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[1] Single column models (SCMs) are useful tools for the evaluation of parameterizations
of radiative and moist processes used in general circulation models (GCMs). SCM
applications have usually been limited to regions where high-quality observations are
available to derive the necessary boundary condition or forcing data. Recently, researchers
have developed techniques for deriving SCM forcing data from other data sets, such as
NWP (numerical weather prediction) analyses. The uncertainties inherent in these
forcing data products have an unknown and possibly significant effect on SCM runs. This
paper shows how an ensemble SCM (ESCM) approach can be used to minimize the
uncertainty in SCM simulations resulting from uncertainties in the forcing data. Some
innovative evaluation techniques have been applied to ESCM runs at the tropical western
Pacific Atmospheric Radiation Measurement (ARM) program sites at Manus Island and
Nauru. These techniques, making use of traditional ensemble verification methods
and objectively determined cloud regimes, are shown to be able to highlight
parameterization deficiencies and provide a useful tool for testing new or improved
model parameterizations.
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1. Introduction

[2] Radiative and moist processes play a critical role in
the Earth’s climate system. In climate models the parameter-
izations of these processes remain a major source of
uncertainty; consequently, much effort has been put into
improving them. For example, one of the primary objectives
of the U.S. Department of Energy’s Atmospheric Radiation
Measurement (ARM) program is to develop and test param-
eterizations describing moist and radiative processes, with
the intent of incorporating them into general circulation
models (GCMs) [Stokes and Schwartz, 1994; Ackerman and
Stokes, 2003].
[3] Modern GCMs are very complicated, containing

parameterizations of many physical processes. The interac-
tions between the various components of a GCM are often
nonlinear. Furthermore, running a GCM requires significant
computational resources. Consequently, GCM evaluation
can be an onerous task. Several approaches have been
developed to simplify the testing of GCM parameteriza-
tions. One popular technique is single column modelling. A
single column model (SCM) is comprised of a single
vertical column of grid points. Interactions with neighboring
columns are prescribed by lateral boundary conditions, also
referred to as forcing data [Randall et al., 1996].
[4] The simple design of an SCM makes identification of

errors in the model’s parameterizations easier than in a full

GCM. If the initial and boundary conditions are perfect,
then SCM errors can be attributed solely to the physical
parameterizations operating in the vertical column. For
example, Jakob [2003] describes a strategy for evaluating
GCM cloud parameterizations, which utilizes single column
modelling and objective weather or climate regimes. A
number of researchers have tested, and developed or mod-
ified, parameterizations based on SCM evaluations [e.g.,
McFarquhar et al., 2003; Iacobellis et al., 2003; Zhang and
Lohmann, 2005].
[5] One difficulty with single column modelling is the

specification of the forcing data, such as the vertical
velocity and advective tendencies of temperature and mois-
ture. SCM errors caused by uncertain boundary conditions
may mask errors caused by parameterization deficiencies.
Therefore most SCM studies have been restricted to loca-
tions and times when high-quality observations are avail-
able to derive the forcing data [e.g., Randall and Cripe,
1999]. More recently, researchers have derived forcing data
from NWP profiles constrained by surface and top of the
atmosphere observations [e.g., Xie et al., 2003, 2004] With
all these approaches, the issue of the forcing data quality
remains. Even when observations are used, instrument and
sampling errors, such as unresolved spatial variability
within a radiosonde array, can introduce significant uncer-
tainties into the derived forcing data [Mapes et al., 2003].
[6] To address the issue of uncertainty in the forcing data,

Hume and Jakob [2005, hereinafter referred to as HJ05]
used an ensemble SCM (ESCM) approach. They first
created four forcing data sets, derived from four different
NWP analyses, for the tropical western Pacific (TWP) ARM
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sites at Manus Island and Nauru. These forcing data sets
were then used to run ensembles of the ECMWF and
Bureau of Meteorology Research Centre (BMRC) SCMs
for Manus Island and Nauru. HJ05 showed that using this
ensemble approach, uncertainties in the SCM results which
were caused by errors in the model physics could be
distinguished from errors caused by uncertainties in the
forcing data sets.
[7] While HJ05 have hypothesized that the ESCM

approach can find model problems, that claim is based on
very few results. The purpose of this paper is twofold: (1) to
extend the HJ05 results and (2) to introduce some innova-
tive evaluation techniques that, when used in conjunction
with the ESCM approach, can highlight parameterization
deficiencies. First, in section 3, some simple validations of
the ESCM method are studied. Important questions which
are addressed in this section include: (1) how well does the
ESCM method compare with single SCM runs, and (2) how
sensitive is the method to outliers in the forcing data? Then,
in section 3.2, a number of validation techniques, which can
only be applied to ensembles, are investigated. As dis-
cussed earlier, Jakob [2003] proposed a regime-based
evaluation methodology. In section 4 we investigate if this
methodology can be applied to the ESCM approach.
Finally, in section 5, a simple example shows how these
validation techniques can be used to test modified model
parameterizations.

2. ESCM Runs

[8] The validations presented in this paper are for two
separate SCM ensembles. The first ensemble consists of sixteen
ECMWF SCM runs at Manus Island and Nauru, initialized
every 6 hours (at 0000, 0600, 1200, and 1800 UTC)
during 1999 and 2000. The second ensemble is similar to
the first but uses the BMRC SCM. The ECMWF SCM used
in this work is the single column version of the model used
for the ERA-40 reanalysis [Uppala et al., 2005]. The
BMRC SCM is the single column version of the Bureau
of Meteorology’s GCM and is described by Roff [2005].
While the SCMs used in this study are perhaps more
frequently used by the climate community, there are no
reasons preventing the ESCM technique being used to test
single column versions of operational forecasting models.
[9] Eachmember of theBMRCandECMWFensembleswas

initialized with one of four initial condition data sets and forced
with one of four forcing data sets (making a total of 16 ensemble
members). The initial condition and forcing data sets were
derived from ERA-40 [Uppala et al., 2005], operational
ECMWF analyses [Gregory et al., 2000], operational analyses
from the Australian Bureau of Meteorology’s Global Assimila-
tion and Prediction System (GASP) model [Seaman et al.,
1995], and National Centers for Environmental Prediction
(NCEP) reanalyses [Kanamitsu et al., 2002], respectively. The
horizontal resolution of forcing data were 2.5 degrees. The
NWPanalyses did not contain sufficient information to initialize
clouds in the SCMs. Therefore the SCM runs initially start with
clear skies and are allowed to ‘‘spin-up’’ for 12 hours. HJ05
showed this was sufficient time to develop realistic clouds in the
model. Further details describing the derivation and validation
of the initial and forcing data sets are found in HJ05.

[10] As shown in HJ05, results from individual SCM
ensemble members vary significantly. For example, the
ECMWF SCM runs initialized with ERA-40 data and
forced with GASP data underestimate the downward sur-
face solar radiation, while the runs initialized with NCEP
data and forced with ERA-40 significantly overestimate the
same quantity. Nevertheless, the ESCM mean is quite close
to the observed value. Furthermore, it was shown that errors
in the ECMWF ESCM mean are similar to the errors in the
full ECMWF model (which does not require the forcing
data used for the SCM runs). These results suggest the
ESCM approach is capable of identifying model errors,
distinct from errors resulting from uncertainties in the
forcing data.
[11] HJ05 highlighted that the ESCM technique is poten-

tially capable of identifying model errors. However, only a
limited number of results were presented; it is not clear how
much additional information about model problems can be
obtained using this method compared to traditional single
model run validations. Therefore the following sections
apply some well-known NWP ensemble validation techni-
ques to an SCM problem for the first time, in an attempt to
identify specific model problems.

3. ESCM Validations

3.1. Use of the Ensemble Mean

[12] A common ensemble validation technique is to
compare the ensemble mean to observations. This was the
approach taken in HJ05. One advantage of using the
ensemble mean instead of a single model run selected from
the ensemble is that the influence of outliers is lessened.
Moreover, it is well known that the mean of several model
predictions is often more skillful than any of the individual
model predictions [e.g., Ziehmann, 2000]. On the other
hand, outliers in an ensemble may contain useful informa-
tion about the inherent uncertainties in the predictions,
which is lost when only the mean is studied.
[13] Figure 1 shows a short time series for the ensemble

mean of 12 hour SCM predictions of total cloud cover
(TCC), valid at 0000 UTC, at Manus Island. To derive TCC
from cloud cover at each model level, the ECMWF SCM
uses a maximum-random cloud overlap assumption, while
the BMRC SCM uses a random overlap assumption.
The observed TCC is also plotted in Figure 1. The TCC
observations are derived from GMS-5 (Geostationary
Meteorological Satellite) satellite data using the method of
Minnis et al. [1995], as described by Nordeen et al. [2001],
and represent the average TCC in a 3 degree square box
covering Manus Island. It is not obvious if the SCM
predictions exhibit any skill. Sometimes (e.g., 8 January,
0000 UTC), the observations correspond quite well with the
predictions; however, there are many times when high TCC
values are observed and quite low values are predicted by
both SCM ensembles, suggesting the SCMs may be nega-
tively biased.
[14] To help understand the model results, Figure 2 shows

the PDFs for the 12 hour ESCM mean predictions of TCC
and the observed TCC values. The PDFs cover the 1999–
2000 period. Both SCMs underestimate the frequency of
TCC greater than about 0.9 and overestimate the frequency
of lower cloud cover amounts. It should be noted that the
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spatial resolutions of the models and observations are
similar; therefore the differences in the TCC PDFs are
probably attributable to model deficiencies.
[15] The preceding PDFs highlight some deficiencies in

the SCM results. However, even if the modelled and
observed PDFs were the same, this would not necessarily
indicate a great level of skill in the predictions. It is possible
for a model to produce the correct PDF for TCC but have no
skill at predicting when the cloud cover occurred. Therefore
it is often desirable to measure the performance of a
forecasting system against a known ‘‘no-skill’’ forecasting
system, such as climatology. In this paper, a modified
version of the cloud verification method presented by Jakob
et al. [2004] is used. Whereas Jakob et al [2004] used point
observations of cloud cover, which were either 0 or 1, the
cloud cover observations used in this study are for a three
degree square box covering Manus Island and can assume
any value between 0 and 1.
[16] The mean square error (MSE) is a convenient score

for verifying cloud forecasts. It is defined as:

MSE ¼ 1

n

Xn

i¼1

fi � oið Þ2 ð1Þ

where fi is the forecast cloud cover, oi is the observed cloud
cover, and n is the number of forecasts being validated. The
MSE for a perfect forecasting system is 0. In the case of
‘‘no-skill’’ climatological forecasts, fi is always the same
and is equal to the long term average cloud cover.
[17] The reduction of variance (RV) is a commonly used

score for comparing a forecasting system against no-skill
climatological forecasts [Stanski et al., 1989]:

RV ¼ MSEclimate �MSE

MSEclimate

ð2Þ

where MSE is the mean square error of the SCM forecasts
being validated and MSEclimate is the mean square error for
the climatological forecasts. A perfect forecast system will
have a RVof 1; however, this is unlikely to be achievable in
practice. If the forecasts are worse than climatology, the RV
will be negative.
[18] Figure 3 shows the RV for 12 hour SCM forecasts of

TCC valid at 0000 UTC for Manus Island and Nauru. A
number of interesting points are evident in the figure. First,

Figure 1. Time series of total cloud cover observations and predictions at Manus Island. The ECMWF
and BMRC curves show the ensemble mean 12 hour predictions, valid at 0000 UTC. The observations
are derived from GMS-5 data valid at 0000 UTC.

Figure 2. PDFs for the predicted and observed 0000 UTC
TCC at Manus Island. The model results show the ensemble
mean of the 12 hour forecasts. The results are displayed in
0.1 wide bins.
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at both Manus Island and Nauru, and for both SCMs, the
ensemble mean scores better than any individual ensemble
member. As mentioned earlier, this is a well-known advan-
tage of ensemble prediction systems (EPS). Most impor-
tantly, it is also apparent from the figure that some of the
ensemble members are habitual outliers and score poorly in
the validation. Despite this, the ensemble mean and median
are rather insensitive to these outliers. This highlights the
utility of the ESCM approach in the absence of perfect
forcing data. If only one of the forcing data sets was used,
there would be no way to tell if it belonged to the outlier
runs evident in Figure 3. Finally, the SCMs appear to be
performing worse than climatology because the RV is
negative in all the cases. At first sight, this is a rather
disappointing result. However, it is well known that the skill
of a forecast system cannot usually be judged by a single
scalar score [e.g., Buizza, 2000]. The next section will show
the SCM ensembles exhibit some skill compared to clima-
tology, when validated using other methods. It is worth
noting that Jakob et al. [2004] also reported negative skill
scores when validating a cloud system model (CSM) and
the ECMWF operational model against radar observations
at the ARM Southern Great Plains site in Oklahoma.
Finally, it is clear that the ECMWF SCM is performing
better than the BMRC SCM. This result supports HJ05’s
finding that the use of the ESCM technique does provide
information about the model performance. If the results
were entirely dominated by features in the forcing data sets,
the model results would be expected to lie much closer to
each other.

3.2. Probabilistic Forecast Validation Techniques

[19] The preceding section presented some validations of
the ESCM mean and showed the ensemble mean was more
skillful than any of the individual ensemble members.
However, validations of the ensemble mean potentially
ignore useful information contained in the spread of the
ensemble. In this section, some probabilistic forecast vali-
dation techniques are applied to the ESCM predictions. It is
worth noting that this is the first application of such
techniques in studies using SCMs.
[20] It is straightforward to generate probabilistic fore-

casts from an ensemble. All that is necessary is to bin the
model predictions and count the proportion of ensemble
members which produced predictions in each bin. Ideally,
the probabilistic forecasts will not have any systematic
errors. For example, if a large number of forecasts of 50%
probability of TCC between 0.8 and 0.9 are collected, it
would be hoped that the observed TCC was between 0.8
and 0.9 in 50% of the cases (for clarity, probabilities are
reported as percentages, and cloud amounts as a decimal
fraction between 0 and 1). A forecasting system which
meets this criteria is said to be reliable.
[21] Reliability diagrams are useful tools for studying

ensemble forecasting systems [e.g., Wilks, 2006]. The
horizontal axis of a reliability diagram shows the forecast
probability of an event occurring, while the vertical axis
shows the observed frequency of the event, given the
forecast probability. A perfectly reliable forecasting system
has all the points lying on a diagonal line extending from
the bottom left to top right corners of the diagram. By
definition, a climatological forecast is perfectly reliable.
Figure 4 shows a reliability diagram for the ECMWF ESCM
predictions of TCC greater than or equal to 0.9 at Manus
Island. The 0.9 threshold is somewhat arbitrary, and was
chosen because approximately half the observations exceed
0.9, ensuring numerical stability when various skill scores
are calculated. Furthermore, it is clear from Figure 2 that the
model seriously underpredicts cloud cover exceeding about
0.9. Similar results to those described in this section are
obtained with different thresholds. It is clear that the ESCM
forecasts are not perfectly reliable. For example, when the
ESCM predicts a 6.25% probability of TCC exceeding 0.9,
approximately 35% of the observations exceed 0.9. In a
later section, it will be shown that this underprediction of
TCC > 0.9 events is caused by the SCMs underestimating
the occurrence of deep convection and overestimating the
occurrence of relatively less cloudy, suppressed regimes.
[22] Another important characteristic of an ensemble

prediction system (EPS) is resolution. Resolution represents
the extent to which observed outcomes differ, given differ-
ing forecasts. Climatological forecasts are a common
example of a reliable forecasting system with no resolution.
It is clear from Figure 4 that the ESCM does in fact show a
moderate level of resolution because increasing forecast
probabilities are generally associated with an increase in
the observed frequency of TCC exceeding 0.9. However, it
should be noted that a reasonably high proportion of the
probabilistic forecasts lie near the climatological forecast on
the reliability diagram.
[23] Often it is useful to have a single scalar measure

comparing the EPS against a reference forecasting system,

Figure 3. Reduction of variance (RV) for the ECMWF
and BMRC SCM twelve hour forecasts of TCC, valid at
0000 UTC. The crosses show the RV for the individual
ensemble members, and the circles show the RV for the
ensemble mean.
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such as climatology. The Brier score (BS) [Brier, 1950] and
Brier skill score (BSS) are frequently used for this purpose:

BS ¼ 1

n

Xn

i¼1

fi � oið Þ2 ð3Þ

BSS ¼ BSclimate � BS

BSclimate
ð4Þ

where n is the number of observations, fi is the forecast
probability of TCC exceeding 0.9, and oi is the observed
occurrence of TCC exceeding 0.9. oi is either 0 or 1, for
observed TCC less than 0.9 and observed TCC exceeding
0.9, respectively. The reference climatological forecast used
for the Brier skill score is simply the relative frequency of
occurrence of observed TCC greater than 0.9 during the
1999–2000 period. The Brier score and Brier skill score are
the probabilistic forecast equivalent to the mean square error
and reduction of variance scores defined in the previous
section.
[24] The Brier skill scores for the ECMWF and BMRC

ESCM TCC > 0.9 forecasts at Manus Island are �0.5 and
�1.2, respectively. For both models, the skill scores are
negative, suggesting the SCM forecasts are less skillful than
climatology. This is consistent with the results presented in
the previous section, which showed the ESCM mean TCC
forecasts were less skillful than climatology. Finally, as also
shown in the previous section, the BMRC ESCM is less
skillful than the ECMWF ESCM at predicting TCC > 0.9.

[25] The Brier score is sensitive to both reliability and
resolution of the forecasts [e.g., Wilks, 2006; Jakob et al.,
2004]. Sometimes it is informative to focus on the resolu-
tion of a forecasting system because this reflects the
potential skill of a perfectly calibrated forecasting system.
A useful tool for highlighting EPS resolution is the relative
operating characteristics (ROC) diagram [e.g., Mason,
1982; Harvey et al., 1992]. Forecasts with poor reliability,
but good resolution may still show good validation results
when a ROC diagram is used. On a ROC diagram, clima-
tological forecasts lie on the diagonal line from the bottom
left to top right corner. Forecasts which lie above this line
are considered to be more useful than climatology.
[26] Figure 5 shows the ROC curves for predictions of

TCC exceeding 0.9 at Manus Island, from both the
ECMWF and BMRC ensembles. Using this validation
technique, it is clear that both the BMRC and ECMWF
ESCM forecasts of TCC are more skillful than climatology.
A frequently used scalar score, based on the ROC diagram,
is the area beneath the ROC curve (ROCA). If ROCA
exceeds 0.5 (the area beneath the diagonal climatology
line), the forecasts are considered skillful. The ROCA
scores for both ensembles at Manus Island are 0.82; this
clearly indicates the skill of the ensembles compared to
climatology. It is interesting to note the ROCA for the
ECMWF and BMRC ESCMs is the same, yet the BMRC
model has a lower BSS. This suggests the resolution of both
models is similar, but the BMRC model is less reliable.
[27] While ROC diagrams are a useful tool for highlight-

ing the resolution of a forecasting system, they are insen-
sitive to reliability. For example, an error in a physical
parameterization may introduce a systematic bias which
affects the reliability but does not greatly affect the resolu-

Figure 5. ROC diagram for probabilistic forecasts of TCC
exceeding 0.9 for each of the SCM ensembles at Manus
Island.

Figure 4. Reliability diagram for 12 hour forecasts of
TCC greater than or equal to 0.9 from the ECMWF ESCM
at Manus Island. The forecasts are valid at 0000 UTC. The
size of the circles show the relative frequencies of forecasts
with probabilities of 0

16
; 1
16
. . . 16

16
. The cross represents

climatological forecasts. The shaded region indicates points
which make a positive contribution to the Brier score.
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tion of the forecast. A ROC diagram may not be able to
identify such errors. Therefore it is important to use ROC
diagrams in conjunction with reliability diagrams or other
scores which are sensitive to forecast reliability.

4. Cloud Regime Validations

[28] One weakness of the validations presented in the
preceding sections is that even though it is possible to
identify model errors (as distinct from errors caused by
uncertainty in the forcing data), it is difficult to ascertain the
physical causes of these errors. This is perhaps inevitable
because the validations cover a 2 year period, during which,
several different weather or climate regimes might be
expected to occur. Errors which may be present in one
particular weather or climate regime may be compensated,
or compounded, by errors at other times. A traditional
approach to overcome this problem is to perform case
studies and identify the situations when particular errors
occur. One difficulty with case studies is that there is a
degree of subjectivity in selecting the cases to validate. An
alternative approach is to objectively split the period being
studied into distinct weather or climate regimes, and per-
form validations for each regime [e.g., Tselioudis et al.,
2000; Norris and Weaver, 2001; Tselioudis and Jakob,
2002; Jakob et al., 2005].
[29] As discussed earlier, we are interested in studying

errors in model representations of moist and radiative
processes, particularly clouds. Therefore it is useful to study
the model behavior during periods when cloud regimes with
distinct characteristics are observed. For example, in the
tropics there is the possibility that different model errors
occur during convective regimes associated with large
amounts of deep cloud than in suppressed regimes with
relatively little cloud, or only thin, high cirrus. This study
makes use of the objective cloud regimes identified by
Jakob and Tselioudis [2003] for the tropical western Pacific
(TWP). Jakob and Tselioudis applied a clustering algorithm
to International Satellite Cloud Climatology Project
(ISCCP) cloud top pressure and optical thickness histo-
grams, derived from satellite data, to identify four distinct
cloud regimes which affect the TWP. The regimes included
a suppressed regime with shallow clouds (SSC), a sup-
pressed regime dominated by thin cirrus (STC), a convec-
tive regime with a small coverage of deep convective clouds
and high cirrus clouds (CC), and a regime dominated by
deep convective clouds and thick anvils (CD). Each of the
four cloud regimes were shown to have different thermo-
dynamic and radiative characteristics, suggesting that they
represent physically distinct weather or climate regimes
[Jakob et al., 2005].

4.1. Model Cloud Regimes

[30] An obvious first test is to see how frequently the
SCMs predict each of the four cloud regimes identified by
Jakob and Tselioudis [2003]. As mentioned above, the
observed regimes were derived from ISCCP histograms
which show the frequency of clouds of given combinations
of optical thicknesses and cloud top pressure [Rossow and
Schiffer, 1991]. To produce model ISCCP histograms, cloud
top pressure and optical thickness were first derived from
the 12 hour ESCM predictions valid at 0000 UTC, using the
ISCCP simulator code [Klein and Jakob, 1999; Webb et al.,
2001]. The ISCCP simulator used a maximum-random
cloud overlap assumption for the ECMWF predictions and
a random overlap assumption for the BMRC forecasts. The
resulting model ISCCP histograms were then classified
according to which of the four observed ISCCP regimes
they were closest to (using a Euclidean distance metric).
This procedure, which classifies the model ISCCP histo-
grams according to which observed ISCCP regime they are
closest to, has several advantages. First, it requires fewer
computational resources than the clustering algorithm which
Jakob and Tselioudis [2003] used to generate the observed
regimes. It also ensures that there are the same number of
model regimes as observed regimes, making comparison
between the model and observations easier. A possible
disadvantage of this procedure is that it forces the model
histograms into one of the four observed regimes, when in
fact the model predictions may be so different from obser-
vations that a different set of model regimes would be more
appropriate. For example, Williams et al. [2005] used the
KMEANS algorithm to cluster the simulated histograms in
the same manner as the observed histograms were clustered.
For some models, this resulted in a different number of
model-derived regimes than observed regimes. Neverthe-
less, the model regimes derived using the clustering method
were usually similar to the observed regimes. Therefore it
is anticipated that the simpler method adopted in this study
for classifying the simulated ISCCP histograms will not
adversely affect the results.
[31] Table 1 shows the relative frequency of occurrence

for the 0000 UTC observed and model-derived cloud
regimes at Manus Island and Nauru. It is notable that both
SCMs overestimate the frequency of the SSC regime and
underestimate the frequency of the convective regimes (CC
and CD). It is not clear why the model-derived cloud regime
frequencies differ from the observed frequencies. It is very
likely that errors in the model physics are partially respon-
sible for differing frequencies; this will be examined in
more detail in the next section. Another possibility is that
some of the differences are caused by deficiencies in the
forcing data. For example, the frequency of the STC regime
is underestimated at both Manus Island and Nauru by the
SCMs. It is possible that some of the high cirrus observed in
the STC regime originates from outside the model domain
and is advected over the site. The SCMs are unable to
model advected cloud because advective terms for cloud
condensate are not included in the forcing data sets.
4.1.1. Total Cloud Cover Validations
[32] The preceding section showed that both the ECMWF

and BMRC SCMs underestimated the frequency of occur-
rence of the STC, CC, and CD cloud regimes and over-
estimated the frequency of the SSC regime. Predicting the

Table 1. Relative Frequency of Occurrence, %, of the 0000 UTC

Observed and Model-Derived Cloud Regimes at Manus Island and

Nauru

Regime

Manus Island Nauru

Observed ECMWF BMRC Observed ECMWF BMRC

SSC 28.9 72.2 60.8 57.7 84.9 80.0
STC 46.1 15.6 32.1 33.4 13.3 19.2
CC 15.6 7.0 3.2 8.2 1.1 0.3
CD 9.4 5.2 4.0 0.7 0.7 0.5
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correct frequency of cloud regimes is a particularly stringent
test; the model has to correctly predict the cloud tops and
optical thicknesses, and their distribution in the grid columns.
Not withstanding the incorrect cloud regime frequencies, it is
interesting to investigate some other properties of the model-
derived cloud regimes. For example, when the model
‘‘thinks’’ it is in a particular cloud regime, are its predictions
of other variables consistent with what is expected from
observations? Tests such as these may be helpful in identify-
ing regime-dependent model errors.
[33] Figure 6 shows the observed and modelled TCC

PDFs at Manus Island and Nauru for each of the four cloud
regimes. To test if there is a significant difference between
the ECMWF and BMRC PDFs, the ECMWF and observed
PDFs, and the BMRC and observed PDFs for each cloud
regime, Kolmogorov-Smirnov (K-S) tests were applied. The
K-S test is a nonparametric test which can be used to test
whether two samples are drawn from different distributions
[Wilks, 2006]. The differences between the PDF means, and
whether the PDFs are drawn from different distributions, are
summarized in Table 2.
[34] Several points can be noted from Figure 6 and Table 2.

At Manus Island, for the complete period when the vali-
dations were performed, the median ECMWF TCC is
slightly higher than the median observed TCC, yet the
mean ECMWF cloud cover is considerably less than ob-
served. This is because the modelled total cloud cover
distribution is not symmetric, with large numbers of cloud
cover values near the extreme of 1. Importantly, the K-S
tests show the ECMWF and BMRC TCC distributions are
different for almost all the cloud regimes. The different
ECMWF and BMRC TCC distributions must be caused by
differences in the model physics because the forcing data

sets applied were the same. This highlights that the ESCM
technique is capable of identifying the influence of the
different model physics on the SCM predictions, a feature
that will be investigated further below.
[35] At Manus Island, most of the model error appears to

be associated with the SSC regime. As shown in Table 1,
both models predict this regime more than twice as
frequently as it is observed. For the other regimes, the mean
cloud cover is close to 1 for both the model predictions and
observations. For the non-SSC regimes, most of the differ-
ence between observations and predictions is in the spread
of the PDFs. The models almost always predict a TCC of 1,
whilst observations as low as 0.9 are reasonably common
for the CC and STC regimes.
[36] At Nauru, the SCMs underestimate cloud cover for

all the regimes. Furthermore, the model PDFs do not vary
much between the cloud regimes, though there is a clear

Figure 6. Box and whisker diagrams showing the TCC PDFs, for each of the observed and modelled
regimes at Manus Island (left) and Nauru (right). The dark grey bars show the observed 0000 UTC TCC
PDFs, while the light grey and white bars show the PDFs for the 12 hour ensemble mean forecasts of
TCC valid at 0000 UTC from the BMRC and ECMWF SCMs, respectively. The boxes show the median,
upper and lower quartiles. The whiskers show the 5th and 95th percentiles; the bold crosses show the
mean.

Table 2. Difference Between the TCC PDF Means for Each

Cloud Regimea

Regime

Manus Island Nauru

E-B E-O B-O E-B E-O B-O

CC �0.02 0.03 0.05 0.14 �0.38 �0.51
STC 0.01 0.07 0.06 0.19 �0.30 �0.49
CD 0.01 0.00 0.00 0.21 �0.40 �0.61
SSC 0.30 �0.08 �0.38 0.22 0.01 �0.21
All 0.15 �0.14 �0.29 0.20 �0.15 �0.35
aTCC is reported as a fraction between 0 and 1. Abbreviations are

E (ECMWF 12 hour predictions of TCC valid at 0000 UTC), B (BMRC
12 hour predictions of TCC valid at 0000 UTC), and O (TCC observed
at 0000 UTC). The nonitalic table entries indicate the K-S test showed the
PDFs were drawn from different distributions at the 95% significance level.
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difference between the ECMWF and BMRC models. Be-
cause the SCMs very rarely predict anything other than
suppressed conditions at Nauru (refer to Table 1), the
sample sizes for the active regimes are too small to draw
any conclusions about model performance in those regimes
from that site.
4.1.2. Radiative Properties of the Modelled Cloud
Regimes
[37] Validations of TCC have some limitations. For

example, Figure 6 showed that the models and observations
have a cloud cover of almost 1 for the CC, STC, and CD
regimes at Manus Island. While the agreement between the
model’s TCC predictions and observations is encouraging,
the TCC does not provide any information on the vertical
distribution of clouds or cloud thicknesses. Validations of
some of the SCM’s radiation predictions with observations

from the Manus Island ARM site can provide useful
additional information on how well the clouds are modelled.
[38] Figure 7 shows validations of outgoing long wave

radiation at the top of atmosphere (OLR), downwelling long
wave radiation at the surface (DLR), and downwelling
shortwave radiation at the surface (normalized by the
clear-sky shortwave radiation, SWd/SWc) The OLR obser-
vations were derived from the same satellite data set used
for the TCC observations; surface radiation observations
were made by radiometers at the ARM site. Estimates of the
clear-sky shortwave radiation were acquired using the
method of Long and Ackerman [2000] (the specific algo-
rithm is described by Long and Gaustad [2004]). It should
be noted that the SCM horizontal domain is predominantly
water, while the surface radiation measurements are made
from a land site, and may not be representative of the

Figure 7. Radiative properties of the observed (dark grey bars) and modelled (light grey bars: BMRC
SCM 12 hour ensemble mean predictions, white bars: ECMWF SCM 12 hour ensemble mean
predictions) cloud regimes. The top left panel shows the OLR at the TOA, the top right panel shows the
downward long-wave radiation at the surface, and the bottom panel shows the downwelling solar
radiation at the surface, normalized by the clear sky radiation. The normalized solar radiation shown in
the bottom panel have been restricted to lie within the 0–1 range; occasionally values slightly larger than
one occur due to differences between the modelled radiation data and the clear sky radiation data used for
normalization. Boxes show the median, lower and upper quartiles. The whiskers show the 5th and 95th
percentiles.
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domain. The magnitude of any land or topography effects
on the radiation measurements made at Manus Island is not
clear. McFarlane et al. [2005] found that island effects at
Nauru could affect downwelling solar radiation by as much
as 8–10% and downwelling long-wave radiation by 1–2%.
However, the ARM site at Manus Island is located on the
downwind side of the island, so it is hoped island effects
will be minimized.
[39] The ECMWF SCM appears to slightly underestimate

the OLR for the SSC regime, while the BMRC SCM
slightly overestimates it. In the case of the BMRC SCM,
the small overestimation of OLR is probably because the
model underestimates the TCC for the SSC regime. On
the other hand, the small underestimation of OLR by the
ECMWF model is possibly caused by the SCM producing
too much high cirrus, which compensates for the increased
OLR associated with the smaller cloud cover. This will be
examined in more detail later. In the case of the two
convective regimes (CC and CD), both SCMs predict
notably smaller OLR values than the observations. Since
both models and observations show a cloud cover of almost
1 for the convective regimes, the smaller predicted OLR
values are consistent with the models producing higher or
thicker cirrus than is observed.
[40] The ECMWF SCM overpredicts the DLR in all

regimes. Two possible explanations for overpredicting the
DLR are that the model predicts too much low cloud or too
much low level water vapor. Figure 8 shows the total
column water vapor predicted by the SCMs. For all cloud
regimes, both models either predict TCWV close to the
observed value or underpredict it. Therefore the likely
explanation for the ECMWF model overpredicting DLR is
that it predicts too much low cloud. This is borne out by the
results showing that the overprediction is greater in the
regimes where a lot of low clouds are present (CD and SSC)
and not as severe in the regimes where cirrus predominates
(STC and CC). In contrast, the BMRC SCM consistently
underpredicts the DLR, which is likely due to underpredict-
ing the low level cloud cover and water vapor.

[41] The final panel in Figure 7 shows the 0000 UTC
downwelling solar radiation at the surface, normalized by
the 0000 UTC clear sky downwelling solar radiation. The
ECMWF SCM underestimates the solar radiation during the
SSC regime. This is consistent with the DLR results which
suggested the ECMWF SCM produces too much low cloud.
In contrast, the BMRC SCM overestimates the solar radi-
ation during the CC and CD regimes, suggesting it is not
producing enough cloud.
4.1.3. Vertical Cloud Distribution
[42] The preceding section showed that it is possible to

infer some information about how well the SCMs model
clouds from the radiative properties of the model-derived
cloud regimes. It is also possible to directly validate the
model clouds with observations from millimeter wavelength
cloud radars, which are located at all the tropical ARM sites
[e.g., Mace et al., 1998; Jakob et al., 2004]. Data from these
radars are combined with other observations from the ARM
sites to produce the Active Remotely-Sensed Clouds Loca-
tions (ARSCL, Clothiaux et al. [2000]) product, which
includes, amongst other things, estimates of the vertical
cloud distribution.
[43] Figure 9 shows the observed and modelled cloud

profiles for 0000 UTC at Manus Island, both for the entire
period and sorted by cloud regime. The ECMWF SCM
overestimates the amount of high level cloud for all
regimes, and the BMRC model overestimates it for all
regimes except SSC. The overprediction of high cloud
cover for the convective regimes (CC and CD) is consistent
with the results showing both models underpredicted the
OLR for these regimes. Similarly, the overprediction of
cirrus by the ECMWF model for the SSC regime explains
the slight underprediction of OLR by the model for this
regime.
[44] It is interesting to note that only the ECMWF model

simulates the observed peak in cloud cover at the top of the
boundary layer (approximately 1000–2000 m). The vertical
profiles in Figure 9 also suggest that the ECMWF model
overestimates the thickness of these boundary layer clouds,
especially for the SSC regime. This is also consistent with
the earlier results, which showed a marked overestimation
of the DLR, and underestimation of solar radiation, by the
ECMWF model for the SSC regime.

5. Development of Modified SCM
Parameterizations

[45] As mentioned in the introduction, SCMs are useful
tools for efficiently testing GCM parameterizations. It is
obviously important that SCM evaluation methods, such as
the one presented here, are capable of detecting the effect of
modifications to the model’s physical parameterizations. In
the previous sections, a variety of validation techniques
were presented which could clearly identify differences
between the BMRC and ECMWF SCMs. However, the
influence of modifications to a single parameterization in an
SCM is likely to be more subtle, and hence more difficult to
detect, than the differences between two quite different
models.
[46] To test if the techniques presented in this paper can

indeed detect the effect of parameterization modifications, a
modified version of the ECMWF SCM was created. The

Figure 8. As for Figure 7, but for total column water vapor
(TCWV).
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ECMWF model uses the Tiedtke mass flux scheme for
cumulus parameterization [Tiedtke, 1989]. In the modified
SCM, the entrainment rate for penetrative convection was
doubled from 1 � 10�4 m�1 to 2 � 10�4 m�1. Doubling the
entrainment rate will have two effects: (1) it will increase
the mass flux in convective plumes and (2) it will increase
mixing between the plumes and the environment, thereby
reducing their buoyancy. The former effect will generate
more cloudy mass overall in the model. The latter effect is
anticipated to reduce the penetration depth of convection
and will probably result in clouds forming at lower levels
than in the unmodified model. We do not expect this
modification to represent an improvement to the cumulus
parameterization scheme, rather it is being used to test the
sensitivity of the ESCM validation techniques to modified
model physics.
[47] Table 3 compares the relative frequency of occur-

rence for the four cloud regimes in the modified and
unmodified SCMs. The observed frequencies are also
included for comparison. It is notable that the frequency
of deep convection (CD) is considerably less in the mod-
ified SCM, and there is a slight increase in the frequency of
the SSC regime. These results suggest deep convection is
weakened in the modified SCM, as expected.
[48] Figure 10 compares the vertical cloud profiles for the

modified and unmodified ECMWF SCMs. As noted earlier,
the average cloud profile during 1999 and 2000 is domi-
nated by the SSC regime. In the modified SCM, increased
midlevel cloud cover is predicted for most of the regimes, as

expected. Interestingly, when deep convection does occur
(albeit rarely) in the modified SCM, there is considerably
more cloud at all levels compared to the unmodified model.
This means that the convection is strong enough to over-
come the reduced buoyancy, and the effect of the extra
cloudy mass takes over.
[49] While the modification to the cumulus parameteri-

zation described here is somewhat contrived, it is encour-
aging to note that its effects are easily detected by the
ESCM validation techniques and were also expected from
physical considerations. While it would be interesting to
study the effect of parameterization changes being made to
the current operational GCMs, this poses several difficul-
ties. Importantly, the versions of the SCMs used in this
study are older than the current GCMs. Therefore it is not
clear if it is appropriate to test a parameterization being
modified for the latest version of the GCM in an older
version of the SCM. The use of the ESCM technique to test

Table 3. Relative Frequency of Occurrence (RFO), %, of the Four

Cloud Regimes at Manus Island in the Original andModified Versions

of the ECMWF SCM

Cloud
Regime

Original
ECMWF SCM

Modified
ECMWF SCM Observed

SSC 72.2 75.3 28.9
STC 15.6 11.4 46.1
CC 7.0 9.7 15.6
CD 5.2 3.6 9.4

Figure 9. Vertical cloud profiles at Manus Island. Observations are from 0000 UTC ARSCL (Active
Remotely Sensed Clouds Locations) data. The SCM profiles are averages of the 12 hour ensemble mean
forecasts valid at 0000 UTC during 1999 and 2000 for each regime.
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‘‘real’’ parameterization modifications to a current opera-
tional model will be the subject of later research.
[50] It should also be stressed there is no guarantee that

changes seen in the SCM as a result of parameterization
modifications will necessarily be seen in the full GCM,
where nonlinear interactions can occur with the surround-
ing grid point columns. It is therefore necessary to validate
the results in the full GCM before a particular modification
can be claimed to be beneficial. However, HJ05 showed
that the ECMWF ESCM produced similar results to the
full ECMWF model, at least for some solar radiation
validations.

6. Conclusions

[51] This study has described the use of the ESCM
technique of HJ05 for model evaluation. For this purpose,
a number of validation techniques which can be applied
to the ESCM method have been investigated. First, in
section 3, some simple validation techniques were applied
to ESCM runs at the ARMManus Island and Nauru sites for
the 1999–2000 period. They showed that the ESCM
method is consistently more skillful than single SCM runs.
In particular, the ESCM technique is insensitive to outliers
in the forcing data. This is important because when a single
SCM run is being evaluated, it is often difficult to know if
the forcing data being used are outliers or not. Indeed, even
when forcing data derived from observations are used, the
ESCM technique is probably beneficial. This is because

observed forcing data can contain significant uncertainties
resulting from instrument and sampling errors, such as
unresolved spatial variability within a radiosonde array
[Mapes et al., 2003]. The derivation and use of ensembles
of observed forcing data for the Darwin region (in Northern
Australia) during the Australian summer monsoon of 2006
is the subject of current research.
[52] A second advantage of the ESCM technique is that it

allows the use of a range of NWP ensemble validation
techniques, which cannot be applied to single model runs.
Section 3.2 investigated some of these ensemble validation
techniques, including the Brier score, reliability diagrams,
and ROC curves. Each of these validation methods were
able to highlight different aspects of the ESCM runs.
However, it is important to note that no one validation
method can fully assess the skill of a model. For example,
the ROC curves suggested the ECMWF and BMRC models
had similar resolution, yet the reliability diagrams and Brier
score highlighted that the ECMWF model was more reliable
than the BMRC model. The appropriate validation scores to
use depend, to certain extent, on the applications the SCMs
are being used for. From the perspective of improving or
developing new model parameterizations, both reliability
and resolution are important aspects of a forecasting system
which should be focused on.
[53] One difficulty with applying validations on model

runs from a complete 2 year period is that it is not possible
to determine if model errors are associated with particular
weather or climate regimes. Traditionally, case studies have

Figure 10. Comparison of vertical cloud profiles at Manus Island from the unmodified and modified
ECMWF SCMs. Observed profiles are included for comparison. The SCM profiles are averages of the
12 hour ensemble mean forecasts valid at 0000 UTC during 1999 and 2000 for each cloud regime.
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been used to investigate this. While case studies are useful,
they are potentially affected by subjectivity in the selection
of cases to validate. To overcome this difficulty, Jakob
[2003] suggested a method whereby model runs for objec-
tively determined cloud regimes are validated. Section 4.1
showed that this approach can be used with the ESCM
method. Both the ECMWF and BMRC SCMs produce
substantially lower frequencies for the TWP convective
regimes identified by Jakob and Tselioudis [2003] and
overpredict the occurrence of the suppressed SSC regime.
While the validations for the complete 1999–2000 period
show the SCMs underpredict the total cloud cover, this can
to a large extent be attributed to the overprediction of the
SSC regime. In contrast, for the convective regimes, the
SCMs produce substantially more high cloud than is
observed. Kolmogorov-Smirnov tests also showed that
statistically significant differences between the ECMWF
and BMRC predictions can be identified for all the TWP
cloud regimes. These differences must be caused by differ-
ences in the model physics because the same forcing data
were used for both ensembles. This is an important finding
because it highlights the ESCM is capable of identifying
errors caused by the model physics, apart from errors
associated with uncertainties in the forcing data.
[54] As discussed in the introduction, a major motivation

for using SCMs is as a framework for testing new or
modified parameterizations. Validations on a version of
the ECMWF SCM where the penetrative entrainment rate
was doubled showed that the ESCM technique can clearly
identify changes caused by the modified physics. Further-
more, in the simple example presented here, the influence of
the modified cumulus parameterization was as expected
from physical considerations. This suggests ensemble single
column modelling is a useful technique for testing modifi-
cations to parameterizations in a model. For future work, we
plan to use the ESCM technique to test a ‘‘real’’ parame-
terization modification in an operational model used within
the Bureau of Meteorology. This will be reported on in a
future publication.
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