#### Birthrates of accretion-induced collapse neutron stars from binary evolution models

#### Ashley J. Ruiter

Postdoctoral Research Fellow (group of Brian Schmidt/Chris Wolf) Research School of Astronomy & Astrophysics Mount Stromlo Observatory The Australian National University

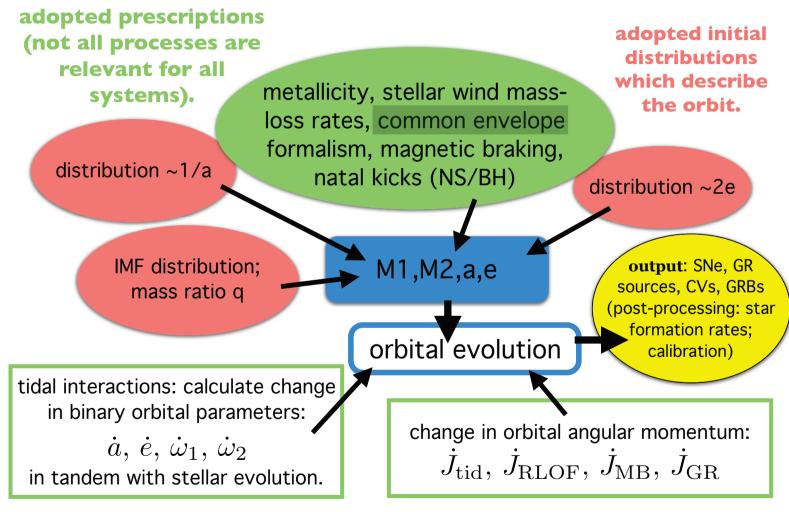
Electron capture SNe and Super-AGB star workshop Monash University Feb. 1, 2016





#### Some previous studies of accretioninduced collapse of WD -> NS

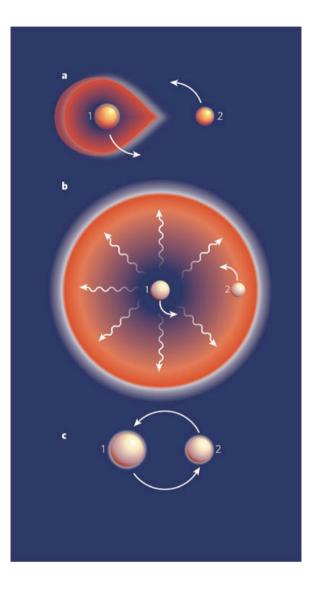
- Miyaji; Nomoto, Saio, Kondo (e.g. accretion in merging CO WDs)
- Colgate, Fryer (rate estimates, explosion models, NS EOS)
- Ivanova+ (formation mechanisms; globular clusters)
- Dessart (radiation-hydro collapse models of massive WDs)
- Darbha, Metzger+ (using Dessart collapse models; post-collapse nucleosynthesis and light curves)
- Wickramasinghe+ (rates, properties)
- Bhattacharya, Yoon, Janka, Woosley, Abdikamalov, Schwab, & others.


## Motivation: why learn about neutron stars formed via collapse of a WD?

- If we can predict rates, delay time distribution (DTD) & physical properties (e.g. donor star type), detection probability is higher.
- Rates (vs. SNe Ia) <-> effect on chemical evolution: How much synthesized material is locked up in the remnant? How much is expelled into the ISM? The r-process, neutron-rich isotopes.
- Rates are estimated to be higher than was previously assumed (e.g. Hurley et al. 2010; binary MSPs).



#### *StarTrack* BPS code (e.g. Belczynski et al. 2008). Orbital equations evolved in tandem with stellar evolution.


#### BASIC RECIPE FOR BINARY EVOLUTION POPULATION SYNTHESIS CODE



Orbital separation 'a', eccentricity 'e', Initial Mass Function (IMF) of stars: chosen via Monte Carlo from probability distribution functions that are based on observational data. Biggest uncertainty in population synthesis: mass transfer/accretion and common envelope.

- Angular Momentum Loss (AML) through Roche-lobe overflow (RLOF), Common Envelope (CE), magnetic braking, gravitational radiation  $\rightarrow J_{orb}$
- On what timescale does mass transfer proceed? → M<sub>nuc</sub> or M<sub>th</sub>,?
  Non-degenerate vs. degenerate?
  CE: M<sub>dyn</sub>, two formalisms we use in BPS: Webbink (α); Nelemans (γ):

$$\alpha \left(\frac{-G M_{\text{rem}} M_2}{2a_{\text{f}}} + \frac{G M_{\text{giant}} M_2}{2a_{\text{i}}}\right) = -\frac{G M_{\text{giant}} M_{\text{env}}}{\lambda R_{\text{giant}}}$$
$$\gamma \frac{J_{\text{i}}}{M_{\text{giant}} + M_2} = \frac{J_{\text{i}} - J_{\text{f}}}{M_{\text{env}}}$$



Binding energy parameter "λ" may have *metallicity dependence* (Xu & Li, 2010).

## Adopt two CE models lower value of "a x $\lambda$ " -> closer post-CE orbits

- `Classic' Webbink (1984) prescription where binding energy parameter  $\lambda$  is constant for all H-rich stars:  $\alpha \times \lambda = 1$ .
- 'New' prescription with <u>variable λ</u> based on Xu & Li (2010) employs evolutionary stage-dependent λ, and α=1. Example:, λ is ~1 for sub-giants, can be ~3-10+ for AGB.
- Run BPS model (burst of SF at t=0, 40,000 binaries each) for each CE prescription: 'old' & 'new'.

# Neutron stars formed from intermediate-mass stars

- In a binary: either via (i) merger (runaway accretion), or through (ii) non-dynamical Roche-lobe overflow or wind accretion.
- Specific nomenclature for different evolutionary scenarios (see Ivanova et al. 2008). If NS is formed:

Through **merger** of WD binary: **merger-induced** collapse (**MIC**).

Through **stable accretion** in a binary: **accretion-induced** collapse (**AIC**). Here I include this in wind-accretion scenarios.

Through **single star evolution**: **evolutionary-induced** collapse (**EIC**). I will not discuss these in this talk.

## Modelling **Progenitors**: overlap between SNe Ia and AIC/MIC



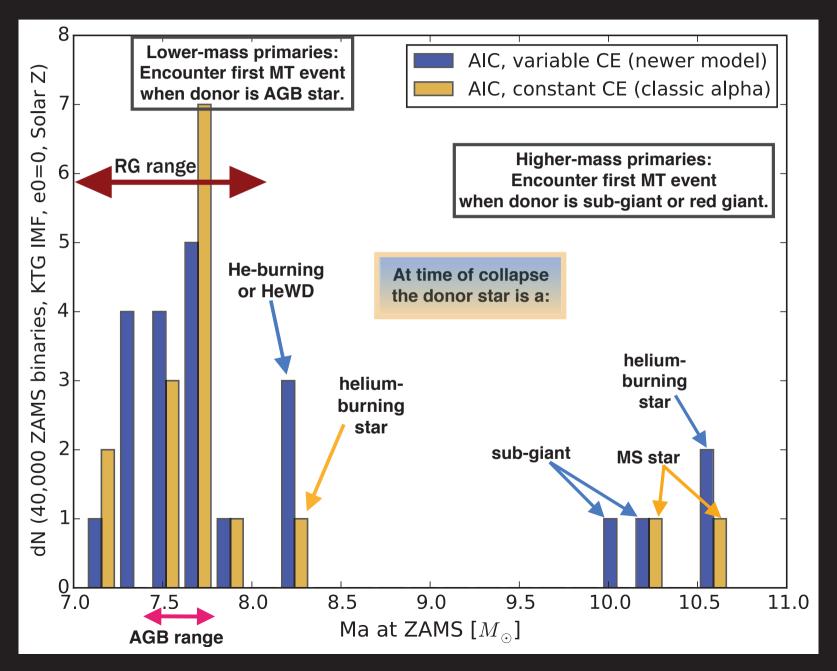
#### AIC cf. SDS

- We assume if ONe WD accretes to MCh -> AIC (but see Marquardt et al. 2015).
- Donors can be MS stars, giants (including AGB), stripped helium-burning stars, or WD (rare).

- As for **WD mergers**: How do we delineate between "SN Ia" and "collapse to NS"? This is unclear.
- Previously it was thought MOST mergers of two CO WDs would form a neutron star. This is no longer the standard assumption (SN Ia gained favour).
- We assume any double WD merger with ONE OR MORE ONe WD -> MIC.

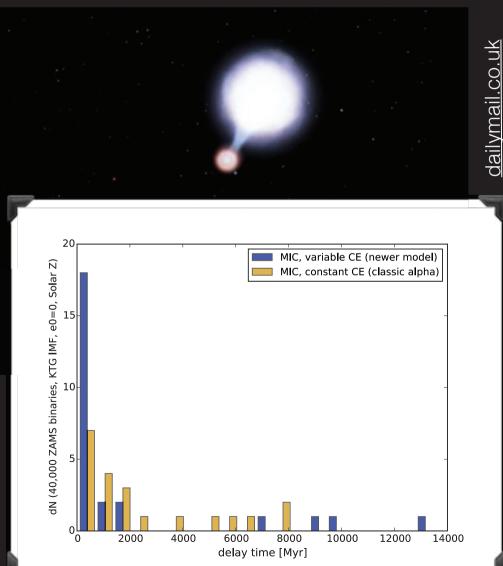


**MIC cf. DDS** 

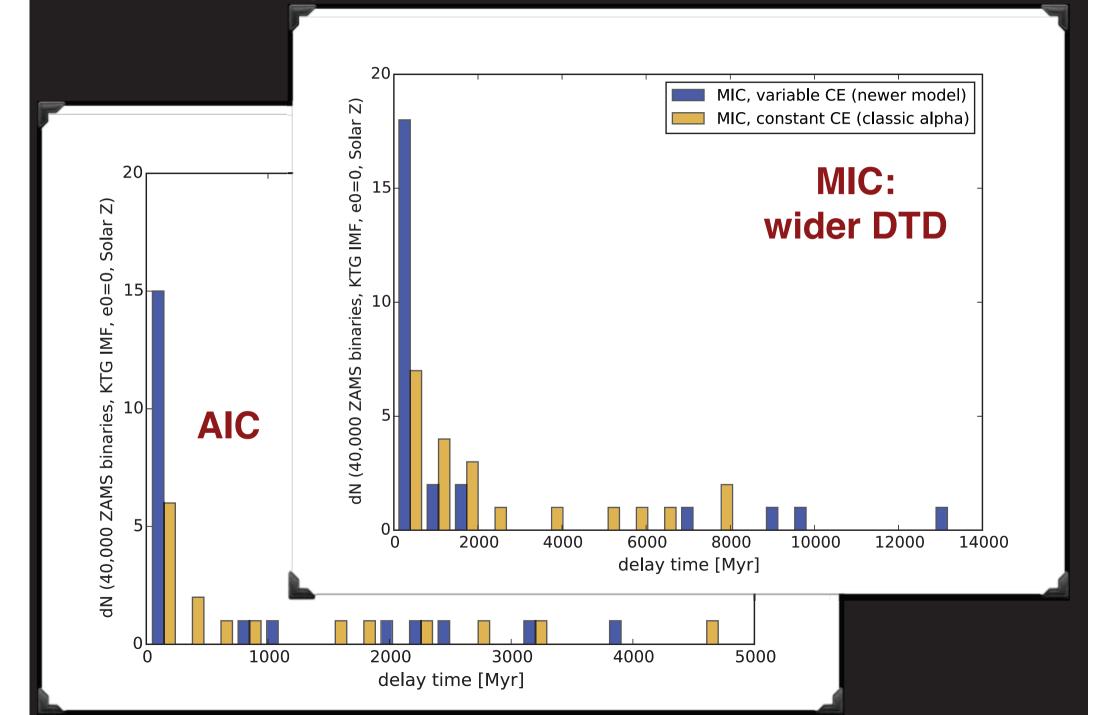

### Results: AIC for 'old' CE model

- Events with delay times > 1000 Myr have red giant or sub-giant donors. ZAMS mass range of donor 1.3 - 1.8 M<sub>sun</sub>.
- Events with delay times < 1000 Myr have a variety of donors: main sequence, giants, AGB, and helium-burning stars.
- Most prompt delay time events (< 100 Myr) all have AGB donors (via *wind accretion*, not RLOF).

Results: AIC for 'new' CE model (main differences in *mauve*)


- Events with delay times > 1000 Myr have red giant, sub-giant, or *white dwarf* donors. Thus mostly similar to old CE model.
- Events with delay times < 1000 Myr have mostly helium-burning star donors. Some AGB donors, but no sub-giants or red giants. Very <u>different</u> results from old CE model!
- Most prompt delay time events (<100 Myr) have AGB or *helium-burning* star donors.

## Progenitor properties for **AIC** from StarTrack: x-axis: ZAMS mass of collapsing star (primary)




# Results: MIC for both CE models (WD mergers)

- Delay times **span wider range for mergers**; more likely in older populations compared to AIC.
- Merger most often between
  ONe + CO WD. Rarely double
  ONe WD.
- Shorter delay time events (<1000 Myr) tend to involve two CE phases, whereas >1000 Myr systems typically have encounter 1 CE.



### Delay times for AIC vs. MIC



### Summary Galactic rate estimates

- Assume Galaxy has stellar mass 6.4x10<sup>10</sup> M<sub>sun.</sub>
- Remember: we assume all <u>CO+CO mergers</u> make SNe Ia or something else; <u>not MIC</u>.
- Actual rate for MW including AIC & MIC together: 5x10<sup>-5</sup> < AIC+MIC < ~10<sup>-4</sup> per year.

### Summary delay times (ages), donors

- Most AIC/MIC occur shortly after star formation (delay times < 300 Myr). Components are either: -ONeWD + COWD (MIC)
   -ONeWD + AGB star donor (AIC)
- MIC systems predicted to be born out to t\_Hubble.
  AIC extremely rare >5000 Myr (for field evolution).
- So what about young radio pulsars observed in (old) globular clusters? (e.g. Boyles et al. 2011).

## Binaries can explain **young** radio pulsars in Galactic globular clusters

- At least 3 isolated, 1 binary pulsar seen in Galactic globular clusters (metal-rich).
- EIC have low natal kicks, but unlikely progenitors in old globular clusters.
- The **3** isolated pulsars could be formed via **MIC** (long enough delay <u>times</u>) without invoking N-body interactions. **AIC** could explain the pulsars if stellar dynamics are invoked.

NGC 6624: metal-rich GC. Known to host at least 3 YOUNG pulsars. <u>http://www.naic.edu/~pfreire/GCpsr.html</u>



## Conclusions

- Notable differences (donor star type) in AIC progenitor properties depending on adopted common envelope formalism. (<u>Reason</u>: different evolution due to wider post-CE orbit in 'new' model).
- MIC can occur at very long delay times; both MIC & AIC produce prompt progenitors. Rates ~1-2 orders of mag below SNe Ia.
- We see many AIC events with delay times < 100 Myr (AGB donors) only if we allow for wind RLOF in BPS model (Abate et al. 2013).
- Can we draw a line between *thermonuclear SNe* and *AIC* production? This will set limits on event rates, thus nucleosynthesis yield estimates, including r-process site investigations (e.g. Qian & Wasserburg 2007).