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ABSTRACT

Cumulus parameterizations in general circulation models (GCMs) frequently apply mass-flux schemes in

their description of tropical convection. Mass flux constitutes the product of the fractional area covered by

cumulus clouds in a model grid box and the vertical velocity within the cumulus clouds. The cumulus area

fraction profiles can be derived from precipitating radar reflectivity volumes. However, the vertical velocities

are difficult to observe, making the evaluation of mass-flux schemes difficult. In this paper, the authors de-

velop and evaluate a parameterization of vertical velocity in convective (cumulus) clouds using only radar

reflectivities collected by a C-band polarimetric research radar (CPOL), operating at Darwin, Australia. The

parameterization is trained using vertical velocity retrievals from a dual-frequency wind profiler pair located

within the field of view of CPOL. The parametric model uses two inputs derived from CPOL reflectivities:

the 0-dBZ echo-top height (0-dBZ ETH) and a height-weighted column reflectivity index (ZHWT). The

0-dBZ ETH determines the shape of the vertical velocity profile, while ZHWT determines its strength.

The evaluation of these parameterized vertical velocities using (i) the training dataset, (ii) an independent

wind-profiler-based dataset, and (iii) 1 month of dual-Doppler vertical velocity retrievals indicates that the

statistical representation of vertical velocity is reasonably accurate up to the 75th percentile. However, the

parametric model underestimates the extreme velocities. The method allows for the derivation of cumulus

mass flux and its variability on current GCM scales based only on reflectivities from precipitating radar,

which could be valuable to modelers.

1. Introduction

General circulation models (GCMs) commonly use a

cumulus mass-flux scheme to simulate tropical convec-

tion (Arakawa 2004; Wu 2012). From a GCM perspec-

tive, cumulus mass flux is the product of air density,

fractional area covered by convection in the model grid

box (denoted as convective area fraction), and verti-

cal velocity in convective clouds. The convective area

fractions can be accurately estimated by ground-based

and spaceborne precipitation radars (e.g., TRMM, GPM,

and CloudSat) using convective–stratiform partitioning

techniques (e.g., Steiner et al. 1995). However, it is much

more challenging to estimate vertical velocities. This has

hindered the development and evaluation of mass-flux

schemes using observations. In this paper, we develop

and evaluate a new vertical velocity retrieval technique to

determine cumulus mass flux on a scale of 100km at a

tropical location, Darwin, Australia.

Many attempts have been made to characterize ver-

tical velocity in convective clouds using a variety of in-

struments: aircraft in situ penetrations (e.g., Byers and

Braham 1949; Marwitz 1973; LeMone and Zipser 1980;

Anderson et al. 2005), airborne vertically pointing

Doppler radars (e.g., Heymsfield et al. 2010), vertically

pointing ground-based wind profilers (e.g., May and
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Rajopadhyaya 1999; Williams 2012; Giangrande et al.

2013; Kumar et al. 2015), dual-polarization radar (e.g.,

Ryzhkov et al. 2013), and scanning radars in single- or

multiple-Doppler configurations (e.g., Laroche and

Zawadzki 1994; Protat and Zawadzki 1999; Collis et al.

2013). To estimate mass flux from observations, we need

long-term measurements of vertical velocity inside

convective clouds at high horizontal and vertical reso-

lutions. None of the aforementioned measurement

techniques are thought to be ideal for this. Aircraft do

not penetrate in all types of cores because of safety

concerns and the sample size is limited in terms of

geographical location and large-scale conditions, mak-

ing it difficult to use these measurements statistically.

Dual-frequency vertically pointing wind profiler ob-

servations provide accurate estimates of vertical ve-

locity in convection and at high vertical resolution

(Williams 2012; Kumar et al. 2015). However, they

cannot sample the full GCM grid box. While vertical

and horizontal wind vectors retrieved from one ormore

scanning Doppler radars capture the full 3D motions

within all individual precipitating clouds over a volume

equivalent to a GCM grid box (100 km3 100 km in the

horizontal and 20 km in the vertical) or larger, this re-

trieval technique requires model constraints and as-

sumptions that still need to be evaluated (e.g., Collis

et al. 2013). Single-Doppler retrievals also require ad-

ditional assumptions that by construction degrade the

‘‘instantaneous’’ quality of the three-dimensional wind

retrieval (e.g., Laroche and Zawadzki 1994; Shapiro

et al. 2003). The capacity of single-Doppler radars to

approximate the statistical properties of vertical ve-

locities is unknown.

The ability to quantitatively derive vertical velocity

from radar reflectivities only would be invaluable, as

such a technique could then be applied to all ground-

based and spaceborne precipitation radar types, even

those without Doppler and polarimetric capabilities.

Zipser and Lutz (1994) and Luo et al. (2014) describe

attempts to do this. Zipser and Lutz (1994) showed the

potential of using vertical profiles of radar reflectivity (Z

profiles) and vertical gradients in Z profiles (reflectivity

lapse rates) as a proxy for vertical velocities in cumulus

clouds, but did not propose a quantitative parametric

representation to link vertical velocity and radar re-

flectivity gradients. In the Zipser and Lutz (1994) study,

large negative reflectivity lapse rates above the freezing

level corresponded to weaker updraft speeds. Luo et al.

(2014) noted a similar relationship between vertical

velocity and Z profiles in cumulus clouds using satellite

observations. The vertical velocity estimates used in

their study were derived from time-delayed infrared

measurements from the Moderate Resolution Imaging

Spectroradiometer (MODIS) on board Aqua and Im-

aging Infrared Radiometer (IIR) on board CALIPSO

(Luo et al. 2014). Again, no parametric representation

of vertical velocity as a function of time-differenced IR

measurements was proposed. As will be discussed

below, an obvious advantage of our study compared

to these studies is that we will use reference vertical

velocity measurements from a dual-frequency wind

profiler pair (Williams 2012; Kumar et al. 2015) to

quantitatively link convective vertical velocities and

radar reflectivities.

Our focus is to provide a robust observational refer-

ence for tropical cumulus mass flux at scales relevant to

current GCMs (100km 3 100 km) using a variety of

measurement techniques. Kumar et al. (2015) used dual-

frequency wind profiler observations to characterize the

mean vertical profile of vertical velocity and mass flux

and its variability as a function of the large-scale envi-

ronmental conditions and convective cloud depth. It was

shown that cumulus mass flux at typical current GCM

resolutions is primarily regulated by the convective area

fraction, which in the vertically pointing wind profiler

case was estimated indirectly using a temporal aggre-

gation technique. The magnitudes of the vertical ve-

locity were found to play a secondary role. This suggests

that a first-order estimate of vertical velocity could be

sufficient to accurately estimate cumulus mass flux.

Based on this idea, the aim of this paper is to estimate

mass flux using single volumetric radar observations,

taking advantage of the accurate convective area frac-

tions provided by volumetric radars, and exploring the

potential of using radar reflectivities to estimate vertical

velocities.

The main task is to investigate whether indices de-

rived from radar reflectivity contain sufficient informa-

tion to quantitatively estimate the magnitude of vertical

velocities in updraft and downdraft cores of individual

convective clouds. A relationship between radar reflec-

tivity and vertical velocity is somewhat expected, as

discussed in Zipser and Lutz (1994) and Luo et al.

(2014). To investigate the robustness of such a re-

lationship, we combine a thoroughly tested database of

vertical velocities extracted from a dual-frequency wind

profiler pair (May and Rajopadhyaya 1999; Williams

2012; Kumar et al. 2015) with radar reflectivity from a

C-band polarimetric research radar (CPOL; Keenan et al.

1998) around Darwin, Australia. Three wet seasons of

data are included in this analysis. From the C-band radar

reflectivities, a set of reflectivity indices is developed and

correlated with the vertical velocities to assess which

reflectivity indices can provide useful constraints to

build a parametric representation of vertical velocity.

The estimates from that relationship are then combined
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with observations of fractional coverage with convection

to provide mass-flux estimates.

The paper is organized as follows. In section 2, the

datasets used in the study are introduced. Statistical

relationships between the dual-frequency wind profiler

retrievals of the vertical profile of vertical velocity (w

profiles) and the CPOL vertical profile of radar re-

flectivity (Z profiles) are investigated in section 3a. A

parametric model to convert Z profiles into w profiles is

developed in section 3b. This is followed by an evalua-

tion of derived vertical velocity from CPOL Z profiles

against vertical velocity from wind profiler and dual-

Doppler 3Dwind retrievals in section 3c. The estimation

of mass flux from CPOL reflectivities is discussed in

section 4.

2. Data

In this study, we want to develop a radar tool to esti-

mate w profiles in convective clouds using Z profiles

from volumetric radar information. The inputs needed

to develop our radar tool include collocated radar re-

flectivities and in-cloud vertical velocity estimates. To

achieve this, we combine two wet seasons (October

2005–April 2006 and October 2006–April 2007) of a

vertical velocity dataset from a pair of wind profilers

with collocated reflectivities from the CPOL radar

(Kumar et al. 2015). The profiler pair is located within

the field of view of CPOL. As is common practice in

statistical modeling we evaluate the radar tool with an

independent dataset not used in its training. To do so we

use another wet season (October 2009–April 2010) of

wind profiler vertical velocity and a month (November

2005) of dual-Doppler vertical velocity retrievals. The

CPOL and profiler datasets are described in more detail

below. The dual-Doppler retrieval setup relevant to the

Darwin site is explained briefly in section 3c(3), and

more details are in Protat and Zawadzki (1999) and

Collis et al. (2013).

a. Darwin CPOL radar

CPOL is predominantly sensitive to precipitation size

particles of diameter exceeding 0.5mm. In this study, we

only use reflectivity profiles (or simply Z profiles) from

the CPOL radar. These reflectivities have been cor-

rected for attenuation using the dual-polarization

method developed by Bringi et al. (2001). The re-

flectivities have been interpolated onto a cubic grid

with a horizontal grid size of 2.5 km 3 2.5 km and a

vertical grid size of 0.5 km and are available in each grid

box every 10min (e.g., Kumar et al. 2013a). The con-

vective area fraction over the radar domain is also esti-

mated every 10min (see Kumar et al. 2015) using the

algorithm developed by Steiner et al. (1995). To mini-

mize any issues that might occur during the in-

terpolation of the radar data in the Cartesian grid, only

data between the ranges of 20 and 120 km (44 000 km2)

and at heights greater than 2.5 km are analyzed. The

same data limits were used elsewhere (e.g., Kumar et al.

2013a,b).

The CPOL spatial coverage is equivalent to about

four 100-km GCM grid boxes. Even if we expect that

the GCM grid resolution will increase to a finer scale

in the future, the mean convective area fraction and w

profiles discussed here would still be useful to mod-

elers. Kumar et al. (2015) showed that the average

convective area fraction profiles for different GCM

grid resolution ranging from 10 to 100 km were re-

markably similar in the vicinity of the wind profiler.

However, the different grid resolutions do affect the

variability in convective area fraction, with finer grid

resolution naturally producing larger variability be-

cause of an increased incidence of both very large

and very small area fractions. In contrast, changes

to GCM grid size will not affect the w profiles since

our approach to derive vertical velocities in convec-

tive clouds, as discussed below, uses the individual

radar pixels.

Our objective is to estimate w profiles in convective

clouds only. Convective–stratiform partitioning of the

radar pixels is obtained by applying a convective pixel

identification algorithm (Steiner et al. 1995) to the

radar reflectivities at the 2.5-km height level. The

whole vertical profile is then assigned the same clas-

sification as that at the 2.5-km level. However, re-

flectivities from cirrus anvils above the convective

towers are filtered out. To do so we use the 0-dBZ

echo-top height (0-dBZ ETH) extracted from the

CPOL reflectivities. Specifically, the 0-dBZ ETH cor-

responds to the height where the reflectivity is the

closest to 0 dBZ, but with a reflectivity value within the

range from 25 to 15 dBZ, and provided there is a

vertically continuous reflectivity between the lowest

CPOL height level of 2.5 km and this 0-dBZ ETH.

Previous studies have shown that the 0-dBZETH from

C-band radar are usually within 1 km of cloud tops

estimated by ground and spaceborne millimeter cloud

radars (e.g., Casey et al. 2012; Kumar et al. 2013a). The

0-dBZ ETH is also used to separate the observed

convective clouds as either congestus (0-dBZ ETH

between 3 and 7 km), deep (7 and 15 km), or over-

shooting (.15 km; Kumar et al. 2013a, 2014), allowing

us to contrast the vertical velocities associated with

these different cumulus modes. It was shown byKumar

et al. (2013a) that 0-dBZ ETH can be used to objec-

tively identify the different cumulus modes.
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b. The Darwin wind profiler radar pair

The Darwin 50- and 920-MHz wind profiler pair is

located 23.6 km southwest of CPOL (see Fig. 1 of May

et al. 2002), and thereby provides direct observations of

w profiles within a particular CPOL reflectivity column.

A detailed description of the profiler vertical velocity

retrieval technique can be found in Williams (2012) and

Kumar et al. (2015). A brief summary is provided below.

The 50-MHz profiler spectra contain both the wanted

signals of vertical velocity of air parcels and unwanted

signal of contamination from hydrometeor fall velocity.

The spectra from the 920-MHz profiler, on the other

hand, are only sensitive to hydrometeor fall velocity,

and therefore are used to filter the unwanted signals

from the 50-MHz profiler spectra. The original profiler

velocities are retrieved at a much finer resolution of

0.1 km in height and 1min in time, and are then re-

gridded in bins of 0.5 km in height and 10-min steps in

time, to match the CPOL resolutions. The velocity pro-

files obtained with the regridded data are very similar to

those found with data at the original resolution (see

Kumar et al. 2015). No vertical velocities from heights

below 2.5km and greater than CPOL-determined 0-dBZ

ETH over the profiler site or the set cutoff height of

14km, whichever is less, are kept in the analysis. This

ensures that the velocities are always from within clouds

and within the altitude ranges of CPOL data. The 14km

cutoff was chosen as a compromise: not very high since

the sensitivity of the profiler drops with height (May and

Rajopadhyaya 1999), and not very low so that they are of

value to modelers and comparable with observations

from elsewhere (e.g., Heymsfield et al. 2010). Each

10-min profiler data block is flagged as either convective

or stratiform using the classification of the corresponding

CPOL pixel. There are a total of 246 10-min convective

profiles occurring over the profiler site during the twowet

seasons, and these are analyzed in detail in the next sec-

tion. As the focus of this study is on convective clouds,

observations from stratiform intervals have being dis-

carded in the statistical analysis.

3. Results

a. Characteristics of the wind profiler w-profile
observations as function of Z-profile properties
from CPOL

In the following subsections, we explore the mean and

variability characteristics of w profiles retrieved from

the profiler as a function of various reflectivity indices

derived from the CPOL data. The aim is to investigate

which reflectivity indices can be used to estimate w

profiles. Although many other radar products—such as

Doppler wind (e.g., Shapiro et al. 2003), spectral width

(Spoden et al. 2012), and cloud droplet size distribution

(e.g., Lu et al. 2012)—are known to be affected by ver-

tical velocities, these relationship are not investigated

here because we want to develop a tool that can be

useful to all radar types, even those withoutDoppler and

polarimetric capabilities.

1) MEAN W PROFILES FOR THE DIFFERENT

CUMULUS MODES

The 246 selected 10-min convective profiles are di-

vided into three cumulus cloud modes based on the

0-dBZ ETH extracted from CPOL Z-profile data (e.g.,

Kumar et al. 2013a). There are 62 congestus, 132 deep,

and 52 overshooting cells defined with 0-dBZ ETH

ranges of 3–7km (congestus), 7–15km (deep), and.15km

(overshooting). A 10-min convective profile can contain

both updraft (w . 0ms21) and downdraft regions. Data

from updraft and downdraft regions are analyzed sepa-

rately throughout the paper. Figure 1a shows the mean w

profiles using all updraft and downdraft data points, as well

as separately for the three cumulusmodes. The spread and

number of profiler data points associated with each cu-

mulus mode are shown in Figs. 1b and 1c, respectively.

The mean updraft vertical velocity associated with all

246 cells (solid curve in Fig. 1) increases gradually with

height, with peak magnitude of ;5ms21 at 12-km

height. The mean updraft w profiles for different cu-

mulus modes are markedly different. For the congestus

mode (dotted curve), the average updraft magnitudes

are the smallest and generally constant with height. The

deep convective mode (dashed curve) shows a bimodal

structure with a weak peak at 6 km and a stronger peak

above 10-km height. In contrast, the overshooting mode

(dotted–dashed curve) is characterized by the strongest

mean updraft, which increases rapidly with increasing

height. Several competing processes affect the updraft

speeds in cumulus clouds (e.g., Zipser 2003; Fierro et al.

2009; Heymsfield et al. 2010). The acceleration in up-

draft speeds near the freezing level and at higher alti-

tudes is likely due to positive buoyancy provided by

latent heating from freezing of liquid drops and su-

percooled liquid drops, respectively. The updraft cores

are also warmer and less dense compared to the colder

and denser environment, further promoting buoyancy.

The deceleration in updraft speeds at higher altitude

can be attributed to the entrainment/detrainment pro-

cesses, the drag effect caused by water loading and the

negative buoyancy induced by in-cloud density tem-

perature becoming lower than the environment ambi-

ent temperatures.

In contrast, the mean convective downdraft profile is

characterized by a much weaker magnitude of;1m s21.
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A possible reason for weak downdrafts in convective

profiles is because downdrafts typically occur close to or

in stratiform regions, both ahead of and behind the

convective core (e.g., Kumar et al. 2015), which have

been removed from our analysis because our focus is

convective mass flux. The downdraft speeds are almost

constant throughout the cloud layer, with slightly larger

values near the tops of very deep clouds and the weakest

values in the midlevels. There is only a slight difference

in mean downdraft profiles for the different cumulus

modes. Downdrafts forming below the freezing level can

be explained by negative buoyancy initiated by pre-

cipitation loading and enhanced by cooling because of

the phase change of precipitation (e.g., Hjelmfelt et al.

1989; May and Rajopadhyaya 1999). Those forming in

the upper levels are explained in Kumar et al. (2015) as

initiated by convergence between air detrained from the

tops of the updrafts and slower-moving ambient air.

The observed mean updraft and downdraft w pro-

files in cumulus clouds using the wind profiler obser-

vations are consistent with previous studies (May and

Rajopadhyaya 1999; Heymsfield et al. 2010; Giangrande

et al. 2013). In conclusion, the three 0-dBZ ETH

classes, a proxy for cumulus modes, are likely useful

for parameterization of w profiles because of well-

marked differences in updraft profiles of the differ-

ent cumulus modes.

2) VARIABILITY IN THE W PROFILES’
MEASUREMENTS

Figure 2 shows a scatterplot of column-mean vertical

velocity as a function of 0-dBZ ETH for all 246 con-

vective profiles. Column-mean vertical velocities of the

congestus mode are generally smaller than those of the

deep convective mode, which are themselves generally

smaller than those of the overshooting mode. However,

the main result from Fig. 2 is that there is a very large

variability in column-mean vertical velocity within each

of these cumulus cloud modes. This result clearly shows

that 0-dBZ ETH alone is not sufficient to extract w

profiles from Z profiles.

FIG. 2. Scatterplot of column-mean vertical velocity as a func-

tion of 0-dBZ echo-top height. It contains a total of 246 data

points: one mean vertical velocity was calculated per cumulus

cloud (a total of 246 cumulus columns) using the wind-profiler

vertical velocities. The shaded regions in three cumulus categories

represent the smallest one-third and the largest one-third of mean

vertical velocities. These tercile boundaries are w # 20.04 m s21

and w $ 0.44 m s21 for congestus mode, w # 0.10 m s21 and w $

1.48 m s21 for deep mode, and w # 1.42m s21 and w $ 3.18 m s21

for overshooting mode.

FIG. 1. Profiles of (a) mean updraft (black) and downdraft (red)

vertical velocity associated with all 246 convective clouds (solid

curve), 62 congestus5 dotted curve), 132 deep (dashed curve), and

51 overshooting convection (dotted–dashed curve); (b) standard

deviation of vertical velocities; (c) total number points used in the

calculations.
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The observed w profiles’ variability in cumulus clouds

reaching the same 0-dBZ ETH may be related to where

the convective cell is in its life cycle. The mature and

decay phase of a convective cell could reach the same

0-dBZETHbut updrafts aremore common in themature

phase and downdrafts dominate the decay phase. The w

profiles are also found to be different for the same cu-

mulus cloud type growing in different large-scale at-

mospheric conditions (e.g., Kumar et al. 2015) and over

different underlying surface types (Heymsfield et al.

2010). However, the effects of the large-scale and sur-

face type conditions are not analyzed here because of

the limited number of samples and the fixed location of

the profiler, respectively. Important is that these con-

ditions do affect the radar reflectivities (Kumar et al.

2013a,b), and therefore these effects will translate intoZ

profiles’ variability.

To identify which CPOL Z profiles’ indices relate to

the variability in vertical velocity between individual

profiles, we first contrast the characteristics of Z profiles

associated with ‘‘weak’’ and ‘‘strong’’ convection for the

three cumulus cloud categories (Fig. 3). The weak and

strong convection separation is obtained using the lower

and upper terciles of the column-mean vertical velocity

distribution, respectively. These tercile boundaries are

shaded in Fig. 2. This weak/strong separation approach

FIG. 3. CFADs of CPOL reflectivities associated with the (a)–(c) weak and (d)–(f) strong cumulus modes for the

(left) congestus, (center) deep, and (right) overshooting modes. The weak cumulus clouds had column-mean

vertical velocities in the lower tercile (see Fig. 2 for the tercile boundaries), whereas the strong cumulus cloud had

column-mean vertical velocities in the upper tercile. A bin size of 1 dBZ in reflectivity and 1.0 km in height is used in

these figures. The contoured frequencies in (a)–(f) are normalized by the maximum frequency in each category.

(g)–(i) The difference between the corresponding strong and weak cumulus modes.
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was proposed and used in Luo et al. (2014). The con-

toured frequency by altitude diagrams (CFADs; Yuter

and Houze 1995) of CPOL reflectivities associated with

the six different categories (three cumulus modes, and

two convective ‘‘strengths’’ for each mode) are shown in

Figs. 3a–f. Figures 3g–i show absolute difference in the

normalized contoured frequencies between the weak

and strong convection for the different cumulus modes.

The differences in the reflectivity frequencies associ-

ated with weak and strong cumulus clouds (Figs. 3g–i)

are well marked. This result indicates that stronger

convection systematically exhibits higher reflectivity

values at all height levels in all cumulus types. This is

consistent with the well-known cloud process in con-

vective cores involving convective updrafts, uplift of

supercooled water in the ice phase, and latent heat re-

lease fueling convective updrafts further. Our results are

also consistent with those obtained with A-Train satel-

lite observations in the ice phase (Luo et al. 2014).

Figure 3 demonstrates that indices describing this shift

in the Z profiles’ distribution toward higher values as

convection strength increases should be able to broadly

capture the variability in column-mean vertical veloci-

ties. To guide the development of relevant reflectivity

indices to capture this variability, we construct a com-

posite of w profiles from wind profiler and Z profiles

from CPOL for 13 deep convective systems that formed

or propagated across the profiler sites (Fig. 4). Note that

the dataset used to construct these composites includes

both convective and stratiform cloud types, and so it is

not same as that used in the previous figures. The cri-

terion used to select these storm events was that the

convective system must last at least 30min within a do-

main around the profiler, which is set to be a square

region consisting of nine CPOL pixels centered over the

profiler site (56.25 km2). However, the composite of

reflectivity shown in Fig. 4a is that from the CPOL

vertical column directly over the profiler site, not an

average of the square region surrounding the profiler.

Once a matching convective system was found, its re-

flectivity profiles are manually inspected to identify the

time when the convective cell has fully matured. This

time is set as t 5 0min for the composite analysis.

The requirement of at least 30min of contiguous

convective profiles at the profiler site implies that mostly

wider and therefore deeper convective clouds are cap-

tured (e.g., Kumar et al. 2013a). Relaxing the convective

time limit produced statistical noise during compositing

because of the addition of more frequent short-duration

narrow congestus clouds and edges of passing deep

clouds. A more conventional technique for selecting

storms, provided there is relevant information over the

full 3D scanning radar volume, is described in Zuluaga

and Houze (2013) but is not applicable to series of ver-

tical profiles. This more accurate approach will be

adopted in a subsequent study, when dual-Doppler 3D

wind retrievals are produced from a pair of radars

around Darwin.

Although this composite is not derived from a large

number of samples (13 cases only), well-defined struc-

tures are readily observed on the composite life cycle

(Fig. 4). Based on the conceptual model of storm de-

velopment described in May et al. (2002), three phases

of the storm life cycle can be characterized by different

reflectivity and vertical velocity signatures: a growth phase

with mostly shallow cumulus (from ;250 to 220min),

FIG. 4. Compositemean responses of (a) CPOL reflectivities and

(b) wind-profiler vertical velocity for up to 1 h on either side of 13

convective storms crossing over the profiler site. The data were

averaged in bins of size 10min in time and 1 km in height. The

criteria used to select storms are defined in the text. Apart from

near t 5 0min, all other times may contain some effects of strati-

form clouds. The superimposed white curve in (b) represents the

0m s21 velocity level. (c) Line plots of temporal evolution of

column-mean vertical velocity (black), mean of the column-total

reflectivity (ZT; blue) and mean of the height-weighted column

reflectivity totals (ZHWT; red). The tabulated statistics are the

correlations between mean velocities and the two reflectivity in-

dices (ZT, ZHWT) in 10-min bins of cell lifetime. There are at most

13 velocity–reflectivity pairs used to compute the correlations.
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a mature phase with hail production as riming occurs in

the strong updraft above freezing level (from 220

to 120min), and a decay phase as the gust front cuts off

the low-level inflow (from ;120 to 160min). The 08C
isotherm is located at about 4.5km in the Darwin region

during the wet season, allowing for a simple discrimina-

tion in height between predominantly liquid and pre-

dominantly ice phases of convective storms. The

growth phase is characterized by a rapid increase in

reflectivity below 5-km height associated with the onset

of upward motions. In the mature phase, both the up-

draft strength and the altitude at which the peak up-

draft strength occurs increase gradually with time.

The updraft is strongest above 5-km height, and

downdrafts progressively develop below 5-km height.

Likewise, the low-level reflectivity peaks during the

mature phase and then begins to weaken after t5 0min

as rain develops.Above 5-kmheight, however, 20–30-dBZ

echoes are found around t 5 0min where the strongest

updraft speeds occur. The decay phase is predominantly

stratiform precipitation, as indicated by mesoscale down-

drafts that are typical of stratiform regions (Fig. 4b). The

formation of downdrafts in themid- to upper troposphere

(around t5 40min) is also associated with a drop in radar

reflectivity.

Comparing Fig. 4a with Fig. 4b suggests that there is

no point-by-point relationship between correspondingZ

and w values. However, when viewing these results

from a whole column perspective, there is some re-

lationship between Z and w columns. This is illustrated

in Fig. 4c, which shows time series averages of two

column-based reflectivity indices and column-mean

vertical velocity. The first index is a simple sum of re-

flectivity in linear units (but plotted in decibels) over the

whole column (ZT). The second proposed index is a

height-weighted sum of reflectivity Z (mm6m23) over

the whole column, ZHWT 5 10 log�i5nz

i51 Zh, where h is in

kilometers. The weighting with height allows for the ice

part of the reflectivity profile, where updrafts are

strongest but reflectivities are lower than in liquid phase

in the column because of differences in refractive indices

of ice and water, to contribute more to the sum of re-

flectivities. Correlation coefficients between reflectivity

indices and column-mean vertical velocity are calcu-

lated at each 10-min interval using the 13 cases used to

build the composites shown in Figs. 4a and 4b. Corre-

lation coefficients are higher during the mature phase

(from 225 to 15min), when updrafts are strongest.

Smaller correlations are estimated outside the window

from 230 to 130min because of the increase in con-

tribution from stratiform regions. Note again that the

effects of stratiform clouds will not be included when

parameterizing w profiles from Z profiles, as our goal is

to describe convective mass flux. Correlation co-

efficients between ZHWT and column-mean vertical

velocity are slightly better than those obtained with ZT.

This indicates that weighting the ice phase more in the

summation has improved the correlation.

Figure 4 shows that ZHWT is a better proxy to capture

the variability in column-mean vertical velocity than

direct sums of Z, but this inference is based on only 13

deep convective systems. Comparison of the composites

of reflectivity and vertical velocity (not shown) further

indicates that there is also some correlation between the

time evolution of reflectivity dZ/dt and the vertical ve-

locities. In addition, Zipser and Lutz (1994) described a

connection between column-mean vertical velocities

and the mean vertical gradient of reflectivity dZ/dh.

Therefore, in what follows we contrast the correlation

coefficients of three reflectivity indices (ZHWT, dZ/dt,

and dZ/dh) with the column-mean vertical velocities

using the entire two wet seasons’ convective population.

By this we mean using the entire 246 convective profiles

that are used in Figs. 1 and 2 and not including any

stratiform profiles.

We also estimated correlations obtained when data

points are above or below the 08C isotherm altitude

(around 4.5-km height over Darwin), as such compari-

sons may provide preliminary insights into the applica-

tion of such a technique to spaceborne radars operating

at attenuating frequencies and observing convection

from the top. This important spaceborne application is,

however, beyond the scope of this paper, as it would

require analyzing the CPOL profilers’ conjunctions us-

ing exactly the minimum detectable reflectivity of

spaceborne precipitation radars (typically 15–20 dBZ).

To estimate the correlations, we first bin the data into

2-km bins of 0-dBZ ETH (the relatively large value of

2 km is used to increase the number of samples in each

bin) to examine the relationship between reflectivity and

vertical velocity as convection deepens. Then for each

bin, we calculate the correlation coefficient between the

various column reflectivity indices and the column-mean

vertical velocity (Fig. 5). In all 0-dBZ ETH bins, the

correlation is highest when using the entire column

ZHWT (black). The correlations using ZHWT only below

4.5-km height (blue) are also very similar to those ob-

tained with entire column ZHWT except for the deepest

convective clouds. Using ZHWT above 4.5-km height

(purple) produces correlations as high as ZHWT but only

in deeper convective clouds (0-dBZ ETH exceeding

7 km). The ZHWT above 4.5-km height could therefore

potentially be used to approximate the w profiles using

spaceborne radar reflectivities at attenuated frequencies

(such as CloudSat), for which reflectivity below the 08C
isotherm altitude is strongly attenuated. The dZ/dt index
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(red) is also highly correlated with vertical velocity,

except for the congestus clouds.

Overall, ZHWT produces the highest correlations

with vertical velocity over the whole 0-dBZ ETH

range. It is therefore used in what follows to param-

eterize the variability of the w profiles in convective

clouds. Interestingly, ZHWT is also clearly a much

better proxy for vertical velocity variability than

the 2dZ/dh indices (green and orange) suggested by

Zipser and Lutz (1994), which are actually least cor-

related with vertical velocity among all reflectivity

indices tested in Fig. 5.

b. Extraction of w profiles from Z profiles

Results from section 3a show that (i) convective

cloud dynamics consist of a dominant updraft com-

ponent and a weak downdraft component, indicating

that updraft and downdraft w profiles can be estimated

separately; (ii) the w profiles are very different for the

different cumulus modes, therefore the 0-dBZ ETH

is a strong constraint on the mean w profiles; and

(iii) the variability of the column-mean vertical velocity

within each cumulus mode is best correlated with the

height-weighted reflectivity index (ZHWT). Using re-

sults from section 3a, we now attempt to parameterize

updraft and downdraft w profiles using 0-dBZ ETH

and ZHWT as inputs. A functional form of the param-

eterization of w profiles [hereinafter denoted w(h)]

can be expressed as

w(h)5w
U
(h)T

Z
(h)1w

D
(h) , (1)

where h is height in kilometers, wU and wD denote the

updraft and downdraft values (m s21), and TZ is used to

introduce variability to wU using the ZHWT measure-

ments and is a dimensionless quantity. No such tuning is

applied to wD because the downdraft magnitudes and

variability are much smaller than those of the updrafts.

The vertical profiles of wU are obtained by applying a

least squares fit to the mean updraft w profiles for each

cumulus mode in Fig. 1:

w
U
(h)5

8<
:
0:040h1 0:992 ETH# 7 km
20:002h4 1 0:052h3 2 0:571h2 1 2:700h2 2:735 7,ETH# 15 km
20:045h2 1 1:089h2 0:896 15 km,ETH

. (2)

A quartic polynomial is needed to model the complex

profile of the deep convective mode (see Fig. 1). In

contrast, linear and quadratic polynomials are sufficient

for the congestus and overshooting modes, respectively.

The equation for wD is derived in a similar manner, but

no separate parameterizations for each cumulus mode is

required, as observed in Fig. 1:

w
D
(h)5 0:0339h2 1 0:4109h2 1:6852: (3)

Building TZ requires some additional analysis. In what

follows we examine how the residual vertical veloci-

ties, wres [the difference between the individual pro-

filer column-mean vertical velocity and that derived

using (1) with TZ 5 1] vary with ZHWT. Figure 6 shows

wres as a function of ZHWT for four 2-km bins of 0-dBZ

ETH (defined in the same way as in Fig. 5). The re-

maining four 2-km 0-dBZ ETH bins are not shown for

brevity. It is to be noted that in all the 0-dBZETH bins

shown in Fig. 6, there is a reasonably linear relation-

ship between wres and ZHWT. The slope of the derived

linear fits increases with 0-dBZ ETH. Similarly, the y

intercepts also show a negative linear relationship

with 0-dBZ ETH. These relationships of the y in-

tercepts and slopes extracted for the eight 2-km bins of

0-dBZ ETH, with the 0-dBZ ETH are shown in

Figs. 7a and 7b, respectively. A remarkably linear

relationship with 0-dBZ ETH is obtained. As a result,

the residual vertical velocity wres is modeled as a

simple linear function of ZHWT, with the slope and y

intercept coefficients of this model a linear function of

0-dBZ ETH:

w
res

5 a1bZ
HWT

, (4)

with a5 4.3912 1.238ETH and b520.0611 0.021ETH.

FIG. 5. Correlation coefficient between the profiler column-

mean vertical velocities against different CPOL reflectivity indices,

as a function of 0-dBZETH. The 0-dBZ tops are binned into broad

2-km bins to increase the number of statistics.
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Here wres corresponds to the amount by which

the column-mean updraft speed derived from (2) (wU)

should be adjusted. However, Fig. 4 also shows that both

the intensity and the altitude of peak enhancement in-

creased with time approaching t 5 0min. During this

phase of the storm, ZHWT also increases. Hence, an

additional filter is introduced as a multiplying factor to

mimic this joint increase in magnitude and height of the

updraft peak with increasing ZHWT, which is defined as

[wU(h)
0:5]/[(wU)

0:5]. The 0.5 exponent is found to pro-

duce the best fit with the observations. Thus TZ is finally

expressed as

T
Z
5

�
w

res
1w

U

w
U

�"
w

U
(h)0:5

(w
U
)0:5

#
. (5)

FIG. 7. Scatterplot of (a) y intercept and (b) slope values against the 0-dBZETH. These y intercept and slope values

are from the results shown in Fig. 6 and also include statistics from the remaining four cloud classes.

FIG. 6. (a)–(d) Scatterplots of column-mean residual vertical velocity (directly observed by profiler 2 derived

from equation withTZ5 1) against the height-weighted column reflectivity totals (ZHWT) for four 0-dBZ cloud-top

bins, each with a bin width of 2 km. The remaining four clouds are not shown in interest of brevity. The sloping lines

in these panels are the least squares linear fits of the scatter.
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c. Evaluation of the Z-profile-based in-cloud vertical
velocity

1) AGAINST THE TRAINING WIND PROFILER

OBSERVATIONS

We start a series of evaluation tests to check how well

the Z-profile-based vertical velocities approximate the

observed velocities. Our reference observational dataset

is the dual-frequency wind profiler measurements col-

lected for October 2005–April 2006 and October 2006–

April 2007. This is not an independent test, as the same

profiler dataset was used to develop the Z-profile-based

velocity parameterization. However, it provides a

quantitative measurement of how much variability has

been lost when developing this parametric representa-

tion of vertical velocity. More independent tests will

follow in the next two subsections.

The results of the evaluation tests are shown in

Figs. 8–10, with a comparison of basic mean vertical

profiles of vertical velocities for the three cumulus

modes (Fig. 8), followed by an evaluation of the indi-

vidual column-mean vertical velocity variability in 2-km

bins of 0-dBZ ETH (Fig. 9), and finally a comparison of

the probability distribution of individual vertical veloc-

ity values at each height level (Fig. 10). In these figures,

the profiler-determined velocities are in black and those

extracted from the Z profiles’ parameterization are in

red. The subsequent discussion assumes that the profiler

measurements are the truth, although they include some

retrieval errors (as described in Williams 2012).

There is good agreement between the mean velocity

profiles obtained from both techniques for the different

cumulus modes (Fig. 8). The largest differences, though

less than 1ms21, occurred near 0-dBZ tops for the

congestus mode (dotted curve), and above 12-km height

for the deep (dashed curve) and overshooting modes

(dotted–dashed curve).

Figure 9 shows a comparison between the observed

individual CPOL ZHWT–profiler column-mean vertical

velocity pairs (Fig. 9a) and the CPOL ZHWT –Z-profile-

based column-mean vertical velocity pairs (Fig. 9b) in

2-km bins of 0-dBZ ETH, as done for Figs. 5 and 6. For

each of these 0-dBZ ETH slabs, the ZHWT (bottom dots)

and column-mean vertical velocities (top dots) pairs are

represented by the short sloping lines. This plot there-

fore provides a quantitative view of the true observed

variability in the ZHWT–column-mean vertical velocity

relationship at any given 0-dBZ ETH and how well this

variability is captured by the parameterization. The

main feature from Fig. 9a is that the relationship be-

tween ZHWT and column-mean wind profiler velocities

is highly organized, which further confirms the potential

of using ZHWT to capture the variability of vertical ve-

locity as noted in section 3a. The parameterized vertical

velocities (red circles in Fig. 9b) are indeed able to

capture most of the variability observed in the profiler

velocities (black circles in Fig. 9b), except for some very

large values.

Figure 10 shows the probability distribution function

(PDF) of profiler and CPOL Z-profile-based vertical

velocities in 1-km-height bins. This comparison shows

that the parameterization marginally overestimates the

50th percentile and marginally underestimates the 75th

percentile of vertical velocity compared to wind profiler

retrievals. Focusing now on the extremes, the parame-

terization tends to overestimate the 10th percentile and

underestimate the 90th percentile of the distribution.

Overall, this indicates that the parameterization does

represent fairly well the PDF of vertical velocity with,

however, a slight underestimation of its width.

From the results shown in Figs. 8–10, our preliminary

conclusion is that the parameterization of vertical ve-

locities using Z-profile-based indices is capable of re-

producing mean vertical velocities retrieved with the

dual-frequency wind profiler technique. However, the

parametric model tends to underestimate the incidence

of upper and lower velocity extremes. The evaluation

discussed above made use of the same dataset as that

used to develop the parameterization. So in the next two

subsections, we conduct more independent assessments.

2) AGAINST THE 2009–10 WIND PROFILER DATA

We now test the performance of the Z-profile-based

velocity retrievals on another wet season (2009/10) of

wind profiler velocity retrievals. A total of fifty-eight

FIG. 8. Profile of mean updraft and downdraft vertical velocity

associated with different cumulus cloud modes. The black and red

curves in this figure and all subsequent figures represent the wind-

profiler and CPOL vertical profiles of radar reflectivity (VPRR)-

based vertical velocity trends, respectively.
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10-min convective columns are detected for this wet

season. The aforementioned statistical comparisons

(Figs. 8–10) when repeated with this profiler dataset

produced similar results. To summarize, we show in

Fig. 11 a scatterplot (dotted) of parameterized velocities

against the profiler velocities from matching time–

height convective bins of size 10min in time and 1km in

height. The same information for the training dataset

(2005–07) is shown by the solid contour lines in Fig. 11,

which represent the 2D histogram of points. The red

vertical bars show mean 6 one standard deviation

ranges as a function of the observed profiler vertical

velocity using dataset from entire three wet seasons.

Notably, the performance of the Z-profile-based ve-

locity tool for the two separate profiler datasets is very

similar, and therefore increases the confidence that the

w-profile parameterization is representative of more

than just the training dataset.As discussed in section 3c(1),

Fig. 11 also reveals that Z-profile-based retrievals are

underestimating large vertical velocities. How this bias in

the parameterized velocities affects the mass-flux com-

putation is discussed in section 4.

3) AGAINSTA1-MONTHDATASETOFDUAL-DOPPLER

VERTICAL VELOCITY RETRIEVALS

The dual-Doppler retrievals used in this study are

based on a variational approach (described in Protat

and Zawadzki 1999; Collis et al. 2013), whereby the 3D

winds are obtained by minimizing the difference be-

tween the observed radial winds from a Doppler radar

pair (CPOL and Berrimah radars in our case) and en-

suring that the three wind components satisfy the

FIG. 10. 2D cumulative probability distribution of wind-profiler

(black) and CPOL VPRR-based vertical updraft velocities (red).

The curves are the 10th (solid), 50th (dotted), 75th (dashed), and

90th (dotted–dashed) percentiles of vertical velocity frequencies as

a function of height.

FIG. 9. (a) Scatterplots of ZHWT (primary x axis) against wind-profiler column-mean vertical velocity (secondary

x axis) in 2-km bins of 0-dBZ ETH. (b) As in (a), but the vertical velocities are obtained from CPOL VPRR.

Unfilled purple circles in (b) are wind-profiler vertical velocity means and have been overplotted for easier com-

parison with VPRR-based velocity means (filled red circles). The thick dashed purple and red vertical lines are the

median of velocities from wind-profiler and VPRR-based vertical velocities, respectively.
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anelastic approximation of the mass continuity equa-

tion. Typical assumptions made in dual-Doppler tech-

niques, such as the vertical velocity at cloud base and top

being 0m s21, and fall speed corrections on the observed

Doppler winds, may hinder the accuracy of the dual-

Doppler retrievals to some unknown extent. Un-

fortunately, the Darwin wind profiler is located just

outside of the dual-Doppler retrieval regions (along the

baseline formed by the two radars), thus it is not possible

to directly cross validate the dual-Doppler retrievals

with the profiler measurements. However, Collis et al.

(2013) have shown on a few case studies that these two

estimates of vertical velocity were in good agreement.

The gradient of a linear fit of profiler velocities against

dual-Doppler velocities was 0.83 with a correlation co-

efficient of 0.85.

The advantage of comparing the Z-profile-based re-

trievals with the dual-Doppler vertical velocity re-

trievals is that the number of convective pixels increases

substantially compared to profiler retrievals, as the

parameterization can be applied to any convective

pixel that is within the large dual-Doppler retrieval

region. The downside is that the dual-Doppler verti-

cal velocities are presumably not as accurate as the

wind profiler retrievals. Using a month of comparisons,

there are a total of 21 365 convective columns for which

dual-Doppler and Z-profile-based vertical velocity re-

trievals are available.

Figures 12a–c, which are created in the same way as

the contour lines in Fig. 11, show the frequency distri-

bution of vertical velocities obtained from theZ-profile-

based technique against the dual-Doppler approach for

the congestus, deep, and overshooting cumulus modes,

respectively. To further explore the comparability be-

tween these two velocity retrieval approaches as a

function of height, the superimposed colored contours

show the 50th percentiles of the Z-profile-based veloc-

ities are plotted against dual-Doppler velocities in dif-

ferent height slabs. These results shows that the

agreement between the velocities is highest below 5km,

followed by between 5 and 10km, and are the lowest

between 10 and 15km, regardless of the cumulus cloud

mode. Thus the discrepancy between the two ap-

proaches is most obvious for the overshooting mode.

The velocity parameterization is tuned with wind pro-

filer measurements, and both show the updraft in-

tensities are strongest between 10 and 15km (Fig. 8).

Other ground-based and airborne wind profiler obser-

vations also found similar characteristics in w profiles

associated with deep convection (e.g., May and

Rajopadhyaya 1999; Heymsfield et al. 2010; Giangrande

et al. 2013). However, ground profilers may under-

sample the upper regions of the convective cores, in

particular those for which the reflectivities are less in-

tense, because of the drop in sensitivity of the profiler

with height. Another reason for the observed discrep-

ancy in the upper levels could be due to the assumption

made in the dual-Doppler retrieval that the vertical

velocity at cloud top is 0m s21. True cloud-top heights

are usually few kilometers higher than those observed

with C-band radars.

4. Convective mass flux

The main motivation for developing a scanning radar

reflectivity-based vertical velocity parameterization is to

produce quantitative estimates of mass flux on scales

directly relevant to GCMs (currently around 100-km

horizontal resolution). Current GCMs, especially those

used for climate studies, cannot resolve convective-scale

motions and will not for the foreseeable future, as the

explicit representation of convection requires horizontal

resolutions of 1 km or less. Therefore a cumulus pa-

rameterization, such as the widely used convectivemass-

flux scheme, will still be required for many years to

represent the collective effects of an ensemble of con-

vective cells within a GCM grid box. The evaluation of

mass-flux schemes with observations has proven difficult

because of a lack of relevant long-term quantitative

FIG. 11. Scatterplot of VPRR-based vertical velocities against

wind-profiler velocities using data from October 2009 to April

2010. Data points from matching 10-min bins in time and 1-km

bins in height were used in the scatterplot. The overplotted con-

tour curves are the 2D histogram of scatter for the velocity data

from the 2005–07 wet seasons. The red scatter bars use the entire

three wet seasons of dataset and represent 6 one std dev about

the means.
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vertical velocity datasets within cumulus clouds. Pre-

vious efforts combined network of surface rainfall ob-

servations and vertical air sounding profiles of temperature

and humidity, with continuity equations for mass, heat,

and moisture to estimate large-scale cumulus mass flux

(e.g., Wu 2012 and references therein). In our previous

study (Kumar et al. 2015) we used the dual-frequency

profiler retrievals of vertical velocity to characterize

the mean properties of convective mass flux and its

variability as a function of the large-scale environment;

however, these results were not readily useful for GCM

verification, as this requires long time series of indi-

vidual mass-flux profiles. The present study attempts to

bridge this gap by deriving profiles of convective mass

flux at a typical GCM grid resolution from measured

CPOL convective area fraction and convective vertical

velocity retrieved using the parametric representation

of section 3 applied to 3D CPOL reflectivities.

Figure 13 shows a comparison of such mass-flux pro-

files for the different cumulus modes using the vertical

velocity measurement from the wind profiler (black)

and using theZ-profile-based parameterization (red). In

these mass-flux computations, the convective area frac-

tion is the same, so only the errors in vertical velocity

make up for the differences between the mass-flux

profiles. The approach used to compute mass flux on

scales relevant to GCMs using the vertical-pointing

profiler observations has been described in Kumar

et al. (2015). They calculated the convective area frac-

tions from the single-column observations using a tem-

poral aggregation approach, which is defined as the ratio

of the time CPOL identifies convection above the

profiler over the total sampling time. The same ap-

proach has been used here.

As seen in Fig. 13, the mean mass-flux profiles derived

from the parameterization do match the reference pro-

files quite well, except for the congestus mode for which

the parameterized mass flux is too large. As noted in

section 3c, a shortfall in the parameterized vertical ve-

locities is the underestimation of the velocity extremes.

Next we show how the errors in vertical velocity trans-

late into errors in mass flux. Cumulus mass flux is the

FIG. 13. Two wet seasons’ mean mass flux associated with all

cumulus clouds (solid curves), congestus (dotted), deep (dashed),

and overshooting convection (dotted–dashed) using wind-profiler

(black) and CPOL-based (red) measurements taken at the profiler

site. The procedure used to compute mass flux from these single-

column observations is described in the text.

FIG. 12. 2D Histogram of VPRR-based vertical velocity and dual-Doppler vertical velocities using data from

matching 10-min bins in time and 1-km bins in height over the 1 month with dual-Doppler retrievals. The colored

contour curves are the 50th percentiles using data from different height regions: below 5 km (black), between 5 and

10 km (blue), and above 10 km (green).
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product of three variables, air density, convective area

fraction, and vertical velocity. Convective area fraction

is a direct observation, so errors are expected to bemuch

lower compared to those from the parameterized w

profiles. This implies that errors in mass flux are likely to

be lower than those in velocities. These errors on ver-

tical velocity (filled circles) and convective mass flux

(asterisks) are characterized in Fig. 14 using a Taylor

diagram (Taylor 2001). Since the observed vertical ve-

locities and mass fluxes are characterized by different

standard deviations, and the standard deviations also

change with height, all the model values are normalized

by the reference data standard deviations (blue ring at

value 1). The absolute values of the standard deviations

are given in Table 1. The red rings on the Taylor diagram

correspond to root-mean-square (RMS) differences

between the modeled and retrieved data divided by the

standard deviation. For instance, the location of the pink

asterisk on the Taylor diagram indicates that for heights

between 12 and 14km, the correlation betweenmodeled

and profiler-retrieved mass fluxes is 0.59, the RMS dif-

ference is 1 3 0.083 kgm22 s21, and the standard de-

viation of modeled mass flux is 1.15 higher than that of

the observed mass flux.

It is evident (Fig. 14) that the parameterization of

vertical velocity performs best between 8 and 12km,

with correlations of about 0.6 and normalized standard

deviations and normalized RMS differences of about

0.8. Importantly, parameterized mass fluxes systemati-

cally score better than parameterized vertical velocities.

The lowest correlations and normalized standard de-

viations are found between 2- and 4-km height. This is

because the observed upward velocities drop between 2

and 3km followed by a steady increase thereon, but our

parametric model does not account for this in order to

keep the model equation simple (see Fig. 8). Lower

vertical velocity correlations in the uppermost layer (12–

14 km) are probably due to fewer profiler observations

(associated with the drop in sensitivity of the profiler

with range), as discussed previously. It is interesting to

note that in this uppermost layer the mass-flux correla-

tions and normalized standard deviations are better than

those for vertical velocity. This is due to the fact that the

convective area fractions are much lower higher up,

resulting in fewer errors on mass flux than on vertical

velocities.

The main rationale for parameterizing convective

mass flux from radar reflectivity only is that it offers the

opportunity to characterize the variability of convective

mass flux over the life cycle of tropical convection and

as a function of the large-scale environmental condi-

tions, which can in turn be used to assess if the GCM

mass-flux parameterization captures this variability.

To illustrate this potential, Fig. 15 shows a time series

of selected convective parameters during the Tropical

Warm Pool–International Cloud Experiment (TWP-

ICE), at Darwin, Australia (May et al. 2008). Figure 15a

shows time series of convectively available potential

energy (CAPE; black) and domain mean convective

rain rate (red), which describes the convective activity

during TWP-ICE. The TWP-ICE period consisted of

three different large-scale conditions (e.g., Varble et al.

2011; Davies et al. 2013): an active monsoon period

(before day 25, which is 25 January 2006) characterized

by strong large-scale upward motions (v) associated

TABLE 1. Wind profiler observed vertical velocity and mass flux

standard deviations at six different height levels.

Height (km)

Std dev of observed

vertical velocity (m s21)

Std dev of observed

mass flux (kgm22 s21)

3 1.92 0.123

5 2.24 0.125

7 3.13 0.184

9 2.75 0.198

11 2.87 0.156

13 2.67 0.083

FIG. 14. Taylor diagram displaying a statistical comparison

between observed vertical velocity–mass flux and CPOL VPRR-

based vertical velocity–mass flux at six different heights. The

vertical velocity values are represented by filled circles, and cor-

respondingmass-flux values are shownwith asterisks. As explained

in the text, all standard deviations (both observed and parame-

terized) are divided by the appropriate observed standard de-

viation so that all observed standard deviations are at the

coordinate of (1.0, 0) (unfilled circle). Refer to Table 1 for the raw

observed standard deviations.
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with two major mesoscale convective systems (19–20

and 23–24 January) passing over the CPOL domain was

followed by a suppressed monsoon period associated

with downward large-scale motions (26 January–2 Feb-

ruary) and least rainfall amounts, followed then by

break conditions (after 3 February), dominated by di-

urnally driven alternating large-scale upward and down-

ward motions and strong CAPE.

The associated time–height plots of convective area

fraction (Fig. 15b) and mass flux (Fig. 15c) reveal

FIG. 15. Time series of (a) CAPE from radiosounding and CPOL domain-mean convective

rain rate, (b) CPOL domain-mean convective area fraction, and (c) CPOL VPRR-based mass

flux. As explained in the text, the area fraction is calculated using standard spatial approach,

and mass flux is product of respective mean area fraction, mean parameterized v, and air

density. Data shown are for the TWP-ICE period (19 Jan–14 Feb 2006) at Darwin. (d) The

mean vertical profile of mass flux (solid curves) and relative humidity (dotted curves) associ-

ated with the three large-scale conditions, namely, active monsoon (black), suppressed mon-

soon (green), and break (red) conditions, experienced during the TWP-ICE.
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a noticeable difference between the three large-scale

conditions. Note unlike in Fig. 13 where we approxi-

mated the convective area fraction using a temporal

approach (space–time conversion), in Fig. 15 the area

fraction is directly calculated using the conventional

spatial approach of the ratio of the coverage area of all

convective cells in the CPOL domain over the total

CPOL domain of ;44 000km2. The method to derive

mass flux remains unchanged: at any given height and

time, it is the product of mean convective area fraction,

mean of parameterizedv of all convective pixels, and air

density. The two MCSs during the active monsoon pe-

riod are associated with highest amounts of convective

area fraction and mass flux. The suppressed monsoon

period contains shallow convection with convective tops

mostly below 8-km height and weaker mass fluxes than

during the active monsoon period, with no clear diurnal

signal. In contrast, the break period exhibits strong di-

urnal perturbations in convective area fraction andmass

flux, similar to that of convective rain rate (Fig. 15a). A

direct comparison of the mean vertical profiles of mass

flux during the three large-scale conditions is shown in

Fig. 15d. All the mass-flux profiles peak at or within few

kilometers above the freezing level (;5 km). The mass

flux drops the slowest with height above the peak

height in the break period and quickest in the active

monsoon period. These mass-flux profiles are consis-

tent with the typical picture of convection in break and

monsoonal conditions (e.g., Kumar et al. 2013a,b), with

the former characterized by a quick transition from

afternoon shallow congestus clouds to deep convec-

tion within few hours triggered by local sea-breeze

effects and the latter characterized by widespread oc-

currence of weak shallow convection associated with

the monsoon trough, with only a few growing into deep

convective towers.

The example shown in Fig. 15 confirms our suggestion

that the mass-flux values obtained using the parame-

terized velocities combined with directly observed con-

vective area fraction are likely of sufficient quality for

the first-order evaluation of cumulus parameterizations

in GCMs. This provides an exciting opportunity to use

our technique to derive mass-flux profiles at a number of

locations that host rain radars. It is worth noting, how-

ever, that more confidence in the technique should be

gained by extending its evaluation performed here to

other sites.

5. Summary and future works

This paper describes how C-band radar reflectivities

can potentially be used to estimate vertical velocity and

mass flux in tropical cumulus clouds in a way that would

allow long-term datasets to be constructed at radar lo-

cations with a possible global extension using satellite-

based reflectivity measurements. We used two wet

seasons of vertical profiles of vertical velocities (w pro-

files) extracted from the Darwin dual-frequency wind

profiler pair and collocated vertical profiles of radar re-

flectivities (Z profiles) from the Darwin C-band polari-

metric research radar to develop a parametric model of

vertical velocity using only CPOL reflectivity indices.

A statistical analysis of profiler w profiles as functions

of different properties ofCPOLZprofiles fromconvective

intervals revealed that it is possible to parameterize w

profiles in cumulus clouds using two Z-profile-based

indices: the 0-dBZ ETH to constrain the mean convec-

tive w profiles, and the ‘‘height-weighted column re-

flectivity (ZHWT)’’ to constrain the variability of the

convective w profiles. The evaluation of the parame-

terized vertical velocities using the training dataset and

two independent datasets demonstrates that vertical

velocity values can be estimated accurately up to their

75th percentile but with some underestimation of the

extreme values. Furthermore, the product of the pa-

rameterized w profiles and the directly observed profile

of convective area fraction from the ground-based

radar network will be valuable to fully characterize

mass flux and its sources of variability to improve the

simulation of convection by GCMs. It was noted that

the influence of errors made in parameterizing veloc-

ities is actually reduced in the mass-flux calculations

because the less accurate velocity extremes occur in

the upper levels, where both the convective area

fraction and air density are small. This parametric

representation of the convective w profiles can po-

tentially be applied to any non-Doppler, non-dual-

polarization radar, including spaceborne radars, with

some adaptations. So there is a potential for much

broader use of such simple approach. However, more

studies are clearly needed to investigate how variable

this relationship is as a function of geographical loca-

tion, even within the tropical belt, and to adapt it to

different minimum detectable radar reflectivities. As

more long-term vertical velocity datasets are produced

worldwide by the research community, we will ascer-

tain how robust these w parameterizations are outside

of the Darwin area and will be able to refine the con-

cept proposed in this study.
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