## Light-curve properties of electron-capture SNe

Takashi Moriya (University of Bonn)



## What determines SN LC properties

- progenitor properties
  - structure and composition
    - hydrogen-rich envelope mass
  - radius
  - mass-loss rate (CSM density)
  - explosion properties
    - explosion energy
    - 56Ni mass





## Super-AGB star properties

- structure and composition
  - super-AGB stars
  - about 1.37 Msun O+Ne+Mg core + H-rich envelope (several Msun)
  - expected SN type is Type II
- radius
  - about 1000 Rsun
- mass-loss rate
  - ~ 1e-4 Msun/yr with ~ 10 km/s (e.g., Poelarends et al. 2007)
    - wind is dense enough to affect SN properties



## Explosion properties

- explosion energy
  - ~ 1e50 erg
    - in both 1D and 2D neutrino-driven explosion simulations
    - about 10 times less than typical core-collapse SNe
- 56Ni mass
  - ~ 0.001 Msun
    - typical core-collapse SNe have more than about 0.05 Msun





- roughly 2-5 Msun hydrogen-rich envelope
- small explosion energy
  - presumably observed as Type IIP SNe
  - if explosion energy is high, Type IIL SNe are also possible

- roughly 2-5 Msun hydrogen-rich envelope
- small explosion energy
  - presumably observed as Type IIP SNe
  - if explosion energy is high, Type IIL SNe are also possible



- roughly 2-5 Msun hydrogen-rich envelope
- small explosion energy
  - presumably observed as Type IIP SNe
  - if explosion energy is high, Type IIL SNe are also possible



$$\begin{split} L_{50} &= 1.26 \times 10^{42} E_{51}^{5/6} M_{10}^{-1/2} R_{0,500}^{2/3} X_{\text{He}}^{1} \text{ ergs s}^{-1}, \\ t_{p,0} &= 122 E_{51}^{-1/4} M_{10}^{1/2} R_{0,500}^{1/6} X_{\text{He}}^{1/2} \text{ days}, \\ & \text{Kasen \& Woosley (2009)} \end{split}$$

- E = 1e50 erg, Menv = 3 Msun,
  - R = 1000 Rsun, Xhe = 0.5
  - L ~ 3e41 erg/s
  - tp ~ 94 days

- roughly 2-5 Msun hydrogen-rich envelope
- small explosion energy
  - presumably observed as Type IIP SNe
  - if explosion energy is high, Type IIL SNe are also possible



$$\begin{split} L_{50} &= 1.26 \times 10^{42} E_{51}^{5/6} M_{10}^{-1/2} R_{0,500}^{2/3} X_{\text{He}}^{1} \text{ ergs s}^{-1}, \\ t_{p,0} &= 122 E_{51}^{-1/4} M_{10}^{1/2} R_{0,500}^{1/6} X_{\text{He}}^{1/2} \text{ days}, \\ & \text{Kasen \& Woosley (2009)} \end{split}$$

- E = 1e50 erg, Menv = 3 Msun,
  - R = 1000 Rsun, Xhe = 0.5
  - L ~ 3e41 erg/s
  - tp ~ 94 days

#### ecSNe are not very faint!

#### Numerical LC investigation

- radiation hydrodynamics code STELLA (Blinnikov et al.)
  - · one-dimensional
  - rough SED can be obtained
  - SN ejecta + dense wind interaction can be treated
- progenitor
  - Nomoto 1.377 Msun O+Ne+Mg core + several envelopes



- explosion energy: 1.5e50 erg (Kitaura et al. 2006)
- 56Ni mass: 0.0025 Msun (Wanajo et al. 2009)



difference in density structure









## Dense super-AGB wind affects late-phase LCs

- wind properties of super-AGB stars
  - ~ 1e-4 Msun/yr with ~ 10 km/s
- typical estimated wind properties of Type IIn SNe
  - ~ 1e-3 Msun/yr with ~ 100 km/s

$$\rho_{\rm csm}(r) = \frac{\dot{M}}{4\pi v_{\rm wind}} r^{-2}$$



## Dense super-AGB wind affects late-phase LCs

- wind properties of super-AGB stars
  - ~ 1e-4 Msun/yr with ~ 10 km/s
- typical estimated wind properties of Type IIn SNe
  - ~ 1e-3 Msun/yr with ~ 100 km/s

$$\rho_{\rm csm}(r) = \frac{\dot{M}}{4\pi v_{\rm wind}} r^{-2}$$



dense CSM

- ecSNe have smaller explosion energy
  - lower luminosity from interaction than typical Type IIn SNe

$$L_{\rm int} = \frac{\epsilon A}{2} \left(\frac{\dot{M}}{v_{\rm wind}}\right)^{\frac{5}{2}} E_{\rm ej}^{\frac{21}{16}} M_{\rm ej}^{-\frac{15}{16}} t^{-\frac{3}{8}}$$
  
Moriya et al. (2014)

#### Dense super-AGB wind affects late-phase LCs

ecSNe have low explosion energy

$$L_{\rm int} = \frac{\epsilon A}{2} \left(\frac{\dot{M}}{v_{\rm wind}}\right)^{\frac{5}{2}} E_{\rm ej}^{\frac{21}{16}} M_{\rm ej}^{-\frac{15}{16}} t^{-\frac{3}{8}}$$





Moriya et al. (2014)



#### Dynamical effect of dense wind

• velocity profile at 50 days after the explosion



## Summary of ecSN LC properties

- Type IIP SN-like LCs
  - ~ 1e42 erg/s plateau for about 100 days
  - sudden luminosity drop as seen in Type IIP
  - small amount of 56Ni (~ 0.001 Msun)
    - large luminosity drop after the plateau
- dense wind affects LCs and dynamics
  - wind is as dense as in Type IIn
  - but explosion energy is lower
  - likely to dominate after the drop



## Comparison with observations

- Crab SN (SN 1054)
- faint Type IIP and IIn SNe (e.g., SN 2008S)
- "Type IIn-P" SNe
- PTF11iqb-like SNe

- ejecta mass:  $4.6 \pm 1.8$  Msun (e.g., Fesen et al. '97)
- kinetic energy: ~ 1e49 erg (e.g., Frail et al. '95)
- abundances (e.g., Nomoto et al. '82)

an ecSN candidate!



- light curve from ancient Chinese text (宋史, Songshi)
  - SN 1054 also appears in Japanese literature (明月記, *Meigetsuki*)



Meigetsuki

- according to the Chinese record..
  - the "guest star" appeared appeared on July 4 1054
    - it was as bright as Venus



- according to the Chinese record..
  - the "guest star" appeared appeared on July 4 1054
    - it was as bright as Venus
  - it was able to observe during day time for 23 days



- according to the Chinese record..
  - the "guest star" appeared appeared on July 4 1054
    - it was as bright as Venus
  - it was able to observe during day time for 23 days
  - it disappeared on April 6 1056



- early observations are consistent with ecSN LC models
  - very dense shell as suggested by Smith (2013) is not required
- the last record does not match (e.g., Sollerman et al. 2001)



ecSN + wind interaction



- ecSN + wind interaction
  - does not "disappear"
    - wind radius needs to be 1.5e16 cm
    - high mass-loss rate in 240 years before the explosion



ecSN + pulsar energy input





- faint SNe with small 56Ni production and small explosion energy
  - some of them have small progenitor mass



- SN 2008S
  - faint Type IIn
    - ecSN explosion in a dense super-AGB wind?
  - progenitor is ~ 8 Msun with dusty CSM
    - super-AGB wind?





<sup>></sup>rieto et al. (200<u>8</u>)

• SN 2008S

٠



- ecSNe are not faint, despite of their small explosion energy
  - SN 2008S



- ecSNe with E = 1e50 erg are not faint enough
  - SN 2008S
    - E = 2.5e48 erg

$$L_{50} = 1.26 \times 10^{42} E_{51}^{5/6} M_{10}^{-1/2} R_{0,500}^{2/3} X_{\text{He}}^{1} \text{ ergs s}^{-1},$$
  
$$t_{p,0} = 122 E_{51}^{-1/4} M_{10}^{1/2} R_{0,500}^{1/6} X_{\text{He}}^{1/2} \text{ days},$$

• Menv = 3.4 Msun 
$$t_{p,0} = 122E_{51}^{-1/2}$$



#### "Type IIn-P" SNe

- a sub-class of Type IIn SNe with a long LC plateau
  - SN 1994W, SN 2009kn, SN 2011ht, ...



## "Type IIn-P" SNe

- origin of plateau and sudden luminosity drop
  - similar to Type IIP SNe, i.e., recombination?
    - recombination in SN ejecta (Moriya et al. 2014)
    - recombination in dense wind (Dessart et al. 2009)
  - termination of CSM interaction? (Chugai et al. 2004)



dense CSM

SN ejecta

## Possible ecSN candidate features

- SN IIP or IIL + weak SN IIn features
  - PTF11iqb (Smith et al. 2015)
    - weak SN IIn features
    - 1e-4 Msun/yr
    - enhanced N/H
  - YSG explosion?
    - super-AGB may result in similar SNe
      - similar envelope mass
      - similar radius
      - explosion energy??
        - CCSN: ~1e51 erg
        - ecSN: ~1e50 erg



#### H-free electron-capture SNe

- ~ 0.1 0.01 Msun of ejecta?
- ~1e-3 Msun 56Ni
  - probably Type Ic
  - rise time of several days
  - peak luminosity of ~ 1e41 erg/s



# Summary

•

- ecSN LCs are characterized by
  - LC plateau
    - ~ 1e42 erg/s lasts about 100 days
  - large luminosity drop follows
    - small 56Ni production (~1e-3 Msun)
  - ・ CSM interaction powers late-phase LCs<sup>着</sup>
  - observational candidates
    - SN 1054 (Crab)
    - low luminosity SNe may not be related
      - unless exp. energy is ~ 1e48 erg
    - Type IIn-P SNe?
    - PTF11iqb-like SNe?
- H-free ecSN features are unexplored much



rest days