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ABSTRACT

Observational data of rainfall from a rain radar in Darwin, Australia, are combined with data defining the

large-scale dynamic and thermodynamic state of the atmosphere around Darwin to develop a multicloud

model based on a stochastic method using conditional Markov chains. The authors assign the radar data to

clear sky, moderate congestus, strong congestus, deep convective, or stratiform clouds and estimate transition

probabilities used by Markov chains that switch between the cloud types and yield cloud-type area fractions.

Cross-correlation analysis shows that the mean vertical velocity is an important indicator of deep convection.

Further, it is shown that, if conditioned on the mean vertical velocity, the Markov chains produce fractions

comparable to the observations. The stochastic nature of the approach turns out to be essential for the correct

production of area fractions. The stochastic multicloud model can easily be coupled to existing moist con-

vection parameterization schemes used in general circulation models.

1. The cumulus parameterization problem

The representation of clouds and convection is ofmajor

importance for numerical weather and climate prediction.

Moist convection, also called cumulus convection, trans-

ports heat, moisture, and momentum vertically in the at-

mosphere; it influences dynamical, thermodynamical, and

radiative processes; and it has an impact on the large-scale

global circulation. In general circulation models (GCMs),

moist convection cannot be explicitly resolved since the

scale of the involved processes is too small; therefore, the

subgrid processes have to be represented by parameteri-

zations, which are formulations of the statistical effects of

the unresolved variables on the resolved variables. We

refer to Arakawa (2004) for an overview of the cumulus

parameterization problem. Formulating moist convec-

tion parameterizations is a difficult problem: it in-

troduces uncertainties in model predictions (e.g.,

Randall et al. 2003) and although models do agree that

the cloud feedback is positive or neutral, they do not

agree on the strength of the cloud feedback (e.g., Flato

et al. 2014). It has been shown by Lin et al. (2006) that

the intraseasonal variability of precipitation is generally

too small in models and that convectively coupled

tropical waves are not well simulated.

An important issue considering cumulus parameteri-

zations is that it is still not known which large-scale re-

solved variables are most strongly related to moist

convection and on which variables the closures of the

parameterizations should be based. In general we have
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the choice between dynamical (e.g., vertical velocity)

and thermodynamical [e.g., the convective available

potential energy (CAPE), relative humidity (RH)]

variables, which have been studied in a recent paper by

Davies et al. (2013a). Another important issue is that if

parameterizations are chosen to be deterministic func-

tions of the resolved variables, then the subgrid response

of moist convection to large-scale variations cannot

cover the variety of responses that is possible in reality, as

deterministic parameterizations can only provide the ex-

pected value of the response of moist convection in a grid

box. In view that GCM resolutions are getting finer and

finer, this issue becomes more important, because with

smaller grid boxes the fluctuations around expected sub-

grid responses become larger. Palmer (2001) pointed out

that neglecting subgrid variability can result in model er-

rors and that this can be corrected by using stochastic

parameterizations to represent subgrid processes. This

has been shown, for example, by Buizza et al. (1999),

who improved the skill of numerical weather prediction

(NWP) with the European Centre for Medium-Range

Weather Forecasts’s system by introducing stochastic el-

ements in the physical parameterization tendency. Their

pioneering work gave impulse to develop more sophisti-

cated stochastic schemes.

Instead of perturbing all subgrid processes at once, it

is possible to improve GCMs by introducing stochastic

elements only in the deep convection parameterization

(e.g., Lin andNeelin 2000; Lin andNeelin 2003; Teixeira

and Reynolds 2008; Plant and Craig 2008; Bengtsson

et al. 2013) or in the shallow convection parameteriza-

tion (e.g., Sakradzija et al. 2014).

Rather than relying on physical intuition or deriving

parameterizations from first principles, stochastic pa-

rameterizations can be inferred directly from data.

Crommelin and Vanden-Eijnden (2008) showed that

Markov chains, with only a few states, for which the

transition probabilities had been estimated from data,

could represent the subgrid terms in the Lorenz 96

(Lorenz 1996) model quite well, better than the deter-

ministic parameterizations and the stochastic parameter-

izations, based on autoregressive processes, of Wilks

(2005). The data-driven Markov chain model inspired

Kwasniok (2012) to develop a similar model based on

cluster-weighted Markov chains. In Dorrestijn et al.

(2013b) the Markov chain model of Crommelin and

Vanden-Eijnden (2008) was used to study stochastic pa-

rameterization of shallow convection and in Dorrestijn

et al. (2013a) it was used for deep convection.

A promising class of moist convection parameteriza-

tions based on the idea of evolving an ensemble of

several (convective) cloud types, inspired by Mapes

et al. (2006) and Johnson et al. (1999), is formed by

multicloud models (e.g., Khouider and Majda 2006;

Khouider et al. 2010; Majda et al. 2007; Frenkel et al.

2013; Peters et al. 2013). The clouds follow a life cycle

starting from clear sky to congestus clouds, to deep cu-

mulus towers with stratiform anvil clouds as a remnant

of the towers spreading over large areas, finally dis-

solving and coming full circle to clear sky. In the mul-

ticloud model of Dorrestijn et al. (2013a), shallow

cumulus clouds are also included.

In the present paper we use high-resolution (;2.5 3
2.5 km2) observational data of rainfall in combination

with data defining the large-scale (;150 3 150 km2)

dynamical and thermodynamical state of the atmo-

sphere to infer such a stochastic multicloud model. The

large-scale data are NWP analysis variable estimates

improved with observations. The model is similar to the

multicloud model of Dorrestijn et al. (2013a) in which

large-eddy simulation (LES) data was used to infer the

model, as opposed to the observational data of this

study. The multicloud model produces area fractions for

several cloud types that can be used as stochastic pa-

rameterizations in the deep convection and cloud

schemes of GCMs. We also determine which large-scale

variables are strongly related to deep convection.

In a late stage of the present study we became aware

of work on stochastic parameterization of deep con-

vection that is similar to our work (Gottwald et al. 2014,

manuscript submitted to Quart. J. Roy. Meteor. Soc.).

Their stochastic models inferred from large-scale ob-

servational data also yield convective area fractions.

Our paper is organized as follows. In section 2 we

explain how we use Markov chains as a foundation for

our multicloud model. Then, in section 3, we give a de-

scription of the observational data and explain how we

classified the data into cloud categories and how we dealt

with advection while estimating transition probabilities

between cloud states. In section 4 we assess the skill of

large-scale variables as indicators for deep convection.

In section 5 we construct our model, give expected area

fractions and standard deviations, and discuss scale ad-

aptivity (i.e., the ability to adapt to the size of a GCMgrid

box). We give results in section 6 by comparing area

fractions from the model with the observations and

looking at their autocorrelation functions. In section 7 we

discuss the possibilities of implementation of the sto-

chastic model in a convection parameterization of a GCM

and make some concluding remarks.

2. Markov chains

The multicloud model that we use in this study con-

sists of Markov chains positioned on the nodes of a two-

dimensional microgrid. This model setup has been
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used before in Khouider et al. (2010), Dorrestijn et al.

(2013a), and Peters et al. (2013). The state of each

Markov chain at time t is denoted Yn(t), where n is the

microgrid index. Each Yn can take on five different

values, corresponding to the following categories: clear

sky, moderate congestus, strong congestus, deep con-

vective, and stratiform. The choice of these specific

categories will be discussed in section 3. We will refer to

these categories as cloud types. As time evolves, the

Markov chains can switch, or ‘‘make a transition,’’ be-

tween states every Dt 5 10min. All the Markov chains

on the microgrid together determine the area fractions

sm for the various cloud types:

sm(t)5
1

N
�
N

n51

1[Yn(t)5m] , (1)

in which 1 is the indicator function (1[A]5 1 ifA is true,

0 otherwise), N is the number of microgrid nodes, and

m 2 {1, . . . , 5} is the cloud type. We use radar data to

estimate the transition probabilities, needed in the

Markov chain model.

When used in a GCM, each GCM column contains N

Markov chains that can switch to a different state every

10min, resulting in time-evolving area fractions sm for

each cloud type and for each GCM column. These area

fractions can be used in the convection and cloud

schemes of a GCM. For example, the deep convective

area fractions s4 can serve as amass flux closure at cloud

base for a deep convection parameterization scheme:

Mb 5 rs4wcb , (2)

in which r is the density andwcb is the vertical velocity in

a deep convective updraft at cloud base (e.g., Arakawa

et al. 2011; Möbis and Stevens 2012). More examples of

possible applications in GCMs are given in section 7.

As mentioned before, we use Markov chains with five

possible states, so that the transition probabilities form

a 5 3 5 transition matrix. Since these transition proba-

bilities depend strongly on the large-scale state of the

atmosphere, we make these probabilities conditional on

functions of large-scale variables (i.e., the variables that

are normally resolved by GCMs). These functions are

called indicators of deep convection. In section 4 we

discuss appropriate indicators. The framework of condi-

tional Markov chains (CMCs) for parameterization was

introduced by Crommelin and Vanden-Eijnden (2008).

For now, we consider a discretized indicator X, such

that the possible states of X correspond to a finite

number G of large-scale states. So, for each g 2 {1, . . . , G}
we estimate a 5 3 5 transition probability matrix. The

probability of CMCs switching from state a to state b

given the large-scale state g can be estimated as follows

[see also Crommelin and Vanden-Eijnden (2008)]:

Prob[Yn(t1Dt)5b jYn(t)5a,X(t)5 g]5
Tg(a,b)

�
b
Tg(a,b)

,

(3)

where

Tg(a,b)5 �
t,n

1[Yn(t1Dt)5b]1[Yn(t)5a]1[Xn(t)5 g]

counts the number of transitions observed in the data

from cloud type a to b given that the large-scale state is

g. The indices n and t run over space and time covered in

the training dataset, which is used to estimate the tran-

sition probabilities. We remark that we do not condition

the Markov chains on X(t 1 Dt), which reduces the

number of matrices to estimate significantly. For the

estimation of the transition matrices, we use datasets

corresponding to two different scales: datasets that are

formed by high-resolution observations of rainfall at

a scale that is equal to or smaller than the microgrid

scale of the CMCs and datasets that represent the large-

scale atmospheric state at the grid scale of aGCM. In the

next section we introduce the high-resolution observa-

tion datasets.

3. The radar data

The microscale data consists of observational data of

precipitation obtained from the Darwin C-band polari-

metric (CPOL) radar in Darwin, north Australia. These

data are described in detail in Kumar et al. (2013). In the

same article it is explained how the radar data can be

used to calculate cloud-top height (CTH) and rain rates.

For two time periods, 10 November 2005–15 April 2006

and 20 January–18 April 2007, we have integer-valued

CTH and rain-rate observations at 10-min time steps for

a circular area with a radius of 150 km and a resolution of

2.5 3 2.5 km2. In Fig. 1 we show a snapshot of the CTH

and the rain rates at one time instance. The fields are

rather noisy at the outer ring of the radar domain and the

radar does not give observations in the center of the radar

domain, which is known as the ‘‘cone of silence’’ and is due

to the 428 maximum elevation angle (May and Ballinger

2007). Therefore, we only use pixels between 25 and

97.5km from the center of the domain. This forms an

annular-shaped subdomain consisting of 4720 pixels of

2.5 3 2.5km2 corresponding to an area size of approxi-

mately 1723 172km2. Figure 2 contains histograms of the

CTH and the rain rates, showing the distribution of these

quantities. We consider CTH below 1.5 km as clear sky
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to avoid the influence of radar ground clutter. There is

a bimodal distribution of CTH, with a minimum at

around 4 km, which is close to the freezing level at 5 km.

To classify our cloud types, we use thresholds for CTH

to distinguish high clouds, low clouds, and clear sky. The

bimodal distribution in the cloud-top histogram suggests

a CTH threshold to distinguish low and high clouds (e.g.,

congestus and deep convective clouds) of around 4 or

5 km. Congestus clouds have been observed up to 9.5 km

in the atmosphere (Johnson et al. 1999). We adopt the

approach of Kumar et al. (2013), who developed a more

objective identification of congestus and deep convective

clouds, taking the value 6.5km as a threshold. Further, we

employ a rain-rate threshold tomake a distinction between

clouds with intense precipitation and those with little or no

precipitation. This enables us to make a distinction be-

tween deep convective clouds and stratiform clouds as well

as a distinction between strong and moderate congestus.

The rain-rate histogram in Fig. 2b shows an approximately

exponential distribution, so it is impossible to argue for an

obvious rain-rate threshold. In the literature thresholds for

partitioning convective and stratiform precipitation vary

between 10 and 25mmh21, and there are several methods

for partitioning that are described in Lang et al. (2003).We

choose a threshold of 12mmh21 to distinguish between

deep convective and stratiform clouds and a threshold of

3mmh21 to distinguish between moderate and strong

congestus. Combining these thresholds results in the fol-

lowing five cloud types: 1) clear sky, 2)moderate congestus,

3) strong congestus, 4) deep convective, and 5) stratiform.

In Table 1we summarize the classification into cloud types.

Note that, although desired, shallow cumulus clouds are

not included in the model for the obvious reason that the

rain radar does not observe nonprecipitating clouds.

After classification, we have two-dimensional fields

with discrete values (integers from 1 to 5). In Fig. 3 we

FIG. 1. (a) A snapshot of the cloud-top height derived fromDarwin

radar observations and (b) the corresponding rain rate.

FIG. 2. Histograms of (a) the cloud-top height and (b) the rain

rate observed with the Darwin radar in the periods November

2005–April 2006 and January–April 2007.
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give an example of a classified field, which is the classi-

fied field corresponding to the CTH and rain-rate fields

shown in Fig. 1. After the classification, the observed sm

values can be calculated according to (1), with Yn the

observed cloud type and N 5 4720 the number of radar

pixels in the annular domain. The observed area frac-

tions are strongly time dependent, with s1 (clear sky)

varying between 0% and 100%, s2 (moderate con-

gestus) between 0% and 55%, s3 (strong congestus)

between 0% and 2.5%, s4 (deep convective) ranging

from 0% to about 10%, and s5 (stratiform) ranging from

0% to about 99%. The observed fractions are discussed

in section 6 (depicted in Fig. 10) for a time period of 5

days for all cloud types and also the deep convective

area fraction (Fig. 7a) for a longer period of 3 months.

Besides calculating observed area fractions for the

different cloud types, the classified data are used to esti-

mate transition probabilities between the cloud types for

the CMCs, using (3). This is a key step in creating the

multicloud model. To give an idea of the observed tran-

sition probabilities, not yet conditioned on the large-scale

variables, we give the estimated transition matrix:

M̂5

0
BBBBB@

0:8987 0:0668 0:0006 0:0011 0:0329

0:4147 0:4707 0:0033 0:0026 0:1086

0:2563 0:2686 0:2177 0:0545 0:2029

0:1757 0:0284 0:0124 0:4295 0:3540

0:1185 0:0779 0:0010 0:0091 0:7935

1
CCCCCA
.

The probability of a transition from cloud type m to

cloud type n can be found in the nth column of row m.

For example, the probability that a deep convective

pixel will be assigned to stratiform 10min later is 0.3540.

The probability that a deep site is again a deep site

10min later is 0.4295—much larger than the expected

deep convective area fraction (at most 0.03 as can be

seen Fig. 6, discussed later in this paper). This is com-

parable to the deep-to-deep transition probability of

0.5602 estimated from the LES dataset of Dorrestijn

et al. (2013a). Most remarkable is that the stratiform

decks in the LES data tend to dissolve faster than ob-

served in the radar data. The transition probability for

stratiform to stratiform is estimated 0.2266 in LES, as

opposed to 0.7935 observed in the radar data. Some

evidence for the life cycle can be seen in the transition

matrix—a deep convective cloud likely turns into strat-

iform, which turns into clear sky. Some entries are ar-

tifacts of the estimation method—for example, the

probability of clear sky turning into stratiform is 0.0329,

but in reality the stratiform cloud spreads out from the

top of a deep cumulus cloud.

For correct estimation of cloud-type transition prob-

abilities, we have to take into account that clouds are

advecting horizontally through the domain. To do this,

we translate the advected clouds in a radar image back

to their position in the previous image. In this way, we

minimize transitions that are only a result of advection.

The advection, with zonal wind u and the meridional

wind y is assumed to be a function of height and time

only. We calculate this translation separately for every

cloud type (as they are located at different heights in the

atmosphere). LetZm(xi, yj, t)5 1[Y(xi, yj, t)5m], withY

(xi, yj, t) the discretized radar pixel at location (xi, yj) at

time t and (xi, yj) running over allNij5 4720 pixels in the

annular-shaped subdomain. We calculate for every

cloud type m and for every time interval [t, t 1 Dt] the
optimal horizontal displacements umDt and ymDt, which
maximize the correlation

1

Nij

�
ij
Zm(xi, yi, t)Zm(xi1 umDt, yj 1 ymDt, t1Dt) .

By applying the correlation theorem (e.g., Press et al.

1992), fast Fourier transforms can be used to reduce the

calculation time for finding the displacements. At the

boundaries at the outer edge and in the center of the radar

TABLE 1. Cloud-type classification using thresholds for the cloud-top

height and the rain rate.

CTH (km) Rain rate (mmh21) Classification

$6.5 #12 Stratiform (m 5 5)

.12 Deep convective (m 5 4)

2[1.5, 6.5) .3 Strong congestus (m 5 3)

#3 Moderate congestus (m 5 2)

,1.5 0 Clear (m 5 1)

FIG. 3. Example of radar data assigned to the categories clear

sky, moderate congestus, strong congestus, deep convective, and

stratiform, corresponding to the CTH and rain-rate snapshots of

Fig. 1.
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domain, clouds flow into and out of the domain. We also

have to account for this during the estimation of cloud-

type transition probabilities. More specifically, we do

not count transitions of ‘‘clouds’’ (including clear sky)

that are inside the radar domain at time t but outside the

domain at the previous time step t 2 Dt or at the next

time step t 1 Dt owing to advection. Without correc-

tions, the estimated probability transition matrix is sig-

nificantly different: for example, the probability that

a pixel assigned to the deep convective cloud type is

deep convective 10min later would be estimated at 0.29

instead of 0.43.

The focus in this paper will primarily be on the deep

convective area fractions, when we determine the large-

scale variable onwhich to condition the CMC (section 4)

and when we test the CMC (section 7). Although the

other fractions can have applications in GCMs, the

deep convective area fractions are the most impor-

tant. Describing the convective transport by deep

convection accurately is crucial for a GCM to work

properly. Conditioning each individual cloud type on

different large-scale variables could improve the

model—in particular, for the strong congestus clouds

that precede deep convection.

4. The large-scale data

We have data available that define the large-scale

dynamic and thermodynamic state of the atmosphere

around Darwin for the time periods November 2005–

April 2006 and January 2007–April 2007 for which we

also have the radar data. The large-scale fields are av-

erages over 6-h intervals and have a vertical resolution

of 40 pressure levels, from ground level to about 20-km

altitude. The data have been prepared by Davies et al.

(2013a), who used a variational analysis method to im-

prove NWP analysis large-scale variable estimates by

constraining the moisture budgets with observational

rain data from the CPOL radar. The large-scale data are

also used in Davies et al. (2013b), Peters et al. (2013),

and Gottwald et al. (2014, manuscript submitted to

Quart. J. Roy. Meteor. Soc.). Here, we use the data to

investigate which large-scale variables are suitable in-

dicators for the convective state of the atmosphere and

compare our findings with the results of Davies et al.

(2013a). Then, we will use the large-scale data accord-

ingly for conditioning the multicloud CMCmodel. As in

Davies et al. (2013a), we consider thermodynamical and

dynamical variables. In particular, we will consider the

following well-known indicators: CAPE, the mean ver-

tical velocity hvi, and RH. CAPE is a measure for the

stability of the atmosphere and is formally defined as

follows:

CAPE :5Rd

ðp
LFC

p
NB

(Ty,p2Ty) d lnp ,

in which Ty,p is the virtual temperature of an undiluted

parcel, Ty is the virtual temperature of the environment,

Rd is the gas constant of dry air, pNB is the level of neutral

buoyancy, and pLFC is the level of free convection (e.g.,

Siebesma 1998). We define the mean vertical velocity as

hvi :5 1

p02 p*

ðp
0

p*
v(p) dp ,

in which v is the large-scale vertical velocity (hPa h21),

p0 is the pressure at the surface, and p* is the pressure

level 340 hPa, chosen because the resulting hvi gives the
highest correlation with deep convective area fractions

[as calculated with (4), which is given below]. We find

that the vertical integral over v gives higher correlations

than v at a single pressure level. Further, the relative

humidity is chosen at pressure level 640 hPa, also be-

cause it gives the highest correlation with deep convec-

tive area fractions. To assess how well an indicator

correlates with deep convection, we calculate the time-

lagged cross-correlation function (CCF) of the indicator

and the deep convective area fraction.

Given the time series of the deep convective area

fraction s4(t) and the time series of the indicator X(t),

the normalized CCF of X(t) and s4(t) is

CCF(t)5

ð‘
2‘

~X(t1 t)~s4(t) dt (4)

with ~X(t)5 [X(t)2mX ]/sX (i.e., the indicator normal-

ized by subtracting its mean mX and dividing by its

standard deviation sX), ~s4 defined analogously, and t

the time lag of X with respect to s4. As such, the CCF

lies in between 21 and 1. If the maximum value of the

CCF is attained at positive t, X(t) tends to follow rather

than precede deep convection.

In Fig. 4 we plot the CCFs of the indicators 2hvi,
CAPE, and RH with the observed deep convective area

fraction for the 2005/06 period. The figure for the 2007

period is similar (not included). Before calculating the

CCF, we linearly interpolate X to get its values every

10min instead of every 6 h, because the sequencesX and

~s4 must have the same length. We see that hvi has

a larger correlation at zero time lag than CAPE andRH.

Moreover, also for negative time lags of a few hours this

correlation is higher. In this respect hvi is the best in-

dicator of deep convection. We note that the maximum

correlation of hvi with s4 is attained at a positive time

lag. This may seem to indicate that hvi is an effect rather
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than a cause of deep convection. However, this is a

subtle issue, as hvimay also both be a trigger (i.e., cause)

of deep convection and be reinforced by it, so that sep-

arating cause and effect becomes difficult. In Peters et al.

(2013) a related discussion can be found. For large-scale

moisture and temperature advection, we found correla-

tions comparable to the correlation for hvi (not included
in Fig. 4).

To use an indicator for constructing theCMCaccording

to (3), it must be discretized into a finite number of states.

If only one indicator is used, which is the case in this paper,

a finite number G of intervals can be chosen, defined by

thresholds. If a combination of several indicators is used,

one can choose thresholds for each indicator separately or

use a clustering method as in Dorrestijn et al. (2013b,a)

and Kwasniok (2012). To give an example, in Fig. 5 we

show a histogram of hvi discretized using 25 intervals.

These intervals have been found by using the k-means

cluster method (MacQueen 1967; Gan et al. 2007), which

minimizes the distance between the hvi values and the

centers of the intervals. Using equidistant intervals is also

an option; however, since the hvi values are not distrib-

uted uniformly, we prefer the nonequidistant intervals

found by k means. Interval number 25, corresponds to

negative hvi or strongly positive large-scale vertical ve-

locity (illustrated by the arrow), which is favorable for

deep convection, and we will later see in Fig. 6 that the

averaged observed deep convective and stratiform area

fractions are large (around 3% and 90%, respectively) for

interval number 25.

5. A description of the multicloud model

Having classified the radar data into cloud types, and

having identified (and discretized) a suitable large-scale

indicator hvi, we estimate the transition probability

matrices of the CMC using (3). We take the period from

10 November 2005 to 15 April 2006 as the training

dataset, and we set G 5 25. So, we have to estimate 25

matrices each of size 5 3 5, giving 625 parameters in

total. This may seem a large number; however, the

training dataset is very large, containing O(108) obser-

vations of transitions (radar images at 10-min intervals

during 157 days, with 4720 pixels in each image).

In section 6 we will validate the CMCs with the test

dataset, but since we have estimated transition matrices,

we can already get some insight into the statistical

properties of the cloud-type area fractions generated by

the CMC as compared to the observed area fractions in

the training dataset.

In Fig. 6, we plot the expected fractions and the

standard deviation for both the observations and the

CMC as a function of the hvi intervals seen before in

Fig. 5. The expected values of the CMC correspond to

the invariant distribution of the transition matrix for

each hvi interval. The CMC expected values are almost

equal to the observational expectations for all cloud

types; the small differences can be ascribed to the way

that we corrected for horizontal advection (as described

before in section 3).

We see in Fig. 6a that the expected deep convective

area fractions increase with increasing hvi interval (cor-
responding to increasing upwardmean vertical velocities)

and the area has its maximum of around 0.03 for interval

number 24. Further, the strong congestus fractions in

Fig. 6b increase with increasing hvi interval; however, for

FIG. 4. Cross-correlation functionsof thedeep convective area fraction

with2hvi, CAPE, and RH at 640hPa for the 2005/06 dataset.

FIG. 5. Histogram of the 25 intervals of2hvi, found by clustering
the linearly interpolated hvi values. The first and last (twenty-fifth)

intervals are open on one side. Because v is a velocity in terms of

pressure, positive hvi corresponds to downward mean large-scale

motion and negative hvi corresponds to upward mean motion (as

illustrated by the arrows).
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interval numbers larger than 22, the fraction decreases

rapidly, while expected deep and stratiform cloud frac-

tions keep increasing. The expected stratiform fractions

increase with increasing hvi interval up to very high ex-

pected values of 90%. The expected value of moderate

congestus is around 15% for downward mean motion and

increases slightly with increasing hvi interval number. For

hvi interval numbers above 22, the expected value of

moderate congestus decreases, which is caused by the

stratiform decks that are dominating the radar domain

(for these hvi interval numbers). Expected clear-sky frac-

tions decrease rapidly as a function of the hvi interval.
The standard deviation of the observational deep

convective area fractions tends to increase with in-

creasing hvi interval number, so it tends to increase if

the expected value increases and for high values of the

hvi interval number the standard deviation is almost

equal to the expected value. The standard deviation of

the observational strong congestus area fractions de-

pends on the expected values as well. The standard de-

viation of the observational stratiform area fractions

tends to increase as a function of the hvi interval but

decreases if the expected values become very large be-

cause of the upper bound of 100%. For moderate con-

gestus, the standard deviation ranges between 0.5 and 1

times the expected values. The standard deviation of the

observed clear-sky area fraction is around 10%–20%,

independent of the hvi interval number, with an ex-

ception of interval number 25 for which the standard

deviation is only 2.4%.

The standard deviation of a cloud-type area fraction

sm that is produced by N CMCs is defined as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E[(sm 2E[sm])

2]

q
,

in which E is the expectation. One can derive that this is

equal to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N21p(12 p)

p
, in which p 5 E[sm] is the ex-

pected value of the fraction. Note that E[sm] is de-

pendent on hvi. So, the theoretical standard deviation

depends only on the expected value of the fraction and

the number of CMCs used to calculate the cloud type

area fractions. We choose a value of N 5 100 such that

the standard deviation of the deep convective area

FIG. 6. Observational mean cloud-type area fractions as a function of the hvi intervals for the 2005/06 training period (solid line with

circles) plus and minus the standard deviation (dashed–dotted line) and the CMC expected cloud-type area fractions (solid line) plus and

minus the standard deviation while using N 5 100CMCs (dashed line). Note the different scalings on the y axes.
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fractions is comparable to the standard deviation of the

observed deep convective area fractions in the training

dataset. This implies that the standard deviation of the

fractions produced by the CMCs is too small for cloud

types with larger observed standard deviations (clear

sky, moderate congestus, and stratiform) and too large

for the strong congestus cloud type (which has a small

observed standard deviation).

For the observational deep convective area fractions,

the normalized standard deviation—the standard devia-

tion divided by the mean—is decreasing with increasing

mean, with values decreasing from 5 down to about 1. So,

we agree with the conclusion of Davies et al. (2013a) that

noise (or stochastic behavior) decreases as a function of

increasing forcing. This is also the case for the observa-

tional strong congestus area fractions, with a normalized

standard deviation ranging from 1 (for relatively high

fractions) up to 3 (for relatively low fractions).

Scale adaptivity

Ideally, a parameterization of deep convection should

be adaptive to the size of theGCMgrid box; seeArakawa

et al. (2011). By construction of themulticloudmodel, our

parameterization of deep convection is indeed scale

adaptive. The value N of the number of CMCs can be

adapted to the horizontal grid spacing of the GCM. For

a large size of the GCM grid box, a large number of

clouds fit into the model column and therefore a large

number of CMCs should be taken to calculate the cloud-

type area fractions. For very large GCM grids, the num-

ber of CMCs becomes very large and hence the sm tend

to a deterministic limit (equal to the expected values

associated with the large-scale interval number). For

smaller gridbox sizes, the number of CMCs is smaller

and, as a result, the area fractions generated by the

multicloud model will be ‘‘more stochastic,’’ fluctuating

significantly around their expected values. It is difficult to

say to which horizontal size a CMC corresponds exactly.

The size corresponding to a CMC is equal to the typical

horizontal size of the cloud type under consideration.

Therefore, the horizontal size is larger than the area of

a radar data pixel (2.5 3 2.5 km2), which explains that

producing area fractions with CMCs while using a num-

ber smaller than the number of radar pixels in the radar

domain gives better results in section 6, N 5 100 versus

N 5 4720. We emphasize that the value of N 5 100 is

found during the training phase and not during the testing

phase of the model.

6. Results

To assess how well the multicloud model reproduces

the convective behavior observed in the radar dataset,

we first consider the cloud-type area fractions. Then, we

will look at autocorrelation functions (ACFs) of the

fractions and hvi.
a. Area fractions

As mentioned, the radar data can be used to calculate

observed area fractions of each cloud type.Weuse hvi as
indicator and take N 5 100CMCs. Then, we train the

CMCs as explained in section 5 using the training dataset

2005/06. We assess the model by driving the CMCs with

hvi as observed in the other dataset (from 2007). Thus,

different datasets are used for training and evaluation.

In Fig. 7a we show the deep convective area fractions

as observed in the Darwin radar test dataset (2007). It

can be seen that the deep convective events are very

intermittent in the radar data, with periods of enhanced

deep convection, periods with less widespread convec-

tive events, and the deep convective area fraction is

exactly zero in 52% of the 10-min intervals. In Figs. 7b

and 7c we give two realizations of the deep convective

area fractions as reproduced by the CMCs. The CMC

fractions display similar intermittent behavior, with

maximum values that are slightly too high compared to

the observations. The CMC fractions have discrete

values, namely s4 2 {0, 0.01, 0.02, 0.03, . . .}, becauseN5
100CMCs are used. To further assess the quality of the

deep convective fractions, we calculate histograms of the

deep convective area fractions (Fig. 7d). Since the CMC

fractions are integer multiples of 0.01, we bin the Darwin

observed fractions into intervals of length 0.01, apart

from the first interval, which is [0, 0.005). Because high

values of the deep convective fractions are rare, we plot

the histograms on a logarithmic y axis. We observe that

the observational fractions decrease exponentially, as is

expected since rain rates tend to decrease exponentially

(see Fig. 2). The CMC fractions follow the exponential

decrease well and the values are only slightly off.

We repeat the computations with CAPE as indicator

instead of hvi. In Fig. 8a we show the resulting CMC

deep convective area fractions (cf. Fig. 7a). We observe

that the fractions are also intermittent, but high fraction

values are too rare. Further, although periods of en-

hanced convection and of less convective events are

visible, they are not comparable with the observations.

In the histograms with a logarithmic y axis (Fig. 8b), it is

indeed visible that fractions larger than 0.04 are too rare,

although a fraction of 8% is reached in 1 of the 100 re-

alizations. We conclude that in the present setting

CAPE is less suitable as indicator for deep convection

than hvi.
As our third experiment, we use hvi again as indicator

and keep everything as in the first experiment except for

takingN5 6925 4761, which is (close to) the number of
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radar pixels used to train the CMCs.We observe (Fig. 9)

that high values of the deep convective area fractions are

not reached anymore—values are not higher than 0.04.

Because N is much larger than before, the fractions are

rather close to the (deterministic) expectation values.

This means that, although the number of CMCs is equal

to the number of radar lattice sites, the CMC fractions

show lower maxima. We note that in our current setup

the CMCs on the 2D microlattice sites are independent

of their lattice neighbors, which is not the case for the

sites in the radar data. This is the underlying cause of the

lower CMC maxima. Introducing local interactions be-

tween neighboring CMCs can improve this, but it makes

the estimation of theCMCsmuchmore complicated; see

Dorrestijn et al. (2013a) and Khouider (2014).

As a final experiment we take again N 5 100CMCs

and hvi as indicator, but we interchange the roles of

training dataset and test dataset. Thus, we train the

CMCs with the 2007 dataset and validate using fractions

for the 2005/06 period. The deep convective area frac-

tions in the 2005/06 radar data reach highermaxima than

in the 2007 dataset, with an overall maximum of about

10% (not shown). The fractions of the CMCs are less

likely to attain these highest peak values. Notwith-

standing this issue, the distribution of the CMC fractions

is still comparable to that of the observed fractions.

For a more detailed look at the fractions, in Fig. 10 we

show the area fractions of all five cloud types corre-

sponding to the first experiment (with N 5 100 and hvi
as indicator) for a much shorter period of 5 days. The

timing of the deep convective events produced by the

CMCs is almost correct, although there is a small time

lag visible in Fig. 10a. Furthermore, it is clear that the

deep convective fractions of the CMC show maximum

values of the peaks in agreement with the observations,

which is not the case for the expected values of the

CMC. The conclusion is that the stochastic fluctuations

of the multicloud model fractions are needed in order to

produce the correct maximum values of the deep con-

vection area fraction peaks. The stochastic nature of the

approach is essential for production of the correct area

fractions. A day–night cycle can be seen in the deep

FIG. 7. (a) Deep convective area fractions observed in Darwin, (b),(c) two realizations of deep convective area

fractions produced byN5 100CMCs conditioned on hvi, and (d) the corresponding histograms comparing the CMC

fractions (averaged over 100 realizations) with the observed fractions (binned into intervals) on a logarithmic y axis.
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convective fractions, owing to the presence of land in the

radar domain. This cycle is also present in the CMC

fractions.

The strong congestus fractions in Fig. 10b are small, so

the CMC fractions, being integer multiples of 0.01, have

difficulties attaining the observational fractions. So,N5
100 seems to be too small for the strong congestus area

fractions. In Fig. 10c, we see stratiform area fractions.

The CMC fractions follow the observations correctly (in

a time sense), but the local maxima tend to be too low.

The stochastic part of the fractions is not as prominent as

for the deep convective area fractions. The observa-

tional moderate congestus fractions in Fig. 10d are dif-

ficult to follow for the CMCs: the value zero is never

attained for the CMC fractions. A conclusion is that hvi

is not such a good indicator of moderate congestus

clouds. These depend probably more on boundary layer

processes. The clear-sky fractions (Fig. 10e) of the CMC

follow the observations quite well, but the minimum

values are not small enough. The clear-sky fractions are

important, as 1 2 s1 is the cloud cover observed by the

radar, which is a usable quantity inGCMs; however, keep

in mind that the radar is not able to detect all clouds.

b. Autocorrelation functions

As a final assessment in this paper, we inspect ACFs of

the cloud-type area fractions and hvi. The ACF of sm is

ACF(t)5

ð‘
2‘

~sm(t1 t)~sm(t) dt , (5)

FIG. 8. Deep convective area fractions produced by N 5
100CMCs conditioned on CAPE and (b) the corresponding his-

tograms in which the CMC fractions (averaged over 100 re-

alizations) are compared to the observed fractions (binned into

intervals) on a logarithmic y axis.

FIG. 9. Deep convective area fractions produced by N 5 692

CMCs conditioned on hvi and (b) the corresponding histograms of

the binned CMC fractions averaged over 100 realizations com-

pared to the binned observed fractions on a logarithmic y axis.
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which is the CCF of ~sm with itself [cf. (4)]. Recall that ~sm

is the normalized sm. The ACF of hvi is defined anal-

ogously. A main advantage of using Markov chains in-

stead of drawing samples that are uncorrelated in time

from the observed distribution of cloud types is that

a Markov process should be better capable of capturing

the observedACF. In Fig. 11 we show normalized ACFs

of the observed area fractions (solid line with stars), the

CMC area fractions with N 5 100 conditioned on hvi
(solid line) and on CAPE (dashed line), and the ACF

corresponding to 692 CMCs conditioned on hvi (dotted
line) for deep convective (Fig. 11a), strong congestus

(Fig. 11b), stratiform (Fig. 11c), moderate congestus

(Fig. 11d), and clear sky (Fig. 11e). Also the ACF of hvi
is shown (dashed–dotted line). In Fig. 11a we see that,

apparently, the ACF of the deep convective area frac-

tions produced by N 5 100CMCs decreases too rapidly

initially. Without the correction for advection as ex-

plained in section 3 the ACF decreases even more rap-

idly (not shown). The rapid initial decrease indicates

that the probability of a transition from deep to deep is

estimated too low. We see that the daily cycle is well

captured in the case that we conditioned on hvi. When

CAPE is used as indicator the ACF decreases more

rapidly than when conditioned on hvi and it can be seen

that the daily cycle is not captured. The ACF for the

observational dataset of 2005/06 is similar to the ACF

for the 2007 dataset (not shown). We note that for

a large number of CMCs, close to the deterministic limit,

the ACF follows the ACF of hvi almost perfectly. In

Fig. 11b, we see that in order for the CMCs to follow the

observational strong congestus ACFs, the N 5 69 3 69

performs better than theN5 102. In Figs. 11c and 11ewe

see ACFs of the CMC, which are comparable to the

observational ACF only if conditioned on hvi and not if

conditioned on CAPE. The presence of a daily cycle in

the fractions is clearly visible if conditioned on hvi ex-
cept for strong congestus fractions produced with N 5
100CMCs. Considering all ACFs, we conclude that the

ACFs for CMCs conditioned on hvi are better than if

conditioned on CAPE (except for moderate congestus).

For N5 100, the ACF of deep convection is better than

for N 5 692, while this is not the case for strong con-

gestus and moderate congestus. For stratiform and clear

FIG. 10. Area fractions of (a) deep convective, (b) strong congestus, (c) stratiform, (d) moderate congestus, and (e) clear sky observed in

Darwin (dashed line), produced by 100CMCs (solid line) conditioned on hvi, and the corresponding expected area fractions of the CMCs

(dashed–dotted line) for a period of 5 days. Note the different scalings on the y axes.
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sky, the number of CMCs does not strongly influence the

ACFs. The deep convective, strong congestus, and mod-

erate congestus fractions are small and intermittent for the

CMC with N 5 100, which results in nonsmooth ACFs.

7. Discussion and conclusions

In this study we constructed a stochastic multicloud

model from observational radar data inDarwin, Australia,

combined with large-scale data representing the atmo-

sphere around Darwin. The multicloud model consists of

CMCs switching between different cloud types (moderate

congestus, strong congestus, deep convective, and strati-

form clouds and clear sky), which is a model setup similar

toKhouider et al. (2010) andDorrestijn et al. (2013a). The

model is able to reproduce cloud-type area fractions

comparable to the observational fractions (especially for

the deep convective area fractions, on which we pri-

marily focused). The vertically averaged large-scale

vertical velocity hvi was found to be a good indicator,

whereas CAPE and RH are found to be less suitable

indicators. This is in agreement with the findings of

Davies et al. (2013a).

The numberN of CMCs used to form cloud-type area

fractions was shown to be an important parameter of the

model: for moderate values of N, the model shows sig-

nificant stochastic fluctuations and the model is able to

produce area fractions comparable with the observa-

tional fractions. For large values ofN, the model is more

deterministic and unable to reproduce fractions well.

The stochastic nature of the model is essential for making

the fractions comparable to the observations. Further, by

changing N, the multicloud model can be adapted to the

horizontal scale if implemented in a GCM, providing

a way to make the parameterization scale adaptive. This

makes the model suitable for GCMs using nonuniform

grids. Further, the model can be used as a start for GCMs

reaching grid sizes that fall in the gray zone—that is, for

grid sizes so small that subgrid convective flux terms are

of the same order as the resolved flux terms (e.g., Yu and

Lee 2010; Dorrestijn et al. 2013b).

In the gray zone, besides the problem that the fluxes are

partly resolved andpartly unresolved, the unresolved fluxes

have a large standard deviation (Dorrestijn et al. 2013b).

The stochastic multicloud model can produce stochastic

fluctuations, resulting in a large standard deviation for the

FIG. 11. Normalized ACFs of the observational area fractions (solid lines with stars), the CMC area fractions withN5 100 conditioned

on hvi (solid lines) and on CAPE (dashed lines), and the ACF corresponding to 692 CMCs conditioned on hvi (dotted lines) for the cloud

types (a) deep convective, (b) strong congestus, (c) stratiform, (d) moderate congestus, and (e) clear sky. Also the ACF of hvi is shown
(dashed–dotted lines).
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unresolved fluxes, which are difficult (or impossible) to

produce with a deterministic model. Another advantage

of using a multicloud model with a life cycle is that it will

produce cloud-type area fractions that are compatible

with each other in case of large fluctuations. If the hor-

izontal grid size is large, then the life cycle is not very

important and a large number of Markov chains N can

be used such that the model becomes effectively a de-

terministic model (expected area fractions can be used

instead). Still, even then the multicloud model can be

useful since the expected area fractions (that depend on

the large-scale state) are directly inferred from obser-

vational data and can be used in the cumulus parame-

terizations. With this deterministic version of the

multicloudmodel, we have a tool to examine directly the

influence of the stochastic aspect of the model in

a GCM. Obviously, for grid resolutions for which moist

convection can explicitly be resolved our model is not

useful. However, it will take a long time before global

climate models can do runs with such fine resolutions.

The horizontal size to which a CMC corresponds is

not clearly determined. In principle it corresponds to the

horizontal size of the cloud type under consideration,

which is different for all cloud types. Using a different

number of CMCs for each cloud type is an option, but it

is complicated and lies out of the scope of this research.

During the training process, we arrived at a value ofN5
100. This value was chosen because of the comparable

standard deviations between model and observations. If

local interaction is introduced for the CMCs, then

a larger number of CMCs can be chosen while keeping

a sufficiently large standard deviation (Dorrestijn et al.

2013a).

The fractions produced by the multicloud model de-

pend on the thresholds of Table 1 that are used for the

classification of the clouds in the radar data. If, for ex-

ample, the threshold for rain rate is put from 12 to

25mmh21, the observed cloud-type area fractions

change. The fractions produced by the CMCs con-

structed using the higher threshold also change. The

CMC expected area fractions are then close to the new

observational means and the same holds for the stan-

dard deviations. We conclude that the multicloud model

is sensitive to the thresholds in the same way as the

classification is sensitive to it.

The interaction of deep convection and the mean

vertical velocity is a two-way interaction. If deep con-

vection is triggered, then it initiates a feedback system. It

causes convergence of air, which in turn changes the

mean vertical velocity. This convergence of air will

cause more deep convection. In Fig. 4, we see that hvi
and the deep convective area fraction attain maximum

cross correlation for positive time lag, suggesting that

hvi can be seen more as an effect than a cause of deep

convection. However, this correlation is already high for

negative time lag and at time lag 0 the deep convective

area fraction correlates well with hvi—better than with

CAPE or RH. Therefore, we argue that hvi can be used

to condition the Markov chains. In a GCM the deep

convective area fractions are only used as a closure of

the mass flux at cloud base as described in (2) in section

2. In addition to the closure, every parameterization of

deep convection further consists of a trigger function,

usually based on instability and/or humidity criteria, as

well as a cloudmodel, which performs the parcel ascent in

the vertical. Consequently, convection will only be initi-

ated when the trigger function permits it and its vertical

extent will be determined by the cloud model. The deep

convective area fractions constructed by our multicloud

model determine the strength of the deep convection only

if the other conditions are met. By conditioning on hvi,
the observed feedback systemwill be present in theGCM,

but through the trigger function and cloud model, deep

convection will stop when relative humidity is too low or

when instability is no longer present in the atmosphere.

As the multicloud model was able to reproduce the

cloud-type area fractions quite well, a natural step is to

test this model in a GCM. We are currently testing the

multicloud model in a GCM of intermediate complexity

(e.g., with prescribed sea surface temperatures) and we

will report on this in a separate paper. We use the deep

convective area fractions s4 as a closure for themass flux

at cloud base. The strong congestus area fractions s3,

which also represent convection, can be added with

a different updraft velocity, and the same can be done

with the moderate congestus fractions s2. As an alter-

native to using a parcel ascend cloudmodel, it is possible

to define vertical heat and moisture tendency profiles

corresponding to each cloud type (e.g., Khouider et al.

2010) or explicitly inferring vertical heat and moisture

tendency profiles from data as in Dorrestijn et al.

(2013b). Another possible application of the model in

a GCM is that �m.1sm, or 1 2 s1, can be used in the

parameterization of cloud cover.

The main weakness of our model is that there is no

spatial dependence between the CMCs other than

through the large-scale state. In the atmosphere clouds

are often organized into spatial structures, but with our

model it is not possible to produce such spatial organi-

zation inside a grid box of a GCM. As mentioned, if

spatial organization inside a grid box is desired, then

introducing local spatial dependencies between the

CMCs is a possibility. This is, however, a difficult task

and increases the complexity of the model (Dorrestijn

et al. 2013a). The absence of local dependencies results

in too-small standard deviations for the CMC fractions
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when N is chosen to be equal to the number of radar

sites. The area fraction ofN CMCs converges fast to the

expected value for increasing N—much faster than the

fractions formed by radar pixels in the domain for which

there is large dependence between neighboring pixels.

Further, the peak values of the observational fractions

of stratiform, moderate congestus, and clear sky are

difficult to produce while keeping N such that the peak

values of the deep convective area fractions are good.

The standard deviation for stratiform, moderate con-

gestus, and clear sky are too small and we noticed that

the ACFs of the area fractions produced with N 5
100CMCs decrease too much initially (except for

stratiform and clear sky).

How representative is our model? We showed that

by training the CMCs with observational data from

a 5-month period inDarwin, themulticloudmodelwas able

to adequately produce fractions for a different 3-month

period at the same location. This indicates that the

model works for a large range of large-scale atmospheric

conditions and that a time series of 5 months is long

enough to train themodel for Darwin. In the experiment

where we interchanged training and test dataset, we

found that even training on a 3-month period is enough

to produce adequate fractions for the 5-month period.

We conclude that the time series is long enough to make

a representative parameterization of deep convective

and cloud area fractions for Darwin itself.

The main advantage of using observational radar data

over LES data is that a longer time period can be cov-

ered. The LES dataset of the study of Dorrestijn et al.

(2013a) was 6 h as opposed to the 68-month period of

the radar data. A simulation of 8 months for a domain of

the size of the radar domain is not yet computationally

possible. Darwin is located in a tropical region where

deep convection occurs frequently in the monsoon pe-

riod; therefore, it is representative for deep convection in

the tropics. Gottwald et al. (2014, manuscript submitted

to Quart. J. Roy. Meteor. Soc.) show that only a small

adaptation has to be performed to use their stochastic

parameterizations of deep convection, also conditioned

on v, at a different location than where they have been

trained. This supports the idea that our multicloud model

could be used more globally also. However, since con-

vection is (in part) location dependent (e.g., the presence

of land or sea), our model could be improved by using

observations from multiple locations. Note that even in

state-of-the-art GCMs, mass flux at cloud-base closures

are functions of large-scale variables only and are not

specifically adapted to the location on the globe.

To summarize the strengths of our approach, re-

alistic observational data are used to estimate the

model, and the CMC cloud-type area fractions were

shown to be comparable to the observations, which is

notable because we used different datasets for training

and validation. Furthermore, we saw that the model

can be adapted to the scale of the GCM, giving larger

fluctuations when a smaller number of Markov chains

are used to produce area fractions. Because of the

conditioning, memory effects that are built in that are

often absent in conventional stochastic convection

schemes. Implementation in a GCM for assessing the

model in a dynamical environment is possible and it

can be improved by using additional data from dif-

ferent locations.
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