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GRAPHICAL METHODS IN 

STATISTICAL ANALYSIS 

Lincoln E. Moses 

Department of Statistics, Stanford University, Stanford, California 94305 

INTRODUCTION 

The idea of graphical presentation of statistical data is a relatively recent 
development as compared with geometry , algebra, or even probability theory 
(18). The techniques of graphical presentation of data are still rapidly de
veloping, as statistical theory opens new ways of thinking about data, and as 
using the capabilities of modem computers increasingly reshapes the body of 

. statistical practice-and theory. Before turning to some ofthe key graphical 
methods it is well first to look at a few broad issues. 

Remarks About the Nature of Graphs 

The usefulness of graphical presentation arises partly from the quantity of 
information that can be displayed compactly . After all, it is easy to allow a 
pair of numbers to be. depicted by a single dot placed suitably on a piece of 
graph paper; thus, ten dots may depict ten such number pairs in a fashion that 
makes it easy to compare them and study patterns among them. Observe, ten 
dots use less ink than even one word; so information can indeed be displayed 
compactly by graphical means. 

Vividness is another source of the appeal of graphical methods . Interesting 
pictures can replace dry numbers. This feature can help in transmitting 
information; unfortunately it can also sometimes be harmful. First, distortion 
can arise simply from perceptual short-cuts that the mind takes, and second, it 
is not unknown for distortion to be deliberately attempted. 

The graphical display carries two kinds of information: the data themselves; 
and the descriptions of the data, such as labels, scale markers, and the title. 
With regard to both kinds of information a balance is needed between too little 
and too much. The temptation to pack a great deal of statistical information 
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into a single chart arises again and again. There can be good reasons to bring 
many facts together in the same picture: relationships, comparisons, contrasts 
may be seen easier. But too much information can baffle the eye, boggle the 
mind, or both. Similarly, thc ink devoted to labels, scales, etc can be 
absolutely necessary, or can be redundant, leading to clutter and even confu
SIon. 

Graphs, from Three Perspectives 

THE READER Reading a graph demands attention; some systematic patterns 
of proceeding can be helpful. First, to read the graph, inspect the title, the 
source of the data, the scales on the margins of the figure, and the labels of 
any symbols that are used. After these steps it is time to look at the data 
themselves . If the graph depicts numbers that are listed or tabled in a 
convenient place it is usually helpful to check thc correspondence between the 
two representations, tabular and graphical; the aim is not so much to check for 
error as to make certain that one comprehends correctly just how the numer
ical data are graphically displayed. Second, to interpret the graph, begin with 
the author's interpretation. Do you understand the basis for it? Does the graph 
actually support that interpretation? Are there other reasonable in
terpretations? If the data have large uncertainties, would the writer's in
terpretation lose credibility or remain reasonable? If some one particular data 
point were in error, would the interpretation be strongly affected, or would it 
still be reasonable? All these questions illustrate the more general notion: 
Study the graph, but after first studying its labels, scales , sources, and title. 

THE AUTHOR In preparing a statistical graph one must keep in mind two 
separate concerns: (a) the data, and representing them graphically; (b) the 
intended reader's ease of correctly understanding the resulting graph . 

During preparation, the author must choose wisely and explain well the 
elements of the graph: title, scales, symbols ,  source(s). Further, he may need 
to balance the simplicity that is to be had in each of many separate charts, 
against the gain in fuller understanding that may be available by showing 
several related things on a single, more complex chart. Further on in this 
article some ideas bearing on such choices are discussed. 

Planning the chart may lead to a much better product; such planning can 
often gain advantage from some measure of experimenting; thus, alternative 
ways of graphing a given data set can be executed and tested on one's  friends 
or colleague during the preparation phase. 

THE RESEARCHER The researcher may become the author, but before then 
there can be much to gain by inquisitively graphing the data-typically in 

A
nn

u.
 R

ev
. P

ub
lic

. H
ea

lth
. 1

98
7.

8:
30

9-
35

3.
 D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 M

on
as

h 
U

ni
ve

rs
ity

 o
n 

05
/1

2/
10

. F
or

 p
er

so
na

l u
se

 o
nl

y.



GRAPHICAL METHODS 3 1 1 

several alternative ways. Perhaps only a few of these graphs will see the light 
of day, after serving their purpose of increasing the researcher's understand
ing. The tasks here include: 

1. Finding suitable levels of aggregation, that is, identifying which subsets of 
data can be collapsed and combined, and which cannot. 

2. Exploring for the relevance of possible interfering variables: Do the data 
from different interviewers look sufficiently similar? Are subjects with a 
previous history of disease X different from those without it in our study, 
which concerns disease Y? 

3. Choosing the scales on which variables are to be expressed: Should we use 
travel time? Or its reciprocal, the velocity? Are patterns clearer when log 
Y is used or Y itself? 

4 .  Assessing the impact of statistical uncertainty on data interpretation, and 
deciding whether and how to depict the uncertainty. 

We have pointed to three roles in which a person may approach a statistical 
graph: reader, author, and researcher. But in any of these roles,  broadly 
similar issues, ideas, and problems will be met. We tum now to some of 
these, often addressing the researcher-author, but believing that the reader of 
graphs can also gain from these considerations .  

PRESENTING UNIVARIATE DATA 

If each subject of study produces a single measurement, we have univariate 
data. Additionally , it is not uncommon to acquire information about several 
variables from each subject under observation: Perhaps several laboratory 
tests are routinely taken, or perhaps two or three items are reported in the 
typical pathology report. Any one of these variables can be the subject of a 
univariate display in which information concerning the one variable is to be 
graphically depicted, for one or more groups of subjects. 

Univariate data can vary continuously, as does weight, or elapsed time; it 
may have only a few separate (discrete) possible values , like number of 
children born alive to a woman; it may be scaled in terms of ordered 
categories, like poor, fair, good, excellent; it may be binary, each observation 
having one of only two possible values , as with a serological test that can only 
be positive or else negative. Graphical methods appropriate for these cases 
vary in some respects , by necessity, as we shall see. 

The Dot Diagram 

If the number of observations is not very great, say at most a few dozens, then 
the dot diagram can be very useful to display the data, for one sample, or for 
several. In Figure 1 ,  the top two panels show one-sample dot diagrams for 
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25 men's heights in inches 
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25 students' reported numbers of grandparents still living 

• 
• • 
• • • 

• • • • 
• • • • • 
• • • • .. 
• • • • • 

I I I I 
0 2 3 4 

Two samples arranged for easy comparison 

• 
AI ·1 

• • •  • • • • 
• 1 .

1 
.

1 B • • • • 
0 10 20 30 40 

Figure 1 THREE DOT DIAGRAMS. The first two graphs correspond to continuous and discrete data, 
respectively. The bottom one shows two samples of continuous data plotted for ease of compari
son. 

continuous data, height, and discrete data, number of living grand parents .  
The third panel shows two samples plotted in close juxtaposition, for easy 
comparison by eye, or by the Wilcoxon-Mann-Whitney test. If there were 
more than two samples to compare, then it would be better to show each on a 
separate dot diagram, with carefully aligned scales either stacked one above 
the other or vertically arrayed side by side. 

The dot diagram's  advantages are ease of construction, ease of interpreta
tion, and precise visualization of the measurements as actually made, because 
no grouping is imposed on the observations. 

The Histogram and a Close Relative 

The histogram is useful for data that are quite numerous-more than a few 
dozens. A system of (usually) equal-length intervals is imposed on the scale, 
and the number of observations (frequency) belonging to each interval is 
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GRAPHICAL METHODS 313 

represented by the height of a bar erected above that interval. In Figure 2, the 
data from the upper panel of Figure 1 appear twice in histogram form. The 
left-hand panel shows the histogram that results from using intervals 60+ -63, 
63+-66, . . .  and the right hand panel results from the system of intervals 
59+ -62, 62+ -65, . . .. With larger samples, two such interval systems 
ordinarily produce less dissimilar results. Notice, each histogram has two 
vertical scales. The one on the left shows frequencies; the heights of the bars, 
using that scale, add up to 25, the total number of observations. The right
hand scale shows decimal fractions, with . 20 at the same elevation as 5, 

because 5 is . 20 of the total sample size; using this scale the sum of the heights 
of the bars is 1.00.  With respect to the right-hand scale, we speak of the 
picture as a relative frequency histogram. 

Histograms are natural ways to depict large samples of continuous data. 
They are also natural for depicting ordered-category data; responses like 
"improved" or "much improved" embody a range of possible degrees of 
intensity (like improvement), so letting an interval represent such a category 
is reasonable (although the interval widths may seem problematic). 

But if the data are discrete, as with number of living grandparents, then it is 
more natural to portray the frequencies as spikes at the (only) possible values, 
0, I, 2, 3, 4. Such a figure may be called a "spike diagram." The upper panel 
of Figure 3 shows the grandparent data in this format. 

Histograms are not well adapted to comparing two or more samples. If it be 
attempted, then let the system of intervals for the two histograms be the same, 
and plot them as relative frequency histograms, so that both pictures will have 
the same area, facilitating comparison. But two such pictures can be hard to 
compare by eye, being separated from one another. And if they are superim
posed they tend to look tangled unless precautions are taken. Figure 4 offers 
several ways of displaying two comparable histograms. The reader might try 

an additional method, such as placing one histogram directly beneath the 
other. 

The superimposed version takes liberties with the data; it represents the 
data of group I as distributed over the various intervals (as histograms always 
do), but to avoid tangling, it depicts the data from group II as being con
centrated at the interval midpoints. This is the price paid for what may be the 
easiest visual comparison. 

Samples of categorical data (like race or blood-type) for which there is no 
underlying order to the categories, are sometimes depicted by means of "pie 
charts," in which a disk is partitioned into segments proportioned (angularly) 
to the frequencies of the categories. Considerable evidence (4, p. 264) 
indicated that this representation is an inferior one; the eye is not clever at 
interpreting angles accurately. It is preferable to use spikes adding to 1.00 for 
the various categories, as in the lower panel of Figure 3, where the relative 
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5 

60 63 66 69 72 75 

10 0.40 

0.20 

59 62 65 68 71 74 77 

Figure 2 TWO HISTOGRAMS OF THE SAME DATA. The two figures use different nets of intervals to 
capture the data in the top panel of Figure I. 

Figure 3 TWO SPIKE DIAGRAMS. The upper 
panel shows the living grandparent data of 
Figure I and the lower panel shows the pref
erences for four brands as reported by 12 

respondents. 

8 

4 

o 

o 2 3 4 

Number of living grandparents 

0.32 

0.16 

o 

:L 11 I r:, A B C 0 
Brand choices of 12 respondents 

frequencies of four categories A, B, C, and D are shown. (The horizontal axis 

has no meaning in this picture; it only serves to start each spike form the same 

bottom level.) 

Cumulative Plots 

Histograms plot frequencies, or relative frequencies, belonging to intervals. 

The same information can be rendered, without loss of information, in 

cumulative form, as in Table 1 .  
The table shows the relative frequencies for two samples, a s  depicted in 

Figure 4, and then it shows those frequencies accumulated. Thus, the 92 
found in  the table tells us  that 92% of the observations in  sample I had values 

of 75 or less. We have offset the cumulative relative frequencies to a level 

lower than the corresponding relative frequencies to emphasize that those 
numbers relate to different points on the numerical scale. For example, in 

sample I the interval 63+ -66 shows 15 in the first column, reporting the 
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60 63 66 69 72 75 78 

Opposed 
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66 
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II 

15 20 35 15 
60 63 66 69 72 75 78 

o Sample I 

.4 

.3 

0.2 

0.1 

T Sample II 

60 63 66 69 72 75 78 
Figure 4 THREE WAYS TO SHOW TWO HISTOGRAMS FOR COMPARING TWO SAMPLES. Not shown is 
the direct superposition of one upon the other, which produces tangled confusion. The bottom 
panel approximates such superposition. 

percentage of all the sample values that occurred, spread out presumably, 
through that interval . Also with that interval 25 appears at a lower level, at the 
boundary between 63+-66 and the next interval 66+-69. This location fits 
well with the meaning of that 25, to wit, that 25% of all of the sample values 
were 66 or less. The same idea is captured in the graph, Figure 5, prepared 
from the two cumulative columns. Note that the cumulative values are plotted 
at the interval boundaries. 
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Table 1 HEIGHTS IN TWO SAMPLES. Note relative frequency is an attribute of an entire 
interval, but cumulative relative frequency relates to the maximum possible value for 
the interval 

Sample I Sample II 
Inches ReI. freq. (%) Cumulative (%) ReI. freq. (%) Cumulative (%) 

60+-63 10 5 
10 5 

63+-66 15 to 
25 15 

66+-69 25 15 

50 30 

69+-72 22 20 

72 50 

72+-75 20 35 
92 85 

75+-78 8 15 
100 100 

Cumulative 0/0 

100 

90 

80 

70 

60 

50 

40 

30 

20 

10 

60 63 66 69 72 75 78 

Inches 

Figure 5 COMPARISON OF TWO SAMPLES USING CUMULATIVE PLOTS. The data of Figure 4 are 
rendered here in cumulative form. 
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The cumulative plot and the histogram contain exactly the same informa

tion, for either can be computed from the other. Some advantages attach to the 

cumulative representation. First, it often "untangles" two or more samples in 

which the histograms would interweave; this is seen by comparing Figure 5 

with Figure 4 .  Second, the cumulative representation makes it easy to es

timate the median (or other percentile) by simply reading off the horizontal 

value at which the curve attains height .50 (or other desired percentage). Thus 

the two seventy-fifth percentiles are read off as about 72 Y2 inches in sample I 
and 75 1/4 inches in sample II. 

Cumulative representation can help also with data obtained in ordered 

categories. We illustrate this (and another graphical approach as well) on thc 

data set (13) found in Table 2, showing the histological grade of 100 tumors 

of the prostate, falling in five size classes. We regard histological grade as a 

series of ordered categories, indicating progressively greater abnormality of 
cells in the tumor. We treat the five size groups as five samples to be 

compared; this is somewhat artificial, since in fact one sample of routine 

autopsies furnished the data, and they might most naturally be regarded as 100 

bivariate observations, each tumor possessing a grade and a volume; howev

er, we treat the size groups as samples in both the analyses, and both are 

actually sensible ways to display the data; indeed one of them was the form in 

which the data were originally published. 

The data appear in the left-hand panel of Table 2, where the frequencies by 

grade are shown for the 20 observations in each size class (row) and, at the 

foot of the table, for the combined samples. The right-hand panel shows 

cumulative percentages within the row and also, at the foot of the panel, the 

cumulative percentages for the combined sample. 

Graphical representations of these two tables appear in Figure 6. The upper 

panel depicts the frequencies of the various ordered categories for each size 

Table 2 HISTOLOGICAL GRADE OF PROSTATE TUMORS IN FIVE SIZE CLASSES. The 
columns correspond to increasing abnormality of tissue. Source: Ref. (13) 

Size Frequencies Cumulative percentages 
class' Grade Grade 

1-2 3A 3S 4 5 1-2 3A 3S 4 5 
A 10 2 7 0 50 60 95 100 100 
B 3 3 12 2 0 15 30 90 100 100 
C 0 5 13 2 0 0 25 90 100 100 
D 0 0 12 6 2 0 0 60 90 100 
E 0 0 7 10 3 0 0 35 85 100 

13 10 51 21 5 13 23 74 9S 100 
a The size classes A. B, C. D, E, correspond to increasing volumes (in ee) with break 

points at .054, .171, .464 and 1.42, values chosen to force equal numbers in the five 
classes. 
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class, using shaded bars and "hanging" them at the boundary between classes 
3A and 3S. The lower panel plots the five cumulative distributions for the 
ordered categories, with the category markers located on the horizontal scale 
in accordance with the combined-data cumulative distribution. Thus the width 
of each interval is proportional to the number of cases with that histological 
grade in the combined set of data. On the vertical line at each category 
division, every cumulative distribution has a plotted point, and in addition the 
combined cumulative percentage is indicated by an x on each vertical; these 
lie on the diagonal, which, to avoid clutter has not been added to the figure . 

To fix ideas, examine the vertical line with foot at 74, the boundary point 
on the horizontal axis between 3S and 4. On this vertical line the lowest point, 
at 35, belongs to group E; this tells us that of group E only 35% had 
histological grade 3S or less; higher up we find at .55 the point belonging to 
group D ,  with the message that 55% of that size group had histological grade 
3S or less. The x at .74 attests to the combined sample having 74% of values 
at 3S or less . B and C agree in having 90% of their members at 3S or less, and 
in group A, with its point at .95, all but 5% of its members scored 3S or less. 
This order E, D, C, B, A, seen at this boundary (between 3S and 4) prevails at 
the three other boundaries as well. The total message is that no matter where 
you might choose to divide the scale of histology into "less severe" and "more 
severe," you would find the percentage of "less severe" cases to be greatest in 
size group A, next in B, then C, D, and E in that order. It is much more 
difficult to deduce this fact from the upper panel in Figure 6 .  

Box Plots 

The graphical techniques so far discussed portray the entire sample. For some 
purposes a much briefcr summary will suffice-like simply the sample mean, 
or the median. In still other cases, such a statistic may tell too little, and yet 
the histogram or spike diagram is unnecessarily detailed. The box plot can 
help; it gives a useful idea of the sample distribution without portraying it 
fully. There are several closely related types. To fix ideas we point to this one: 
Compute the median, the lower quartile, QI, (the twenty-fifth percentile) and 
the upper quartile, Q3 (the seventy-fifth percentile. )  Show them in a format 
like that in Figure 7. 

The Figure shows the following: (a) the left-hand sample has a median of 
60; the right-hand one a median of 50; (b) the left-hand sample is more 
compactly distributed around its median than the other; (c) the right-hand 
sample is roughly symmetrically distributed, but the other is quite un
symmetric . In principle we could instead use the sample mean rather than the 
median, and could put the limits at one standard deviation (or 1.5) above and 
below the mean. Notice that this would not reveal the information about 
asymmetry. 
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Figure 6 FIVE CUMULATIVE DISTRIBUTIONS OF ORDERED-CATEGORY DATA, The upper panel shows 
a conventional display, using shading to represent the ordered variable, which is intensity of 
abnormality, The lower panel shows the same information cast in cumulative form, Source: Ref. 
(13), 
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90 

80 

Bm 
70 

60 Median 

50 Ql 

,...----, Q3 

t----I Median 

40 

30 
L-__ -.J Q1 

20 

10 

0 

Figure 7 TWO BOX PLOTS. These are a rather minimalist version of the box plot approach, 
showing only the three quartiIes. Other approaches add information concerning the data that lie 
above and below the quartiles. 

Box plots are often usefully elaborated by adding graphical information 
about data outside the two quartiles . We do not follow this up here, but direct 
the interested reader elsewhere (Sa). 

. 

Box plots can quite usefully display the essential features of many samples 
in one chart, where histograms and cumulative plots would fail. 

Figure 8 depicts certain coal mine accident data for 19 large coal mining 
companies, each with several mines, ranging from 4 to 77, a total of 424 
mines in all (5). This picture is based on a table with 424 rates of disabling 
injuries over·theperiod 1978-1980. The 424 numbers involved are made 
quite available to the reader by this dep�ction. 

Means and Standard Errors 

The graphical devices presented to this point deal with display of all the data, 
as with dot diagrams, histograms, and cumulative plots, and, with some 
abridgment, box plots. But sometimes less detail is needed, and then simplic
ity may commend displaying only sample means (or medians) , perhaps 
supplemented with an indication of statistical uncertainty. In this section we 
begin with the simplest case, move on to rather more complex ones, and 
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Figure 8 DISABLING INJURY RATES FOR MINES WITHIN COMPANIES, 1978-1980. The top and 
bottom of each box denote the seventy-fifth and twenty-fifth percentiles, and the bar in the 
interior denotes the median of disabling injury rates in coal mines of one company. Numbers 
above the bars indicate the number of mines in each company. Source: Ref. (5). 

. 

conclude by pointing to some of the problems-and ideas-that can arise 
even when each sample is reduced to a single number like the mean. 

THE SIMPLEST M EAN: THE BATTING AVERAGE As every baseball fan 
knows, a player's batting average is a proportion; it tells what proportion of 
times at bat resulted in the player's getting a hit. This homely example 
reminds us that a proportion is indeed a (very simple) sample mean. In Figure 
9 we see a graphical representation of these data: in Hospital I, of 24 births 1 1  
were female, and in Hospital II, of 50 births, 28 were female. The chart 
shows the percentages, 46% and 56%. If we wished to indicate the statistical 
uncertainties, then we would calculate the two standard errors, which are .10 
and .07, and show the data as in the lower panel of the Figure. 
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Figure 9 PERCENTAGE OF FEMALE BIRTHS AT 

TWO HOSPITALS. In the lower panel, bars 
reach one SE above and below indicated 
rate. 

Hospital 

II 

Hospital 

II 

0% 50% 100% 

It is evident that either style is easily adaptable to displaying more than two 
proportions, say 5 or 10 or 20. It is also evident that either chart could be 
drawn so that the lines now horizontal would be vertical. 

DISPLAYING MANY MEANS In Figure 10, 28 means, with error bars, are 
shown; they are arranged in descending order of magnitude; the numbers 
across the top provide identification numbers for the 28 samples. A list of the 
sample sources, keyed to the identification numbers, would complete the 
figure . 

The error bars have been drawn to length 1.5 standard errors, on each side 
of the mean. This choice (rather than 1 .0 or 2.0) makes it convenient to assess 
statistical significance, since two means with bars that do not overlap differ at 
approximate significance level .05, or less. I Thus sample 4 can be seen to 
have a mean significantly exceeding the mean of sample 9, or any one to the 
right of it . 

IThe standard error of X; - Xj is se = ([se(x;)]Z + [se(xj)]Z)1/2 and we say the means differ at 
significance level .05 if 

Ix; - Xjl > 2.0 (se). I. 
This standard is appropriate if n; and nj are "large." When they are not, then 2.0 should be 

replaced by the two-sided .05 significance point for t with appropriate degrees of freedom, and 
1 .5 should be multiplied by one-half of that t value. It can be shown that so long as se(x;) and 
se(xj) are not different by a factor exceeding 2 . 1, then when the 1 .5 bars fail to overlap, Eq. I is 
satisfied and the means differ significantly at .05. Using 1.6 in place of 1.5 would give wider bars 
("more conservative") but ensures that non-overlap implies Eg. I if se (x;) and se (Xi) differ by 
larger factors----up to 3.2. With the data in Figure \0 it is apparent that no nearby means have 
standard errors differing by so large a factor as 2.1, so we may accept the non-overlap 
significance criterion as applicable in the example. 

One might ask whether multiple comparisons issues invalidate this informal significance 
testing procedure. Not necessarily. If the entire set of means are significantly different by a .05 
level F test, then the suggested procedure is a simple approximation to Fisher's Least Significant 
Difference method, at the .05 level, which is a standard multiple comparisons technique ( 1 4) .  
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5
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Hih 4.0 

3.0 

2.0 I 1 
Figure 10 TWENTY-EIGHT LABELED SAMPLE MEANS, ARRANGED IN DESCENDING ORDER OF SIZE, 

WITH ERROR BARS. 

MANY MEANS WITH 
"

STRUCTURE
" Our examples have tacitly assumed a 

kind of symmetry among the means, all being thought of as "on an equal 
footing," But often this would be an unrealistic stance. We might have means 
from 12 strains of some yeast, all on an equal footing. But, instead, the twelve 
groups might correspond to six strains of yeast, each being grown in nutrient 
media A and B. Or there might be three yeast strains and four nutrient media; 
or three yeast strains ,  two media, and two temperatures , in all possible 
combinations, Perhaps there are two groups, one of five related strains, the 
other of seven, In every case there are 12 samples, but they bring forth 
different kinds of questions, and call for different kinds of graphical (as well 
as numerical) presentation. We see below how such issues of structure bear on 
the appropriateness of alternative modes of display . 

An example with temporal structure Table 3 shows fatal motor accident 
statistics from Colorado (12). In the years 1964-1968 and again in 1978 and 
1979, there was no helmet law. In the years 1970-1976 there was a helmet 
law. Finally, 1969 and 1977 were years in which a helmet law was in effect 
for part of the year. 

The fatality rates for each year are plotted in Figure 11; in addition, the 
simple arithmetic averages of the rates in each of the three periods are shown 
as horizontal lines reaching throughout their periods. (Notice 1969 and 1977 
are excluded, because they each comprised two parts , one with and one 
without a helmet law.)  The chart strongly suggests that the fatality rates were 
lower when the helmet law was in effect. A more delicate and complete 
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Table 3 FATAL MOTORCYCLE ACCIDENTS IN COL-

ORADO. During 1970 through 1976 a helmet law was 
in effect, but not in the periods before and after. 
Source: Ref. ( 12) 

Motorcycle Fatal Fatal 
Year registrations accidents accident rate" 

1964 16,645 10 6.02 
1965 2 1,479 10 4.65 
1966 24,81 1 14 5.65 
1967 26,034 17 6.53 
1968 28,594 23 8.04 
1969b 34,889 29 8.3 1  
1970 44,85 1 27 6.0 1 
1971 57,098 2 1  3.68 
1972 68,908 38 5.5 1 
1973 81,87 1 45 5.59 
1974 92,833 39 4.20 
1975 95,439 47 4.92 

1976 98,05 1 3 1  3. 16 
1977C 108,559 57 5 .25 
1978 1 10,000 63 5.73 
1979 1 15,000 74 6.43 

a Accidents per 10,000 registrations. 
bHelmet law effective July I, 1969. 
CHelmet law repealed May 20, 1977. 

statistical analysis might employ weighted means of the rates within the three 
periods . The rates of later years have smaller sampling variability than the 
early ones, and would show vertical error bars (perhaps using the 1 .5 conven
tion) for each of the averages . 

As it is, a quick assessment of statistical significance is conveniently made . 
Beside each of the 14 points is shown its rank among the 14, with the smallest 
rate (in 1976) receiving rank 1, and the largest ( 1968) receiving rank 14. The 
sum of the seven ranks for the years with the helmet law is 34, considerably 
smaller than the null expectation for that sum, which is 52 .5 (seven times the 
average rank, 7.5 which is midway, between 1 and 14). Indeed, that sum, 34, 
is significantly small, at p= .02, two-sided, applying Wilcoxon's two sample 
test . 
. This example has shown how graphical display of 16 years' rates elucidates 

the possible impact of a helmet law in effect during part of the period . The 
reader is helped greatly by the use of reference lines: the three horizontal lines 
showing subperiod averages, and the vertical lines defining the subperiods . 
All information in the graph comes from the table . But the eye and the mind 
may perceive the information better from the graph . 
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Figure 11 FATAL MOTORCYCLE ACCIDENTS IN COLORADO WITH AND WITHOUT A HELMET LAW. 
Numbers appearing near the data points are ranks (I is smallest, 14 is largest) of the observations. 
Horizontal lines are simple averages of the rates for the period. The ranks justify the conclusion 

that the lower rate during the helmet law era is not likely to be a chance abelTation. The data are 
the same as in Table 3. Source: Ref. (12). 

Factorial structure The previous example was relatively simple, with a 
three-era structure . Things are much more complex when the data have a 
factorial structure with, say, one mean for each possible combination of two 
classifications, one with r classes and the other with k classes. We would have 
such structure if five kinds of standard specimens were blindly read at each of 
four laboratories. Graphical display of the 20 (structured) averages could be 
based on the analysis of variance applied to the data . The 20 means would be 
summarized in (a) the five averages for specimen type, (b) the four laboratory 
averages, (c) the 20 differences between each observed average and the value 
fitted for it by suitably combining the laboratory and specimen-type averages . 
Each of (a), (b), and (c) could be graphically depicted by methods we have 
already seen. But we will not take up a detailed treatment of factorially 
structured means here . Instead we tum, in the next section, to some devices 
that bec�me available when one or two of the classifications in the factorial 
structure have only two levels . 

Two-Way Displays for Univariate Data 

We first look at display of data obtained in pairs. We then tum to an 
alternative display for means of two samples, and then to several means that 
arise from a 2 X 2 x k factorial structure . 
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MATCHED SAMPLES; PAIRED DATA Data arrive in pairs in many ways. 
They may be before and after values; they may be ipsilateral and contralateral 
measurements, or opinions of husband and wife, for example. Whenever data 
occur in pairs, we should use methods of display and analysis that take 
account of this feature. It is incorrect to use two-dot diagrams, or two 
histograms. Correct methods of display fall into two classes. First, one may 
construct from each pair a single number, like the difference after-minus
before, showing change, or a ratio like A as a percentage of B. Or, one may 
plot the two values for each pair on a scatter diagram. An interesting data set 
(11) provides a natural vehicle for exhibiting both approaches. 

The data record the number of episodes of apnea, stoppage of breathing 
(exceeding 20 seconds), per hour of sleep, for each of eight premature infants, 
under two conditions. Each infant was bedded for two six-hour periods on a 
bassinet, and for two (sandwiched) six-hour periods on a waterbed. The two 
apnea rates correspond to the two bedding conditions. 

The data are given in Table 4 .  Note that the differences between x and yare 
considerably less variable than are the measurements under each condition, as 
indicated by the much smaller range for d than for x or for y. 

The data of Table 4 are displayed in two separate dot diagrams in the top 
panel of Figure 12. See how similar the two diagrams are. This carries a 
suggestion of "no difference. "  But then observe the lines connecting the two 
observations of each infant. All eight such lines slope downward to the right; 
all eight attest to reduced apnea on the waterbed . This is a very different-and 
correct�onclusion. This example illustrates our earlier statement that with 
paired data it is incorrect simply to display the two dot diagrams without 
taking precautions; to do so is likely to convey a false impression, as here. 
The connecting lines work well here because there are few points; they do not 
offer a generally useful way to patch up the dot diagrams. Two better 

Table 4 HOURLY RATE OF APNEIC EPISODES IN PREMATURE INFANTS 

DURING SLEEP ON TWO KINDS OF BEDS. Each of eight infants was 
bedded for 12 hours on a waterbed and on a bassinet, in alternating 
six-hour periods. Source: Ref. ( I I )  

Infant Waterbed (x) Bassinet (y) Difference d = x - y 

I 0 .89 1 . 36 0 .47 

2 0 .77 1 .66 0 .89 

3 0 0 .11 0 .11 

4 0 .65 1 .44 0 .79 

5 0 .88 1 .63 0 .75 

6 1 .36 1 .52 0 .16 

7 1 .22 1 .53  0 . 31 

8 0.30 0.48 0 .18 

Range 1 . 36 1 .55 0.78 
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The dot diagrams. with pairing shown 

: ): I ·S 
.. 

� I I 
o 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 

-0.2 -0.1 o 

Y - Bassinet 

The dot diagram of difference d 

(d - bassinet value minus waterbed value) 

i' "1 ' • i " , 'I 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

The data plotted in two dimensions 

1.75 
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Figure 12 APNEA IN EIGHT PREMATURE INFANTS UNOER TWO SLEEP CONDITIONS. The numerical 
values represent number of episodes of apnea (exceeding 20 seconds) per hour of sleep on a 
waterbed (W) or bassinet (8). These are the data of Table 4. Source: Ref. ( 11) . 

graphical procedures are offered in the middle and lower panels. In the middle 
panel the differences (bassinet value minus waterbed value) are plotted on a 
dot diagram. There are no negative values and the reduced apnea on the 
waterbed is clearly revealed by the eight positive differences. The bottom 
panel plots the two values for each infant in a scatter diagram, and shows 
clearly (a) the superiority of the waterbed, since every point above the 
diagonal denotes an infant with bassinet apnea rate larger than waterbed rate; 
(b) the correlation between the two rates, which arises from a tendency for 
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some infants to be more or less apneic than others on both beds. This 
correlation accounts for the gain in information available from measuring 
each infant on both beds, and for the inappropriateness of two separate dot 
diagrams. Finally , we remark that the display in the bottom panel contains 
more iIiformation than does the middle panel; Observe that from the lower one 
we could reconstruct the middle one-but not vice versa. 

It is conceptually correct to think of this example as really not a univariate 
one; each infant has provided two measurements-and the data are bivariate. 
But because ,both measurements are of the same kind, apneic rate during 
sleep, they are less obviously bivariate than would be, say, data on apneic rate 
and heart beat .for each infant. So we have employed some expository license 
in using the term "univariate" at all. Now we take a rather opposite twist, by 
treating pairs of independent sample means in bivariate coordinates, because 
of advantages that will become apparent. 

PLOTTING TWO MEANS: REVISITED Let us return to the data for the female 
birth fraction at two hospitals (Figure 9). This information is plotted in an 
entirely different way in Figure 13 .  

The two axes show that the plotted point represents the rate .46 for Hospital 
I and .56 for Hospital I I .  A point that fel l  on the diagonal line would denote 
equal rates for the two hospitals .  The uncertainties of the two rates again are 
shown, and the larger standard error for the rate of Hospital I is visible. The 
diagonal arrow, constructed as the diagonal of the rectangle defined by the 
horizontal and vertical standard error segments, represents the standard error 
of the difference between the two rates . When that arrow is rotated to point 
vertically (or horizontally) , it crosses the diagonal line of equality; this means 
that PrPn differs from zero by less than one standard error. 

EXTENDING THE TWO-MEANS-ONE-POINT PLOT Murray & Bernfield ( 15) 
studied incidence of low and very low birth weight as it related to adequacy of 

Figure 13 PERCENTAGE OF FEMALE BIRTHS 

AT TWO HOSPITALS, WITH ERROR BARS. The 
diagonal arrow shows the standard error of 
the difference between the rates in these two 
(independent) samples. Since it is long 
enough to cross the line of equality, we see 
that the two rates differ from one another by 
less than the standard error of that differ
ence. 

1.0 

0.8 

0.6 
Hospital II 

0.4 

0.2 

o 0.2 0.4 0.6 0.8 1.0 
Hospital I 
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Table 5 RACE, ADEQUACY OF PRENATAL CARE, AND FREQUENCY OF SMALL 

BABIES. Low birthweight (LBW) and very low birthweight (VLBW) infants 
are more frequent among black mothers than white, and when prenatal care 
has been less adequate. Source: Ref. (15) 

Frequencies 

Prenatal Care 

Inadequate 

Intermed. 

Adequate 

Percentages: (P) 
Prenatal Care 

Inadequate 

Intermed. 
Adequate 

I + log (P) 
Prenatal Care 

Inadequate 
Intermediate 
Adequate 

LBW (::52500 g) 
Black White 

60/400a 100/1800 

16511500 450/9000 

100/2000 340/17000 

15b 6 

11 5 
5 2 

2.18 1.78 
2.04 1.70 

1.70 1.30 

VLBW (::51500 g) 
Black White 

18/400 18/1800 

3611500 8119000 

2212000 85/17000 

4.5 I 
2.4 .9 
1.1 .5 

1.65 1.00 
1.38 .95 
1.04 .70 

a This ratio reports that of the 400 black mothers with inadequate prenatal care, 60 
bore babies weighing 2500 g or less. 

"This is the percentage of inadequate-care black mothers who bore babies weigh-
ing 2500 g or less. 

prenatal care and to race of mother. Table 5 is adapted from their data and in 
its upper panel displays (approximate) numbers of mothers of the two races 
with infants of "low" birth weight (less than 2500 grams) and of "very low" 
birth weight (less than 1500 grams) , sorted out by adequacy of prenatal care. 
(Observe that the "very low" birthweight infants are a subset of the "low" 
birthweight infants. Neither group includes any birth of less than 500 gm, for 
which survival is very uncommon.) The data in the top panel of the Table 
consist of 24 numbers, twelve fractions each with a numerator and de
nominator. Reducing the data to percentage of births cuts the number of 
entries to 12, displayed in the middle panel. 
Now graphical display of these 12 percents is the task at hand. A conventional 
display might use 12 bars , as in Figure 14 . Alternatives to this mode of 
display are offered in the three panels of Figure 15 . 

In the top panel of Figure 15 we see six line segments , each showing a 
black percentage and a white percentage, corresponding to the two races. 
Plotting the data in the style using two coordinates , in the middle panel, calls 
for only six points and it is easy to see that (a) the fraction of very low 
birthweight (VLBW) births is much smaller for both races than the fraction 

A
nn

u.
 R

ev
. P

ub
lic

. H
ea

lth
. 1

98
7.

8:
30

9-
35

3.
 D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 M

on
as

h 
U

ni
ve

rs
ity

 o
n 

05
/1

2/
10

. F
or

 p
er

so
na

l u
se

 o
nl

y.



330 MOSES 

Percent 

15 

1 0  

5 

o 
B W B W B W 

Inadequate I ntermed i ate Adequate 

LBW 

B W B W B W 

Inadequate I n termediate Adequate 

VLBW 

Figure 14 PERCENTAGE OF ALL BIRTHWEIGHTS THAT WERE LESS THAN 2500 GRAMS (LBW) OR LESS 
THAN 1500 GRAMS (VLBW) BY RACE OF MOTHER AND ADEQUACY OF PRENATAL CARE. This is a bar 

graph depiction of Table 5 .  Source: Ref. (15). 

low birthweight (LBW) births, since the VLBW points are nearer to the 
origin, where both rates would be zero; (b) for both races the incidence of 
small babies (LBW and VLBW) is lower among the mothers with better 
prenatal care; (c) the rates for blacks are greater than those for whites in all six 
weight x care classes, since all six points are below the diagonal of equality. 
Indeed the picture suggests that in each weight class there may be a constant 
proportion between the black and white rates, since the three points for each 
weight class lie near a ray through the origin. 

The last observation suggests looking at the rates on a logarithmic scale, 
where constant proportions are rendered as constant logarithmic differences. 
The bottom panel of Table 4 displays the values of 1 + log P. (The 1 is added 
to avoid negative numbers, and P denotes percent) . When these logarithmic 
values are plotted, the bottom panel of Figure 15 is the result, and it gives a 
very simple looking representation. The higher rates for blacks now look 
roughly constant, since all six points lie close to a line about .4 logarithmic 
units below the diagonal of equality, denoting a multiplicative factor of 2.5 .  

Indeed, the ratios of black to white rates can be seen from the data in panel b 

to all be close to 2 .5, except for the one case of inadequate care and very low 
birthweight, where the ratio of the black to white rate is 4 .5 .  This discrepant 
point appears as the white circle in the bottom panel of Figure 15 . It is 
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statistically the least precise point of all; reference to the top panel of Table 4 
shows that both its coordinates are detennined by frequencies of 1 8 ,  and so 
both are appreciably affected by sampling error? 

PRESENTING BIVARIATE DATA 

If we consider two items of infonnation on each observed unit (person, 
laboratory specimen, experimental animal), we are dealing with bivariate 

data . Either of the two variables may be continuous, discrete, ordered (like 
histological grade or pain relief on a five-point scale), or categorical. 

Where one of the two variables ("components") of each bivariate observa
tion denotes a category, like gender or blood type, and the other component is 
continuous, then graphical display must consist of separate distributions (or 
box plots) or means, one for each category. More generally, if one of the two 
components is categorical, then the result is separate displays, one for each 
category, of the distribution of the other variable, whether it be discrete
numerical , ordered, or itself categorical . 

Preceding parts of this paper presented two devices for displaying bivariate 
data . The first is to divide one of the continuous variables up into successive 
size intervals, and then give a univariate display of the other variable sepa
rately for each size group (as with the tumor pathology data, where the 
continuous variable, volume, was broken into five classes A, B, C, D, E, and 
then the pathology distribution for each volume class was exhibited). The 
second device is reduction of the two components of each bivariate observa
tion to a single function of them, one value for each subject, with a univariate 
display of those reduced data. The bassinette/waterbed data exemplified this 
idea when the apnea rates per hour of sleep were calculated for the two 
conditions, and then the difference, bassinette-minus-waterbed, was taken as 
the univariate observation for each of the eight infants . These two earlier 
glimpses leave much still to be said about displaying bivariate data, and we 
tum now to a somewhat fuller and more systematic treatment. 

The Fundamental Display for Bivariate Data 

With continuous data, the dot diagram is the fundamental data display; from it 
can be derived histograms, box plots, and so forth . The corresponding 
fundamental display for bivariate data is the scatter-diagram. 

2The logarithmic difference between these two percents (4 .5 and 1 .0) is .65, and its standard 
error is .33; Thus the white circled point is not significantly removed from .40, the value that ' 
summarizes the other five points; The appareIlt discrepancy may reasonably be as(Oribed to 
sampling error. 
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With univariate displays, there can be a choice whether to plot y, or its 
reciprocal , or its logarithm, and with bivariate data these choices also present 
themselves, but now for both components of the bivariate observation. One 
aspect of the art of graphical presentation is choosing the scales on which data 
can best be presented . In the examples below we see several charts with 
messages that are clear and crisp, largely because of wise choice of scale 
transformation on one or both axes of the scatter diagram. 

When there are very large quantities of data, the scatter diagram, especially 
if done by computer, can become difficult to read, because mUltiple data 
points are hard to show effectively in the scatter diagram. Helpful ideas for 
coping with this problem are to be found in Cleveland's fine book (4) on 
pages 155-62 . Another approach, of course, is to construct the analog of the 
histogram; the intervals on the x and y axes define a grid, and in each 
rectangle ("cell") of the grid , some number of bivariate observations from the 
sample occur (possibly zero in some cells.) To construct the diagram that 
extends the histogram to bivariate data, let one case be denoted by a "brick" 
that fits exactly on a grid rectangle; then the number, f, of observations 
occurring in the cell can be indicated by a stack of f bricks on that cell .  The 
resulting brick pile, erected on the x ,y grid , represents the distribution of the 
sample values on the x ,y plane in a manner analogous to the histogram's 
representation of the distribution of univariate sample values on the number 
line. Drawing the brick pile so that it is clearly interpretable requires tech
nique that takes account of perspective in drawing three-dimensional figures. 
Some computer packages do this well. 

Where both bivariate components are discrete, the "natural" representation 
is a set of spikes , each recording the number of observations that occurred at a 
point in the plane determined by the possible values for the two components . 
Such a diagram can be hard to draw well and hard to interpret, depending on 
how many spikes there are, how much they differ, and so forth. If there are 
very many such spikes then grouping them into grid cells and making a brick 
pile might serve well .  It may not always prove possible to construct a drawing 
of doubly discrete bivariate data that will help the reader or the investigator to 
understand better the numerical data rendered in a table. 

GRAPHS AND RELATIONS BETWEEN VARIABLES Bivariate data ordinarily 
carry with them questions about how the two variables are related. Does lower 
incidence of dental caries occur in regions with higher levels of fluoride in the 
drinking water? Does the incidence of heart disease rise with increasing levels 

Figure /5 THREE ALTERNATIVE DISPLAYS OF TABLE 5. The first panel replaces 12 bars with 12 
points, on six lines. The next two panels show all the data, using"six points. The first uses the 
natural scale of percentages, the second uses a logarithmic scale. 
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of sugar consumption? Is the length of the femur related to the long axis of the 
skull? To the diameter of the wrist? Is socioeconomic status related to health 
Care seeking behavior? 

Often one of the two variables is naturally thought of as (possibly) influenc
ing the other, as with fluoride in the drinking water, in which case we would 
think of caries incidence as possibly responding to fluoride levels .  In such 
circumstances it can be informative to study how the average value of the 
response variable relates to different levels of the input variable (often called 
the "independent variable") . 

Following common usage, let us name the independent variable x, and the 
other, whose average we study, y. Then the curve that describes the average 
of y at varying x is called the regression of y on x. We may write this as 

Ave (y(x)) = f(x). 

Only a few values of x can appear in a finite sample; if XI > X2, • • •  , XN are 
observations on some variable, we can see at most N distinct values of x, 
perhaps fewer because of repeated observation at some x points . To estimate 
f(x) for a continuous range of x requires that we somehow combine informa
tion from the data in hand, at the observed x's, to describe f(x) for the 
continuous range of x's that the data relate to. Two approaches to this task are 
(a) model-based regression and (b) smoothing. Either approach leads to a 
line, or other curve, that can be plotted on the scatter diagram, and that 
represents a sort of trend, depicting how the average value of y changes as x 
changes. In Figure 16  appears a rather complex example illustrating the idea 
(9) . The data Concern cell species of four types: (a) RNA viruses and single 
stranded DNA viruses (solid squares); (b) double-stranded DNA viruses 
(solid circles); (c) haploid microorganisms (shaded circles); and (d) diploid 
microorganisms (shaded squares) . Each of 3 1  cell species, accompanied by a 
numerical identifier, is plotted at a point (x,y) that depicts x, its radiosensitiv
ity, as measured by the logarithm of the dose needed for 63% inhibition of cell 
reproduction, and y, the logarithm of the mass of its nucleotide material . 

With the data plotted on these scales, not only is it easy to see that their 
sizes and radiosensitivities show family similarities, but also the strong 
negative relation between size and cell-killing dose is quite evident. To the 
data of each of the four types has been fitted a straight line (an example of a 
model-based method) by least squares. The four lines have been fitted subject 
to the constraint that they all have a common slope. Inspection of the figure 
allows consideration of whether the parallel lines offer a reasonable 
characterization of the relationship between radiosensitivity and nucleotide 
masses. The original research article offered heuristic interpretations of the 
numerical value of the common slope, and the acceptability of a common 
slope was essential to that argument. 
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1 02 1 0' 1 04 l Ot 
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Figure 16 RADIOSENSITIVITY AND NUCLEOTIDE MASS OF 31 SMALL ORGANISMS. The plot is 
logarithmic on both axes. The lines have been fitted by least squares, under the constraint of a 
common slope. Source: Ref. (9). 

Model-based fitting need not be done by least squares (although it very 
often is), but it does necessarily produce a prechosen kind of regression 
function; in the example only straight lines, and parallel ones at that, were 
possible outcomes of the fitting. With smoothing techniques, the method is 
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definite enough, but the fonn of the resulting regression curve is not pre
ordained, except in a very minor respect to be mentioned below. 

In Figure 17 both panels depict the same data set (4, pp. 170, 1 7 1 ) .  Each 
point represents a hamster; the x coordinate records how many days of the 
animal's whole lifetime were spent in hibernation. and the vertical coordinate 
records days of the whole lifetime not spent in hibernation. The eye finds a 
general pattern of increasing values of y as x increases, and the idea of 
estimating how, on the average. y changes with x is a natural one. The 
smoothing algorithm that was used is called LOWESS (3a) . At each x is 
computed a kind of fitted value based on a robust weighted linear regression 
using only the observations that have x-values "sufficiently near" Xi' At each 
Xi a separate line is computed to arrive at that observation's fitted value. The 
concept "sufficiently near" is an adjustable parameter of the smoothing 
algorithm; the greater it is . chosen, the smoother the curve. The left-hand 
panel used a smaller smoothing parameter and seems to be less satisfactory in 
this example. The algorithm gives a fitted value at each Xi; these are then 
joined by straight line segments , and it is in this respect that the result of the 
smoothing algorithm is slightly "fore-ordained." 

In both of the examples above it can be asked how the choice of in
dependent variable was made. In the case of the hamsters it appears that there 
was known biological reason to regard hibernation time as influencing 
nonhibernation longevity, rather than vice versa; thus, tracking the average 
"effect" as it related to the numerical value of the "cause" was' chosen as 
shown in the hamster data. 

In the case of the radiosensitivity and nucleotide mass data, the answer is 
rather complicated. The fitting used radiosensitivity as the dependent variable 
and nucleotide, mass. as the independent one. This choice seems intuitively 
satisfying, but the real reason for that choice was the technical one that while 
both variables are measured subject to error, nucleotide mass has the smaller 
uncertainty. Because of conventions in the radiobiology literature the chart 
then depicted·the dependent ·variable on the horizontal axis .  Generally , to 
prevent confusion it is good to take account of the conventions applicable 
among the chart's readership. 

Some Devices that Can Be Useful in Bivariate Graphing 

TRANSFORMATION OF VARIABLES Generally, a straight line is a simpler 
curve to recognize, think about, and characterize numerically, than is a curve. 
Thus, it can be advantageous to find some simple way to transfonn one of the 
variables (or both) to replace a curvilinear relation between the original 
variables with a straight-line relation between the transfonned ones. We have 
already met this idea in preceding portions of this article. We have seen the 
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logarithmic transformation applied to the radiosensitivity data, and with 
ordered category data we have seen the scale of an ordered category variable 
constructed to make one of the samples (or the average of all of them) yield a 
straight-line plot. Other transformations, of course, apply in suitable cir
cumstances. The distance y that an object moves down an inclined plane in 
time t, in the absence of friction, obeys the relation 

y = ef 

where the constant c depends on the angle of inclination of the plane. Two 

transformations are available to tum this into a linear relation. First, we might 
replace f by u, then 

y = eu 

is a straight line relation, and the slope of the line when plotted would reveal 
the value of c. Second, we might take logarithms of both sides of our original 
equation and obtain 

log y = log c + 2 log t, 

arriving at a linear plot of log y against log t, with slope 2; the intercept, log e, 

embodies the information about c .  Choice between these two with real , noisy, 
observed data would be informed by making plots of both kinds and seeing for 
which one the straight line plot better fitted its plotted points . It could then be 
used to estimate c. 

CHOOSING THE SCALES The ability of the reader to absorb the message of a 
bivariate graph can depend on choices like which variable should be plotted 
horizontally and which vertically. In some disciplines the variable thought of 
as the stimulus or input is given the horizontal coordinate, and the one thought 
of as response is given the vertical; most statisticians view data this way. In 
other disciplines the contrary convention is usual . It is well to bear in mind, 
and use, the convention applicable to the problem under study. 

Sometimes it seems more natural to display not y against x but y-x against x. 
Indeed the hamster data illustrates this device; originally the bivariate data for 
each animal were longevity in days (y) and days spent in hibernation (x); the 
figures were made by plotting y-x against x. 

A feature of the two scales that affects the general gestalt of the chart is the 
relative compression of the data in the vertical and horizontal directions. This 
is largely determined by the scale intervals chosen on the two axes. Note in 
the hamster data that the scales, both in days , are unequal. This has the result 
of exhibiting the points with approximately equal visual spread in both 
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directions; it complicates recognizing that the slope of the regression is, for 
days of hibernation exceeding 100, about 1 . 0 ,  a fact that would be reflected in 
a 45 line if the two scales were equal . Extreme choices of scales can virtually 
eliminate the appearance of variability. If a sequence of closely related charts 
is involved, then the same scales for all of them would be a reader's 
unconscious expectation, and it should be transgressed only with good reason 
and clear notice to the reader. 

THE USE OF REFERENCE LINES The bivariate display can sometimes gain 
interpretability from the presence of some lines drawn in for reference. 
Examples include: (a) one or more regression lines, (b) the diagonal of 
equality, (c) lines parallel to that diagonal , showing lines of constant differ
ence y-x = c, (d) rays through the origin, showing lines of constant ratio ylx = 

c. Other ways to provide reference standards for plotted points might in 
special circumstances be a family of concentric circles, or of lines ax+by = c, 

or yet others. Considerations of avoiding clutter compete here with aiding the 
reader to interpret the data. 

An ingenious use of reference lines to meet the problem of data overlap is 
offered by Cleveland, and with permission, we reproduce his example here . 
Figure 18 depicts brain weight and body weight for many species of animals, 
belonging to four broad groups: birds, fish, primates , and nonprimate an
imals. The scales are logarithmic. The three reference lines all have slope 2/3, 
for theoretical reasons .  (And the points fit well,  supporting the theory .) This 
four-fold display is a brilliant substitute for superposing the points on one 
chart and relying on the usc of different symbols (circles, dots , triangles, 
shaded, unshaded) to distinguish points from different groups. 

USING COLOR TO DISTINGUISH GROUPS The eye apparently can distin
guish among small figures more directly in terms of contrasting colors 
assigned to them than in terms of different shapes (squares , circles , triangles, 
etc) or shadings. The data-analyst-investigator can easily exploit this principle 
when graphing a point-swarm by us:ng different colored pens for data points 
from different groups. Color can b� equally effective in presenting the data, 
but costs and facilities often intervene to make color unavailable. So its 
primary use, at least in many setL 19s, will be the private one of studying 
one's own data, where it can be invaluable. 

GRAPHING MULTIVARIATE DATA 

When each observed unit provides more than two items of information, we 
have multivariate data. Such data arise very frequently, because often more 
than two numbers are required to describe the important features of the 
observed unit, be that a patient, a clinic, an experimental animal, or a research 
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Figure 18 BRAIN WEIGHTS AND BODY WEIGHTS IN FOUR GROUPS OF VERTEBRATES. The coordinates 
are logarithmic on both axes. The fitted lines have slope 2/3, for theoretical reasons. The lines 
facilitate comparisons of the data on the different panels. Source: Ref. (4). Copyright 1985, Bell 
Telephone Laboratories, Inc. Reprinted by permission. 

article. When the relations among the variables are of direct interest, bivariate 
and multivariate exploration and presentation become essential. Thus ,  a first 
source of interest in multivariate graphical methods is for finding and 
representing relations among the variables. A second source of interest grows 
out of the fact that information about several variables (rather than only one or 
two) can be helpful in identifying groups of similar observational units (as in 
distinguishing between rather similar diagnostic groups). 
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Multivariate data can be hard to deal with, in several ways. The "natural" 
graphical representation of k-variate data is as pooints in a space of k 
dimensions .  For k equal to three, this is already hard to visualize, and for 
larger values of k the difficulties are multiplied. A table of the data with k 

columns and one row for each observation is another "natural" representation, 
but it cries out for effective condensation and summarization . Some help can 
be brought to the problem by using graphical methods , largely through 
extension of two methods we have already seen several times: the scatter 
diagram, and condensing several data items into a single one. 

Relationships Among the Variables 

Many studies aim at describing (or establishing) relationships between input 
variables like quality of care, intensity of treatment, or social support avail
able to the patient, and outcome variables like degree of rehabilitation, 
functional level, life satisfaction , or health. Each of these named concepts 
defies direct measurement, and instead must be approached through collecting 
data on many variables that "belong" to the concept; thus, functional level 
might be captured through tests of agility, endurance, balance, comprehen
sion, strength, etc. Multivariate data sets very commonly originate in efforts 
to measure some construct, like health, by observing several variables, each 
of which taps a part of the concept, and typically with some overlap and 
redundancy among them. 

Many multivariate data sets comprise not only some variables that are 
inputs and some others that are outcomes, but also "interfering variables," 
which influence outcomes without being part of the inputs under study; 
examples might include patient' s  age, gender, and educational level . Thus, 
the study may involve three kinds of variables: input, outcome, and interfer
ing. Each of these may have several components. 

SOME STRATEGIC APPROACHES The tasks of conceptually organizing and 
then analyzing a data set with several input variables, several output var
iables ,  and several interfering variables are in large part a search for legitimate 
condensation and simplification. 

Simplification Sometimes simplification can be achieved by finding that a 
variable is legitimately ignorable. It may be ignorable because it is redundant, 
offering information already supplied by other variables; it may be ignorable 
because it is irrelevant, unrelated to any outcome. The scatter diagram is a 
tool that may reveal either of these situations. 

Simplification can sometimes be achieved by combining several related 
variables into a single one. If in a study of endurance and body size our data 
included both right arm length and left arm length, we would almost surely , 
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with no ado whatever, either average the two or use only one of them, say the 
left arm length. Similarly, with many measured lengths-height, span, foot 
length, leg length, and arm length-we might "condense" them all to a single 
measure of "skeletal length" by constructing an additive combination of all of 
them. We could do this by judgment (as with the two arms) or by recourse to 
some algorithm, say one producing the additive composite that gives max
imum correlation with endurance. (That algorithm is simply multiple regres
sion of endurance on the five length variables.) If a judgment composite is 
chosen, then directly averaging the variables is likely to be less satisfactory 
than first dividing each by its standard deviation and then averaging them; the 
reason is that a variable taking small values , like foot length, would contribute 
so little as to be almost ignored in a simple average, while division by the 
standard deviation gives each variable parity with the others. 3 

The algorithmic approach is not necessarily always preferable to the judg
ment composite. The judgment composite is more easily explained. The task 
of explanation with multiple regression can be especially uncomfortable if the 
regression gives a counter-intuitive sign to one of the variables in the compos
ite. But, however the condensation is done, it does reduce a set of several 
variable to a single one, and each subject has an observed value for this new 
composite variable, a value that can be plotted in a scatter diagram against 
other variables ,  or composites of them. 

Identifying variables that are (still) relevant If we are interested in predict
ing y from u we might well draw a scatter diagram in connection with either 
the analysis or the presentation. Now, if there is an additional possible 
predictor, v, how shall we assess whether it can improve the prediction? We 
begin with the case where v is a binary variable. In Figure 19 the upper left 
panel shows a rather strong relation between u and y. 

The upper right panel is the same diagram, except that 10 of 22 points are 
darkened to identify the observations where v is at its high level; the 12 light 
points have v at its low level . This panel clearly indicates that y is related to v, 

in addition to being related to u, and it points to the possibility of improving 
prediction of y by taking v as well as u into account. The lower left panel is the 
same as the previous one, except that it shows two lines of common slope 
fitted to the dark and light points. The vertical distance between them is 
indicated near the right edge as d. One can imagine reducing the y value of 
every black point by d (thus taking account of the influence of high v) and 

'Sometimes a composite is made from variables among which some point in opposite 
directions; thus, a clerical skills composite might include a spelling score, typing error rate, and 
reading comprehension. Then a reasonable judgement composite would not only divide each 
variable by its standard deviation but would also enter typing error rate with a minus sign. 
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• 
• • • 

• 0 0 • 0 0 • • • 0 0 0 0 • 0 0 0 
0 

Figure 19 RELATION BETWEEN TWO VARIABLES, Y AND U, AT TWO LEVELS OF A THIRD, v. BLack 
dots indicate points at high v, and crosses represent them after downward adjustment by the 
distance d. 

plotting these adjusted points in place of the original black dots. The lower 
right panel has been made in that way; the adjusted block dots are portrayed as 
x's among the original light dots. These data now show a much stronger 
relation between y and u, after adjustment for v, than do the original data 
shown in the first panel. Thus, using v in addition to u has improved the 
prediction of y .  The value of v as a predictor was directly evident from the 
second panel , at the upper right. If those black dots had appeared randomly 
among the 22 , then the message would have been that v did not hold promise 
of improving prediction. 

In Figure 20 we show the same swarm of 22 points again. The upper left 
panel shows y plotted against u. The upper right panel repeats the identifica
tion of ten high points in the swarm as being the ones at the high level of v. 

The two lower panels are new. The pattern at the left indicates that v has no 
additional information about y because the relation between y and u looks 
about the same for the dark points as for the light ones . (We interpret this as, 
"v is redundant if u is already being used as a predictor of u .") The lower right 
panel would tell quite a different story. Among the dark points, at high v, 

there is only a weak relation to be seen between y and u .  Similarly , among the 
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0 • 
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0 0 • • 
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Figure 20 SOME POSSIBLE WAYS THAT THE RELATION BETWEEN TWO VARIABLES MAY BE AFFECfED 

BY A THIRD. The original relationship is seen in the upper left panel. The upper right panel shows 
that taking v into account will strengthen the relation (see Figure 19) .  The lower left panel shows 
v to be irrelcvant, and the lower right panel indicates that the relation may really dcpend almost 
entirely upon v. 

light points only a weak relation between y and u is to be seen. Identification 
of the high-and-low-v points has indicated that much, or most, of the original 
relation can be explained by observing that low-v people (perhaps males) have 
smaller values of both y and u than do high-v people (females) ,  and in both 
those subgroups no strong relation between y and u exists. Something very 
like this would be expected in adults for y = weight lifting ability, u = head 
circumference, and v = sex, for in neither sex is head circumference much 
related to stre!lgth, but males are both stronger and larger-headed than 
females . 

This device of marking a dichotomous identification on the points of a 
scatter diagram is immediately applicable to considering whether to adjust the 
data for sex, or race (black, white) , or any other binary classification; further, 
a continuous variable can be broken into two classes, high and low, and its 
relevance can thus be assessed. It is possible to break a continuous variable 
into three or more classes, and that might have advantages in some circum-
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stances. (For example, if intermediate values of v increased y above the levels 
associated with either high or low v, that fact would be more easy to find with 
a three-fold division of v.) If three or more levels are chosen, then a display 
like that of the brain mass-body mass example might be helpful. 

Exploration of the kind we have been describing helps decide when to 
ignore a classification or a variable ,  with a gain in simplicity , and of course it 
can help in strengthening prediction by identifying additional useful variables. 
Any of the variables we have spoken of, y, u, or v, may be a composite 
variable. Thus , if y is a dependent variable and u is a regression-based 
composite, then the method could indicate whether adding a new variable v to 
the multiple regression would be important. 

Groups of Multivariate Observations 

CLASSIFICATION In a celebrated paper (6), Sir Ronald Fisher introduced the 
linear discriminant function. He developed the method to employ the four 
variables, petal length, petal width, sepal length, and sepal width, for 
classifying an iris blossom as belonging to the correct one of three species. 
The data set contained 50 blossoms from each of the three species; the data 
thus comprised three sets of 50 four-variable observations . He proposed an 
algebraic-numeric way of using those data to produce a composite of the four 
variables; it proved to be an effective univariate score for deciding the species 
of a new specimen. In Figure 2 1  are shown the petal widths and lengths for a 
portion of that data set, for ten members of each species (the ones in rows 1 ,  
6, I I ,  . . .  46 of Fisher's data set in his Table 1 . ) The sepal data are not 
shown, because (a) two dimensions use up our ability to plot points, and (b) 
inspection of the tabular data indicates that the petal dimensions have less 
overlap among the species than do the sepal dimensions and so should help 
more in discrimination among species. 

Two lines with the same slope have been drawn in by eye. They can be 
used for classifying a new specimen. One would measure its petal width and 
length and plot the point; the species classification would be detennined by 
the point's position relative to lines one and two. Equivalently, a score 
(corresponding to the slope of ttie lines) could be computed by the formula: 

score = 2.5  width + length . 

If that score is less than 4 .5 ,  the blossom is classified Iris setosa; if greater the 
. 9 .5 ,  it is classified as I. virginica; and if between those limits as I. versicolor. 

The correspondence between the geometrical recipe (plot the point) and the 
numerical one originates in the fact that the two lines are defined by the 
equations. 
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2 .5  width + length 4.5 and 

2 .5  width + length 9.5 

for lines one and two, respectively. Points to the right of line two all  have 
scores greater than 9.5,  and those to the left of line one all have scores less 
than 4.5 .  

The idea in  this example is that class membership may be identifiable by 
observing that different regions of the multivariate space tend to have data 
points belonging to different classes. 

CLUSTERING A similar plotting notion can be applied to a quite different 
problem: Without knowing what underlying groups may exist, see whether 

7.0 

6 .0 

5.0 

.<= 4.0 \ c;, 
c 
Q) ...J 

<U " 
0- 3.0 

2.0 
. .. 

1 .0 
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I ri s  Versico lor 

\ 

Ir is 
\ 

Setosa � 

1 .0 
Petal Width 
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I ri s  V i rg i n ica 

\ 
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3.0 

Figure 21  A SUBSET OF FISHER
'

s IRIS DATA. Fisher used four variables and 50 observations. This 
subset of the data uses only two of the variables and shows how the bivariate plot allows confident 
separation of the groups, in terms of a score that corresponds to the slope of the separating lines. 
Source: Ref. (6). 
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there appear to be clusters of data points in separated regions; such clusters 
offer themselves as possibly representing underlying groups. In this task the 
multivariate character of the data may be tapped by reducing the many 
variables to only two composite variables, and then displaying each observed 
unit as a point with those two coordinates. 

DISPLAY OF MANY MULTIVARIATE ITEMS Slovic et al ( 17) used compos
ites in explicating people' s  attitudes toward several dozen hazards of modem 
living, like motorcycles, nuclear reactors, oral contraceptives, handguns, 
DDT, etc. The hundreds of respondents scored, on seven-point scales , their 
feelings about each hazard with regard to a battery of 1 6  issues, such as: Is the 
hazard uncontrollable or controllable? Is the effect immediate or delayed? Is 
exposure to it voluntary or involuntary? 

Evidently the data are very highly multivariate. Each of many hazards is 
scored for each of many attributes. Figure 22 shows the display that the 
investigators produced for exhibiting the summary information. First they 
applied factor analysis to the data set. Factor analysis algorithms produce one 
or more "factors," which are composites of the original variables; here the 
composites were made up of the scores associated with the 16 issues. The first 
two factors are the ones that most fully summarize the issue responses . The 
numerical value of each of the two composites was computed for each hazard. 
Then a point was plotted for each hazard, using as coordinates these two 
factor scores. Interpretation of the picture comes largely from the 
characterization of the factors, which appears at the bottom of the figure. 
Issues that receive large weight in a composite are listed, showing the 
direction in which the issue affects the composite's  numerical value. 

This ingenious display of such a large complex data set allows one to think 
of attitudes about hazards as depending very largely on judged severity of the 
hazard and on how unfamiliar it is (here we are over-condensing the factor 
descriptions to one-word labels) and further to see how the respondents assess 
each of the many hazards with regard to these two dimensions. 

An entirely different approach to displaying many multivariate items is to 
construct a small diagram for each unit, with one diagrammatic attribute 
reserved for each multivariate component. A pioneer in this area was Edgar 
Anderson ( 1 ), who proposed "glyphs" for multivariate display . He repre
sented each unit by a small circle, and then he assigned a position on the 
circumference to each variable; at such a position, a "whisker" would show by 
its length the magnitude of the variable for that unit. Several later de
velopments are similar in spirit. "Chernoff Faces" (3) assign a feature of a 
cartoon face to each variable; its numerical value determines the size of the 
feature. This results in one "face" for each unit, with variations among faces 
displaying the multivariate numerical information . Other devices include trees 
and castles ( 10) and "stars ."  These last can be thought of a modified Anderson 
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glyphs, with the whiskers equally spaced around the small disk, each whisker 
serving as the apex of a triangle (reaching back to the disk . )  All these devices 
show the full numerical information for each unit (which is not true, for 
example, with the display of Figure 22). It is not clear, however, how 
effectively the mind copes with the information so presented. The writer's 
experience is that a large set of stars does not help him much to see patterns, 
but it is very convenient for quick access to the information in detailed 
scrutiny of the data. An informative, well-illustrated comparative treatment of 
stars and trees is given by Chambers et al (2) . 

It would have b�en possible to display the hazard data as several dozen 
stars, each with 16 points (or fewer, if some attributes were ignored) . This 
alternative mode of display would provide greater detail of information but 
would leave the reader to search for patterns; the display offered by Slovic et 
al supplies a pattern or framework for perception by summarizing much of the 
information and ignoring the remainder. 

PLANNING THE GRAPH 
In this closing section we offer some suggestions that may help the maker of a 
graphical display. The most important single notion is that data often can be 
graphed in many ways, and a reflective choice among those will usually lead 
to better results than adopting the first way that comes to mind. We also 
present a handful of additional ideas: 

I .  Decide on the primary message of the graph. 
2 .  Be mindful of the tradeoff between quantity of information and the 

probability of its being read correctly, or read at all .  
3 .  Be mindful of the intended viewers' preparation, skills,  and expectations. 
4. Since some tasks of visual perception are more accurately done than 

others, design the graph to call upon the more accurate functions. 
5 .  Be exploratory about the design, sometimes trying more than one 

approach, sometimes testing early drafts on friends and associates . 

Deciding on the Primary Message 

Suppose that we had data on the percentage of impurities found in several 
specimens, and that all these percentages were smal l ,  ranging from 1 % down 
to 1120 of 1 %. How should the data for these specimens be depicted? It 

Figure 22 TWO FACTOR nrSPLAY OF HAZARDS OF MODERN LIVING. Sixteen attributes of each 
hazard were rated by hundreds of respondents. Those 16 variables were reduced by factor 
analysis to three factors; the two most important arc the coordinates in this chart. This one picture 
(partially) summarizes information that in tabular form would involve more than 1000 averages. 
Source: Ref. ( 17). 
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depends on the meaning of the data. If the impurities were dangerous or 
highly toxic , then the difference between I % and 0.5% might be exceedingly 
important. Plotting the data as a percentage or log percentage impurity would 
accent the difference among the specimens . If the impurity were instead the 
percentage of infertile seed among strains of alfalfa, then all of the samples 
would be substantially equal, consisting of nearly 100% fertile seeds. That 
would be the main message, and it would be best conveyed by bars of nearly 
all the same length, nearly all 1 00%, rather than by bars showing impurity 
fractions . Formally, both 100p% and 100( l -p)% contain equivalent informa
tion, but the wrong one is l ikely to mislead the reader's attention. 

Sometimes, to ensure that the main message gets through clearly, it may be 
wise to hold back supplemental information, or present it in a second related 
graph. For example , this choice forced itself on the writer in preparing Figure 
I I, which presented the helmet law data . It was attractive to add to the figure 
vertical error bars for each year and for each of the three multi-year periods. 
But both the discussion and the figure would have become considerably more 
complicated, at the expense of the main message for that figure, which was, 
"Suitable use of reference lines can help provide a structure for understanding 
a graphically presented data set ."  So, error bars and the attendant discussion 
were foregone in that chart. 

THE TRADE-OFF BETWEEN INFORMATION AND EASE 
OF UNDERSTANDING 

One chart can be loaded with enormous amounts of information, but the 
reader's task of making sense of the chart grows as the amount of information 
does. A rule that one investigator imposes upon himself in a closely related 
context, the preparation of a 2 x 2 lantern slide, is informative. Dr. Stephen 
Pauker holds a slide at arms length; if he cannot figure out its message by 
reading it in that way he rejects the slide as unsatisfactory and redesigns it 
( 1 6) .  

Often a good alternative to  packing too much detail onto one chart is  to 
tolerate some redundancy (repetition of information) in replacing one chart by 
several. Figure 18  does this with the brain mass-body mass data. All four 
charts display the same three lines, but the reader gains enormously by that; 
"saving" redundancy by plotting all the data on one figure would effectively 
hide much that can be seen from the four-chart mode. With the radiosensitiv
ity data (9), a different choice was made; four groups and four lines appear on 
a single chart. The two data sets differed sharply as to the overlap between 
groups, and so different graphical strategies were natural . 

As remarked above, reference lines can be very helpful .  But every element 
added to a chart can be thought of as clutter, unless it is definitely functional . 
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The appropriate balance should be sought. Imagine a chart that depicts 
exponential growth at several different rates. The purpose of that chart really 
determines the appropriate level of detail for reference lines upon it. If the 
chart is intended to allow the user to compute from it, then both horizontal and 
vertical rulings will need to be much denser than if the chart's purpose is to 
show that "small" differences between growth rates, like .03 per year versus 
. 0 1  per year, can exert profound differences over 70 years , when the one rate 
has produced an eight-fold growth and the other a two-fold growth. The 
second purpose is well enough served with very little in the way of reference 
lines; scales on the axes might be sufficient, without any reference lines at all. 

The Skills and Expectations of Intended Readers 

If the intended readers are expert in the subject matter of a graphical display, 
some things are easier for the author: Technical terms can be used with less 
explanation; more complexity in the chart is likely to be tolerable . Less 
flexibility for the author may also result from an expert audience: Convention 
may almost require that certain transformations be used, or not used, or that 
certain ordered category boundaries be imposed on data originally acquired on 
a continuous scale . 

Of course it is often true that a readership of both experts and nonexperts is 
contemplated. In that case technical terms that are routine for many readers 
may nevertheless require careful definition and explanation for the benefit of 
other intended readers. Examples that come to mind include "hazard func
tion," "probit," "correlation coefficient." 

If most readers are expected not to be expert then even more care should be 
taken to avoid misperception. Thus, comment may be given about the use of 
broken scales, or the fact that the origin is not part of the figure, or that on one 
axis the variable is plotted logarithmically, etc. 

Take Account of the Relative Accuracy of Various Perceptual 
Skills 

A quantity can be graphically represented in many different ways, for ex
ample as a length, area, volume, or intensity of color. An angle can be 
represented by two lines intersecting at that angle, or in some way that states 
its numerical value, say a length, area, or volume. Some of these depictions 
are more accurately perceived than others . Cleveland studied the matter 
systematically and offered these conclusions (4 , p.  254) . Accuracy declines as 
we move downward in this list of perceptual judgments: 

1 .  position along a common scale 
2 .  position along identical , nonaligned scales 
3. length 
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4. angle-slope 
5 .  area 
6.  volume 
7 .  color hue---color saturation---density 

Referring to this list we must conclude, for example, that comparing two 
years' budgets (of different total size) by means of "pie charts" (with different 
total areas) is an inferior way to go. Neither angle nor area is as easy to 
perceive accurately as length; reference to the list encourages us to seek a 
better way of portraying the two budgets---one using position on aligned 
scales, for example. In general, the higher up we can go in the list the more 
accurately the message may be perceived. 

Experiment with Different Representations 

The biggest step of all is to consider more than one possibility. There are 
abundant reasons to do this, with so many dimensions of choice at hand: size, 
scales, style, transformations of variables, information density , etc . The 
thought-experiment may sometimes give a satisfying answer. At other times a 
person may wish to sketch out two or more alternative charts , and decide on 
the basis of those. If the intended readers may be naive it can be wise to 
prepare rather finished versions and expose them to naive( !) readers for 
comment and elicitation of preference. 

Pretesting a questionnaire is a well established Good Idea, so is circulating 
a draft of a manuscript for comment. The message here is that pretesting 
alternative forms of an important chart can also be a Good Idea. 

ADDITIONAL LITERATURE 

This chapter begins with the observation that graphical methods are in a state 
of rapid development. The treatment here is necessarily eclectic and in
complete. The interested reader might pursue (a) historical developments 
(among other topics) in a recent review article ( 1 9) ,  (b) graphical display in 
Tufte's book ( 1 8) ,  (c) data analytic approaches in three recent books (2, 4, 7). 
All of these cite much additional literature. 
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