z-th vertex in the $2k$-clique corresponding
to the vertex (x, y) in $L_n[2k]$. For $x \in [1, n]$ and $z \in [1, k]$, let $B_{x,z}$ be the subgraph of $L_n[2k]$
induced by $\{(x, y, 2z - 1), (y, x, 2z): y \in [1, n]\}$. Clearly $B_{x,z}$ is connected. For all $x, x' \in [1, n]$ and
z, $z' \in [1, k]$ with $(x, z) \neq (x', z')$, the subgraphs $B_{x,z}$ and $B_{x',z'}$ are disjoint, and the vertex $(x, x', 2z - 1)$
in $B_{x,z}$ is adjacent to the vertex $(x, x', 2z')$ in $B_{x',z'}$. Thus the $B_{x,z}$ are the branch sets of a K_{nk}
minor in $L_n[2k]$. \hfill \Box

Lemma 4.4. For all integers $k \geq 2$ and $p \geq 1$, there is an integer $n \geq \frac{2 \ell}{3\sqrt{3}}\sqrt[k]{p}$, such that K_n is a minor of some
$(0, p, k)$-almost embeddable graph.

Proof. Let $m := \lfloor \sqrt[p]{p} \rfloor$ and $k := \lfloor \frac{1}{2} \rfloor$. Let $n := 2m\ell \geq 2 \cdot \sqrt[p]{p} \cdot \frac{k}{2} = \frac{2 \ell}{3\sqrt{3}}\sqrt[k]{p}$. For $x, y \in [1, m]$, let $F_{x,y}$ be
the face of L_{2m} with vertex set $\{(2x - 1, 2y - 1), (2x, 2y - 1), (2x, 2y), (2x - 1, 2y)\}$. There are m^2 such
facing vertices, and every vertex of L_{2m} is in exactly one such face. By Lemma 4.3, K_n is a minor of $L_{2m}[2\ell]$.
Since L_{2m} is planar, by Lemma 4.1, K_n is a minor of some $(0, m^2, 2\ell)$-almost embeddable graph. The
result follows since $p \geq m^2$ and $k \geq 2\ell$. \hfill \Box

The following theorem summarizes our constructions of almost embeddable graphs containing
large complete graph minors.

Theorem 4.5. For all integers $g \geq 0$ and $p \geq 1$ and $k \geq 2$, there is an integer $n \geq \frac{1}{4}k\sqrt[p]{p + g}$, such that K_n is a minor of some (g, p, k)-almost embeddable graph.

Proof. First suppose that $g \geq p$. By Lemma 4.2, there is an integer $n \geq k\sqrt[6g]{g}$, such that K_n is a minor of some
$(g, 1, k)$-almost embeddable graph, which is also (g, p, k)-embeddable (since $p \geq 1$). Since
n \geq k\sqrt[3p + 3g]{p + g} \geq \frac{1}{4}k\sqrt[p]{p + g}$, we are done.

Now assume that $p > g$. By Lemma 4.4, there is an integer $n \geq \frac{2 \ell}{3\sqrt{3}}\sqrt[p]{p}$, such that K_n is a minor of
some $(0, p, k)$-almost embeddable graph, which is also (g, p, k)-embeddable (since $g \geq 0$). Since
n \geq \frac{2 \ell}{3\sqrt{3}}\sqrt[p]{p} + g = \frac{2 \ell}{3\sqrt{3}}k\sqrt[p]{g + p} + \frac{1}{4}k\sqrt[p]{g + p}$, we are done. \hfill \Box

Adding a dominant vertices to a graph increases its Hadwiger number by a. Thus Theorem 4.5
implies:

Theorem 4.6. For all integers $g, a \geq 0$ and $p \geq 1$ and $k \geq 2$, there is an integer $n \geq a + \frac{1}{4}k\sqrt[p]{p + g}$, such that
K_n is a minor of some graph in $\mathcal{G}(g, p, k, a)$.

Corollary 3.2 and **Theorem 4.6** together prove Theorem 1.1.
Acknowledgment

Thanks to Bojan Mohar for instructive conversations.

References