Pre-SN evolution of Super AGB stars

Lionel Siess Institute of Astronomy and Astrophysics Université Libre de Bruxelles

ECSN workshop Fev 2016

Who are SAGB stars

- B type stars on the main sequence
- massive counterparts of AGB stars
- ignite carbon but do not proceed to further nuclear burning stages
- responsible for the formation of ONe white dwarfs
- may explode as electron capture SN (EC-SN)

Evolution up to C-ignition

Standard evolution up to C ignition

- convective H core burning
- followed by 1DUP no 1DUP below $Z \le 0.001$
- chemical signatures similar to those

of lower mass stars

• standard core He burning phase

2DUP

 \rightarrow before, during or after C burning

M = 10, Z = 0.02

Carbon burning proceeds in 2 steps

1) carbon flash

off center C ignition at $T_{max} \sim 6.10^8$ K partial degeneracy $\eta \sim 2-3$ flash short lived (<few 1000 yr) and energetic $10^6 < L_c/L_{\odot} < 2.10^8$

2) flame

C re-ignites at lower η ~ 1 instability develops in regions where carbon was partially burnt peak luminosity lower : no quenching

steady state : energy generated by C burning is carried away by neutrinos :

 $L_{C} = - L_{v}$

surface decoupled : $L \sim L_{He}$

Extra mixing can quench the flame \rightarrow talk by *Farmer*

100 ¹⁶O+²⁰Ne+¹²C 0.8 secondary C flashes 0.6 ^{(®} М[°] flame 11700 flash 0.4 850 yr 0.2¹⁶O+²⁰Ne 16O + 12C

$0 = \frac{1}{10^{3}} = \frac{10^{4}}{10^{4}} = \frac{10^$

steady state

ECSN workshop Fev 2016

Lionel Siess - Super AGB Stars

107

106

ු ඒ 10°

- 10⁴

10³

Core composition at the end of C burning

(n, γ) reactions \rightarrow production of ¹³C, ¹⁷O,²¹Ne,²⁶Mg, s-process Presence of **unburnt** ¹²C in the core

Extra mixing can alter the core composition

ECSN workshop Fev 2016

Lionel Siess - Super AGB Stars

Evolution as a function of initial mass

dredge-out in the most massive SAGBs

ECSN workshop Fev 2016

Lionel Siess - Super AGB Stars

The dredge-out phenomenon

In the *most massive SAGB* stars, near the *end of C-burning*

1) convection develops in the HeBS

2) the He driven convective zone moves outward

3) merges with the envelope

Consequences

- envelope pollution **7** ⁴He,¹²C,¹⁴N
- proton injection, new elements ?
 → *Ritter*
- decrease in the core mass

About the second dredge-up

the fate of the star is intimately related to the 2DUP

the 2DUP provokes a reduction of H-depleted core mass $M_{\text{H-free}}$ below the Chandrasekhar limit M_{Ch}

Massive stars do not experience 2DUP and have $M_{core} > M_{Ch}$

SAGB : most massive stars that still undergo 2DUP

Siess 2007

The thermally pulsing SAGB phase

 $L_{He} < \text{few } 10^6 L_{\odot}$ T_{env} very high pulse & interpulse duration short

TP-SAGB : comparisons

pulses

weak : $L_{He} \sim 10^{6} L_{\odot}$ small : $M_{pulse} < 2 \ 10^{-4} M_{\odot}$ short lived ~ few yr

interpulse : < few 100 yr

very high temperatures

at the base of the

- pulse (> 3.3 10⁸K)
- envelope (> 1.3 10⁸K)

many pulses ~ 300-3000 !

nucleosynthesis

 \rightarrow talks by *Doherty*, *Karakas*

The explosive fate of SAGB stars

 electron captures start on ²⁷AI when 10.0 $M_{core} \approx 1.37 M_{\odot}$ • then proceed on E ²⁵Mg , ²³Na, ²⁰Ne convection and <mark>ب</mark> 9.0 URCA process L o G \rightarrow Schwab • core collapses 8.5 oxygen ignites core reaches NSE SN explosion &

Mass range of SAGB stars

 $M_{up} \leq M_{zams} \leq M_{mas}$

 $\rm M_{up}$ minimum mass for C ignition $\rm M_{mas}$ minimum mass for no 2DUP

Large uncertainties in M_{up} : treatment of core He burning

 M_{up} and M_{mas} \checkmark with Z due to opacity effects (T, L \checkmark with \checkmark Z) and at very low Z, CNO burning less efficient

Siess 2007

Mass range of SAGB stars

 $M_{up} \le M_{zams} \le M_{mas}$

 $\rm M_{up}$ minimum mass for C ignition $\rm M_{mas}$ minimum mass for no 2DUP

Large uncertainties in M_{up} : treatment of core He burning

 M_{up} and M_{mas} \checkmark with Z due to opacity effects (T, L \checkmark with \checkmark Z) and at very low Z, CNO burning less efficient

Large impact of overshooting reduces M_{up} and M_{mas} by $\sim 2~M_{\odot}$

The initial mass of electron capture supernovae

4.0 At the end of C burning, (d) 8.8 3.5 some stars have a core 3.0 mass close to 1.37 M_{\odot} ${
m Mass}/M_{\odot}$ 2.5 and do not enter the 2.0 SAGB phase. 1.5 He 1.0 They ignite Ne off center 0.5 and some of them will He Ne+O 0.0 evolve towards EC-SN 6 5 3 2 0 -1 $\log_{10}(t^{*}/yr)$ Jones et al 2013

 \rightarrow talk by *Nomoto*

The star goes SN if the core mass reaches

$$M_{core}^{final} = M_{core}^{2dup} + \Delta M_{core} = 1.37 M_{\odot}$$

The increase of the core mass during the TP-SAGB phase ΔM_{core} depends on

- mass loss rate \dot{M}_{loss} : poorly known for SAGBs, Z dependence ?
- core growth rate \dot{M}_{core} : depends on 3DUP efficient, badly constrained

ECSN workshop Fev 2016

Mass range for EC supernovae

For each $(\dot{M}_{core}, \dot{M}_{loss})$ we determine how much mass is accreted on the core

 $\Delta M_{core} = f(\zeta)$ with $\zeta = \langle \dot{M}_{loss} \rangle / \langle \dot{M}_{core} \rangle$

efficient 3DUP $\zeta \gg 1$: $M_n \rightarrow M_{mas}$ \rightarrow no SAGB go ECSN

weak mass loss $\zeta \sim 1$: $M_n \rightarrow M_{up}$ \rightarrow all SAGB evolve into ECSN

Metallicity dependent mass loss

if \dot{M}_{loss} with ΣZ then $\zeta \Sigma$ \rightarrow many low metallicity SAGB stars may then evolve into EC SN

Realistic models including the full TP-SAGB evolution and using the Vassiliadis and Wood mass loss rate with no metallicity dependence indeed indicates that

The binary path to EC SN

- 5 explosion : accretion induced collapse
- 6 formation of a milli-second pulsar

Freire & Tauris (2014)

The alternative binary path

The idea (*Podsiadlowski et al 2004*) is to prevent the 2DUP from occurring by removing the envelope of the SAGB during binary interaction.

If the mass of the He core remains $2 < M_{He-core} / M_{\odot} < 2.5$, then the star can potentially evolve into an EC-SN (*Nomoto 1984*)

Binary interaction will modify the evolution of the helium core and alter its C/O ratio, spin velocity so the evolution may differ from that of an isolated He core

Podsiadlowski et al 2004

Lionel Siess - Super AGB Stars

Open questions

Who are the progenitors of EC-SN?

- single star progenitors rare, what about binary channel \rightarrow *Eldridge, Petermann*
- where is the transition between EC-SN and CC SN \rightarrow Nomoto

What is the structure of the progenitor

- How extra-mixing impacts the core composition \rightarrow Farmer, Ritter
- and the subsequent explosion ?

How do EC-SN explode ?

- 3D simulations \rightarrow *Muller, Hix*
- What is the role of the URCA process \rightarrow Schwab
- Will the explosion imprint a low kick to the neutron star ?

What are the observational signatures of EC-SN

- What is the rate of EC-SN, Were they more frequent in the past ? \rightarrow Ruiter
- What is the contribution of ECSN to the galactic chemical evolution \rightarrow *Travaglio*
- What kind of light curve shall we expect (type IIP?) \rightarrow Moriya
- Are EC-SN the site for a rich nucleosynthesis ? \rightarrow Chieffi, Hix, Qian, Sieverding

A laboratory for physics :

- EOS of dense neutron rich matter → Brown's talks, Toki
- Nuclear reactions rates → *Martinez-Pinedo*