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Some previous studies of accretion-
induced collapse of WD -> NS

• Miyaji; Nomoto, Saio, Kondo (e.g. accretion in merging CO WDs) 

• Colgate, Fryer (rate estimates, explosion models, NS EOS) 

• Ivanova+ (formation mechanisms; globular clusters) 

• Dessart (radiation-hydro collapse models of massive WDs) 

• Darbha, Metzger+ (using Dessart collapse models; post-collapse 
nucleosynthesis and light curves) 

• Wickramasinghe+ (rates, properties)  

• Bhattacharya, Yoon, Janka, Woosley, Abdikamalov, Schwab, & others.



Motivation: why learn about neutron 

stars formed via collapse of a WD?

• If we can predict rates, delay time distribution (DTD) & 

physical properties (e.g. donor star type), detection 

probability is higher.  

• Rates (vs. SNe Ia) <-> effect on chemical evolution: 

How much synthesized material is locked up in the 

remnant? How much is expelled into the ISM? The       

r-process, neutron-rich isotopes.  

• Rates are estimated to be higher                                         

than was previously assumed                                   

(e.g. Hurley et al. 2010; binary MSPs). 



Basic Recipe for Binary Evolution 
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StarTrack BPS code (e.g. Belczynski et al. 2008).

Orbital equations evolved in tandem with stellar evolution.

Orbital separation ‘a’, eccentricity ‘e’, Initial Mass Function (IMF) of stars: chosen via 
Monte Carlo from probability distribution functions that are based on observational data. 

common envelope



Angular Momentum Loss (AML) through

Roche-lobe overflow (RLOF), Common

Envelope (CE), magnetic braking,

gravitational radiation→ ˙Jorb

On what timescale does mass transfer

proceed? → Ṁnuc or Ṁth,?

Non-degenerate vs. degenerate?

CE: Ṁdyn, two formalisms we use in BPS:

Webbink (α); Nelemans (γ):
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Biggest uncertainty in population synthesis:  

mass transfer/accretion and common envelope. 

Binding energy parameter “!” may have  

metallicity dependence (Xu & Li, 2010). 



Adopt two CE models 
lower value of “" x !” -> closer post-CE orbits

• `Classic’ Webbink (1984) prescription where 

binding energy parameter ! is constant for all      

H-rich stars: " x ! = 1.  

• ‘New’ prescription with variable ! based on Xu & Li 

(2010) employs evolutionary stage-dependent !, 

and "=1. Example:, ! is ~1 for sub-giants, can be 

~3-10+ for AGB.  

• Run BPS model (burst of SF at t=0, 40,000 binaries 

each) for each CE prescription: ‘old’ & ‘new’.  



Neutron stars formed from 

intermediate-mass stars

• In a binary: either via (i) merger (runaway accretion), or 
through (ii) non-dynamical Roche-lobe overflow or wind 
accretion.  

• Specific nomenclature for different evolutionary scenarios 
(see Ivanova et al. 2008). If NS is formed:  

Through merger of WD binary: merger-induced collapse (MIC).  

Through stable accretion in a binary: accretion-induced collapse (AIC). 
Here I include this in wind-accretion scenarios. 

Through single star evolution: evolutionary-induced collapse (EIC).      
I will not discuss these in this talk.   



Modelling Progenitors: overlap between 
SNe Ia and AIC/MIC

• We assume if ONe WD accretes to MCh -> AIC 

(but see Marquardt et al. 2015). 

• Donors can be MS stars, giants (including AGB), 

stripped helium-burning stars, or WD (rare). 

• As for WD mergers: How do we delineate between 

“SN Ia” and “collapse to NS”?  This is unclear.  

• Previously it was thought MOST mergers of two CO 

WDs would form a neutron star. This is no longer 

the standard assumption (SN Ia gained favour).  

• We assume any double WD merger with ONE                                      
OR MORE ONe WD -> MIC. MIC cf. DDS

AIC cf. SDS



Results: AIC for ‘old’ CE model

• Events with delay times > 1000 Myr have red 

giant or sub-giant donors. ZAMS mass range of 

donor 1.3 - 1.8 Msun.  

• Events with delay times < 1000 Myr have a 

variety of donors: main sequence, giants, AGB, 

and helium-burning stars.  

• Most prompt delay time events (< 100 Myr) all 

have AGB donors (via wind accretion, not RLOF).



Results: AIC for ‘new’ CE model 

(main differences in mauve)

• Events with delay times > 1000 Myr have red 

giant, sub-giant, or white dwarf donors. Thus 

mostly similar to old CE model.  

• Events with delay times < 1000 Myr have mostly 

helium-burning star donors. Some AGB donors, 

but no sub-giants or red giants. Very different 

results from old CE model!  

• Most prompt delay time events (< 100 Myr) have 

AGB or helium-burning star donors. 



Progenitor properties for AIC from StarTrack: 
x-axis: ZAMS mass of collapsing star (primary)

Lower-mass primaries: 
Encounter first MT event 
when donor is AGB star.

Higher-mass primaries: 
Encounter first MT event 

when donor is sub-giant or red giant.

sub-giant

At time of collapse 
the donor star is a:

helium-
burning 

star

MS star

AGB

Red Giants/HG

helium-

burning 

star

He-burning

or HeWD

AGB range 

RG range

AAAAAAttttt tttttiiiiiimmmmmeeeee oooooffffff cccccooooollllllllllllaaaaappppppppssssseeeee 
ttttthhhhhheeeee ddddddooooonnnnnooooorrrrr ssssstttttaaaaarrrrr iiiiiisssss aaaaa:::



Results: MIC for both CE models 

(WD mergers)

• Delay times span wider range 

for mergers; more likely in older 

populations compared to AIC.  

• Merger most often between 

ONe + CO WD. Rarely double 

ONe WD. 

• Shorter delay time events 

(<1000 Myr) tend to involve two 

CE phases, whereas >1000 Myr 

systems typically have 

encounter 1 CE. 
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Delay times for AIC vs. MIC

MIC:
wider DTD

AIC



• Assume Galaxy has stellar mass 6.4x1010 Msun. 

• Remember: we assume all CO+CO mergers 

make SNe Ia or something else; not MIC.  

• Actual rate for MW including AIC & MIC together: 

5x10-5 < AIC+MIC < ~10-4 per year. 

Summary 
Galactic rate estimates



Summary 
delay times (ages), donors

• Most AIC/MIC occur shortly after star formation 

(delay times < 300 Myr). Components are either: 

-ONeWD + COWD (MIC)                                        

-ONeWD + AGB star donor (AIC) 

• MIC systems predicted to be born out to t_Hubble. 

AIC extremely rare >5000 Myr (for field evolution). 

• So what about young radio pulsars observed in 

(old) globular clusters? (e.g. Boyles et al. 2011). 



Binaries can explain young radio 

pulsars in Galactic globular clusters

• At least 3 isolated, 1 binary pulsar 

seen in Galactic globular clusters 

(metal-rich). 

• EIC have low natal kicks, but 

unlikely progenitors in old globular 

clusters. 

• The 3 isolated pulsars could be 

formed via MIC (long enough delay 

times) without invoking N-body 

interactions. AIC could explain the 

pulsars if stellar dynamics are 

invoked. 

NGC 6624: metal-rich GC.  

Known to host at least 3 YOUNG pulsars.  

http://www.naic.edu/~pfreire/GCpsr.html



• Notable differences (donor star type) in AIC progenitor properties 
depending on adopted common envelope formalism.               
(Reason: different evolution due to wider post-CE orbit in ‘new’ 
model). 

• MIC can occur at very long delay times; both MIC & AIC produce 
prompt progenitors. Rates ~1-2 orders of mag below SNe Ia. 

• We see many AIC events with delay times < 100 Myr (AGB donors) 
only if we allow for wind RLOF in BPS model (Abate et al. 2013).  

• Can we draw a line between thermonuclear SNe and AIC 
production? This will set limits on event rates, thus nucleosynthesis 
yield estimates, including r-process site investigations (e.g. Qian & 
Wasserburg 2007). 

Conclusions


