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DYNAMICAL ENVIRONMENTS OF ORGANISED DEEP CONVECTION
IN CLIMATE MODELS
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1 INTRODUCTION

A persistent shortcoming of all climate models is their in-
ability to produce the correct distribution of precipitation,
with light rain being too frequent and heavy precipitation
being too rare (e.g. Sun et al. 2006, Stephens et al. 2010).
In the tropics, intense rainfall is often associated with or-
ganised deep convection. Despite occurring only about
5% of the time, it contributes to about half the tropical pre-
cipitation (Tan et al., 2013) and is associated with extreme
precipitation (Lee et al., 2013; Rossow et al., 2013).

Organised deep convection has a signature of extens-
ive deep convective and thick stratiform anvil clouds. Such
clouds are produced in global climate models (GCMs), but
it is unclear if they are indeed the result of organised deep
convection or products of some other processes. This
stems from the fact that the organisation of convection is
not explicitly taken into account in GCMs, in which con-
vection is represented through parametrisation schemes.
In these schemes, the statistical effects of convection are
quantified through relationships with the resolved vari-
ables, but there is no explicit consideration of convect-
ive organisation, assuming instead that such organisation
will emerge from the resolved variables. Hence, despite
the existence of clouds which in observation is an indica-
tion of organised deep convection, it is unknown if models
can replicate organised deep convection and its associ-
ated properties.

One way to identify organised deep convection in obser-
vation is through cloud regimes. First proposed by Jakob
and Tselioudis (2003), these cloud regimes are derived
from the statistical distributions of clouds within grids of
resolution comparable to GCMs as measured by a net-
work of satellites. As they are essentially categorisation
of cloud fields in the atmosphere, the regime represent-
ing organised deep convection can easily be identified
through its cloud profile. Indeed, Tan et al. (2013) have
found that this regime is associated with conditions of or-
ganised deep convection such as intense precipitation and
high grid-mean ascending motion.

By means of a satellite simulator, cloud regimes can
also be defined in GCMs. Numerous studies have util-
ised cloud regimes in model evaluation and projections
(Williams et al., 2005; Gordon et al., 2005; Williams and
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Tselioudis, 2007; Chen and Del Genio, 2008; Williams and
Webb, 2008; Tsushima et al., 2012). However, they gener-
ally focus on the cloud profiles, geographical distributions
and radiative properties of the model regimes. (Gordon
et al. 2005 studied the large-scale properties such as re-
lative humidity but for a single column model.) Here, we
analyse the large-scale environment of the cloud regimes
in GCM, similar to what Tan et al. (2013) have done in
observation. In particular, we investigate the precipitation
and vertical velocity distributions of the cloud regime that
represents organised deep convection in observation, with
the aims of examining whether this cloud regime is indic-
ative of organised deep convection in models and hence if
GCMs are capable of producing organised deep convec-
tion.

2 METHODS

2.1 Cloud Regimes

The International Satellite Cloud Climatology Project
(ISCCP) D1 dataset provides statistical descriptions of
clouds within 280 km × 280 km equal-area grids in the
form of joint-histograms of their cloud top pressures and
optical thickness since 1983 at three-hour intervals (Ros-
sow and Schiffer, 1999). In the tropics, these joint-
histograms are composed from satellite pixel measure-
ments with an approximate horizontal resolution of 5 km
at nadir from a network of geostationary satellites. Polar-
orbiting satellites are used only when geostationary satel-
lites are unavailable. In Jakob and Tselioudis (2003),
the k-means clustering algorithm is applied to the joint-
histograms to identify repeating patterns. In Rossow et al.
(2005), this method is further improved upon by a set of
criteria to determine the number of clusters. Applying this
technique to daytime-averaged joint-histograms between
35◦ latitudes, cloud fields can be objectively categorized
into eight cloud regimes (or weather states), of which three
possess significant signals of deep convection (see Tan
et al. 2013 for more information).

Of these three convective regimes, one describes an
environment of organised deep convection. This regime,
CR1 (called CD in Tan et al. 2013), has a prevalence
of towering cumulus and deep stratiform clouds as inter-
preted in the joint-histogram of its centroid (Figure 1) and
describes features such as thunderstorms and mesoscale
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convective systems. It primarily inhabit regions of organ-
ised deep convection such as in the Intertropical Con-
vergence Zone, the Tropical Western Pacific and Indian
Oceans, and equatorial Africa and South America (Figure
2). Despite a low frequency of occurrence (FOC) of 0.055,
it is associated with an exceptional levels of precipitation
and is responsible for close to half the total precipitation
in those latitudes (Lee et al., 2013; Tan et al., 2013). The
other two convective regimes represent environments of
less organised deep convection and are not the focus of
this study.
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Figure 1: Joint-histogram of cloud top pressure (CTP) and
optical thickness (τ ) of the CR1 regime centroid in obser-
vation.

In global climate models (GCMs), such joint-histograms
(variable: clisccp) can be derived for every grid box by
means of the ISCCP satellite simulator, now part of the
CFMIP (Cloud Feedback Model Intercomparison Project)
Observation Simulator Package (Bodas-Salcedo et al.,
2011). Hence, for GCMs participating in CFMIP under
the CMIP5 framework (Coupled Model Intercomparison
Project Phase 5), we are able to define cloud regimes.
To do this, we use the method employed in Williams and
Webb (2008), which follows that of Gordon et al. (2005)
closely. Instead of assigning the joint-histograms to a re-
gime based on its 42-dimensional vector (7 CTP bins ×
6 τ bins), the joint-histograms are reduced to a three-
dimensional vector comprising its mean albedo, mean
cloud top pressure and total cloud cover, normalised to
a range of 0 to 1. They are then assigned their regime
membership by comparing them with the equivalent re-
duction of the centroids of observed regimes. If the model
joint-histograms were to be assigned based on its full 42-
dimensional vector, then a model that produces a cloud
pixel incorrectly in a neighbouring CTP or τ bin is treated
as equally as in any other erroneous bin. This alternat-
ive approach avoids such an unfair penalty and provides
a greater degree of tolerance in the identification of model
cloud regimes.

As the models output the joint-histograms with a daily
time resolution, we shall use cloud regimes at daily res-
olution as well. This is obtained by working with daytime-
averages of the ISCCP joint-histograms, prior to the clus-

tering and assigning steps. This has the additional be-
nefit of circumventing the issue of the unavailability of
joint-histograms and hence cloud regimes at night. We
restrict ourselves to ocean grid boxes, as the cloud re-
gimes suffer from orographic artefacts (see Tan et al.
2013). We also constrain ourselves to five years of data
from 2004 to 2008, which is sufficiently robust for our pur-
poses. To simplify our analysis, we interpolate the ob-
served cloud regime field to 2.5◦ × 2.5◦ grids using the
nearest-neighbour technique.

2.2 Precipitation and Vertical Velocity

To identify the precipitation P and vertical velocity ω dis-
tributions of the CR1, we follow Tan et al. (2013) and
composite them with additional datasets. For P , we use
the Global Precipitation Climatology Project One-Degree
Daily dataset (Huffman et al., 2001), and linearly inter-
polate to the 2.5◦ × 2.5◦ grids of the cloud regimes.
For ω, we use the European Centre for Medium-Range
Weather Forecasts (ECMWF) Interim Re-Analysis (ERA-
Interim; Dee et al. 2011), and linearly interpolate from the
native 1.5◦ grids to match that of the cloud regimes, as
well as average them over the original six-hour time inter-
val to one day. We select ω at pressure-heights of 200
hPa, 500 hPa and 850 hPa to approximately represent the
top, middle and bottom of the troposphere.

For the models, the variables ‘pr’ and ‘wap’ provide
the P and ω values respectively. We choose model
runs from the CMIP5 database with the ‘amip’ experiment
setup. Since we need runs that report the ‘clisccp’, ‘pr’
and ‘wap’ variables, there are six that fulfil this require-
ment: CanAM4, GFDL-CM3, HadGEM2-A, IPSL-CM5B-
LR, MIROC5, and MPI-ESM-LR. More model runs may
be available in other experiments such as ‘historical’, but
this is beyond the scope of this study.

3 RESULTS

The cloud regime CR1 can be readily derived in the six
models we are studying. However, this regime identifica-
tion is based solely on the cloud profile produced in each
model. In observation, the abundance of high-topped and
optically thick clouds in CR1 is a signature of organised
deep convection. Such an interpretation on the convect-
ive state of the atmosphere does not necessarily hold in
the models. As a matter of fact, the goal of this study
is to investigate whether CR1 is indeed organised deep
convection in the models. Therefore, we should not as-
sume that the properties we will investigate in the GCMs
are those of model organised deep convection.

The first avenue to probe the nature of CR1 is to study
its geographical distribution (Figure 2). As mentioned in
the Section 2.1, CR1 in the real world occurs in areas of
organised deep convection. In the six GCMs, the geo-
graphical distributions of CR1 roughly match these re-
gions. However, all models overestimate its occurrence,
as evident from the overall frequencies of occurrence, with
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CanAM4, GFDL-CM3 and MIROC5 being the worst of-
fenders. The other three models, on the other hand, have
regional deficiencies. HadGEM2-A is producing insuffi-
cient CR1 in the Maritime Continent, while IPSL-CM5B-LR
and MPI-ESM-LR have a lack of CR1 in the Intertropical
Convergence Zone. However, Figure 2 do not permit us
to diagnose the causes of the biases. We do not know if
these errors are the result of a flawed cloud scheme, or
incorrect large-scale conditions that drive cloud formation,
or both.
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Figure 2: Geographical distributions of CR1 in observation
and in models between 2004 to 2008. The numbers at the
top-left indicate the overall frequencies of occurrence in
the same period.

Figure 3 shows the distribution of the daily precipita-
tion rates P associated with CR1 in observation and in
models. Clearly but not surprisingly, most GCMs failed to
achieve a mean P comparable to observation. Likewise,
these GCMs do not match the observed P at high val-
ues (P > 40 mm / day). Only HadGEM2-A defies these
two behaviours of GCMs and achieved a precipitation rate

for CR1 that is similar to observation. However, all mod-
els, including HadGEM2-A, overestimate the incidence of
light rainfall (P < 5 mm /day), which is a result, again, not
surprising given the known tendency for GCMs to under-
predict light rainfall and overpredict heavy rainfall.
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Figure 3: Distributions of daily precipitation rate P of CR1
in observation (GPCP) and models. The dashed vertical
lines indicate the mean precipitation rates. Bin widths are
1 mm / day.

Notably, all models and observation have a jump in the
first bin (0 mm / day ≤ P < 1 mm / day). Such incid-
ences of low precipitation is uncommon in observation –
hence the very small peak – but is severely overestimated
in GCMs. This peak cannot be wholly attributable to the
occurrences of CR1 with no precipitation (P < 10−6 mm /
day), as such occurrences only contribute to 10.2% of the
counts in that bin in observation, 12.9% in IPSL-CM5B-
LR, 28.8% in MPI-ESM-LR, and insignificant amounts in
other models. In other words, GCMs are considerably
overpredicting the occurrences of CR1 with precipitation
that is very light but not zero. Curiously, the peak for
MIROC5 occurs in the next bin, but the cause for this is
unknown.

Figure 4 shows the distribution of grid-mean vertical
motion ω at various heights associated with CR1 in obser-
vation and in models. At 200 hPa, all models overestimate
the grid-mean ascending motion of CR1, i.e. producing
values of ω200 that are too negative (Figure 4a). Further-
more, at more negative values of ω200, e.g. ω200 = −0.3
Pa / s, many models overestimate the incidence of such
conditions by several times. This is also the case, albeit
at a lesser degree, for strongly descending motion, e.g.
ω200 > 0.1 Pa / s. Essentially, many of the models pro-
duce a spread in ω200 of CR1 that is too large compared
to reanalysis data.

At 500 hPa, some of these biases still exist but are less
clear (Figure 4b). Most models overestimate the mag-
nitude of mean ω500, but CanAM4 now has a positive
bias. Some models predict too frequent an occurrence of
ω500 at the tail-ends, but not as excessive as at 200 hPa,
primarily because such occurrences are more common in
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Figure 4: Distributions of grid-mean vertical motion ω at
(a) 200 hPa, (b) 500 hPa, and (c) 850 hPa of CR1 in ob-
servation (ERA-Interim) and models. The dashed vertical
lines indicate the mean ω. Bin widths are 0.01 Pa / s.

observation.
At 850 hPa, these biases become even more diluted

(Figure 4c). The models do not collectively overestimate
or underestimate the mean ω850, and the range of the er-
rors is narrower (∼0.05 Pa / s for ω850 as opposed to ∼0.1
Pa / s for ω200). In fact, many models perform reasonably
well in predicting the ω850 of CR1.

Nevertheless, one qualitative observation that is appar-
ent when comparing between Figure 3 and Figure 4 is the
relationships between the biases in P and in ω. For ex-
ample, HadGEM2-A has a distribution of P remarkably
close to observation, but it consistently overestimates ω
at all three levels, being one of the worst of all six models.
On the other hand, CanAM4 is probably the best when
judged based on its ω distribution, but its precipitation is

plainly too low. This raises the question of whether there
exist any relationship between the two errors, given that
both variables are closely related to the deep convective
process.

Figure 5 plots the biases in mean P against the biases
in mean ω200, mean ω500 and mean ω850 in a scatter dia-
gram. It is clear that there is a relationship between these
biases, with correlations that range from moderate (−0.54
at 200 hPa) to strong (−0.94 at 850 hPa). This means
models that overestimate the grid-mean ascending motion
of CR1 (too negative an ω) tend to produce precipitation
rates that is closer to observation. It should be pointed out
that ω in observation is obtained from ERA-Interim, which
may possess biases itself as determining vertical motion
remains a challenging task in numerical models. However,
this should affect, to first order, the absolute values of ob-
served ω (such as in Figure 4) and not the relative errors
of the GCMs to observation (such as in Figure 5).

12 10 8 6 4 2 0
error in mean P (mm / day)

0.12

0.10

0.08

0.06

0.04

0.02

0.00

0.02

0.04

er
ro

r i
n 

m
ea

n 
ω

 (P
a 

/ s
)

ω200: corr = -0.54
ω500: corr = -0.78
ω850: corr = -0.94

CanAM4
GFDL-CM3
HadGEM2-A
IPSL-CM5B-LR
MIROC5
MPI-ESM-LR

Figure 5: Scatter diagram of the errors (models − obser-
vation) in mean P and mean ω at 200 hPa (green), 500
hPa (red) and 850 hPa (blue).

Naturally, one must be cautious in interpreting the cor-
relations in Figure 5. To begin with, only six models are
considered, which makes the correlation highly vulnerable
to small changes in magnitudes of P or ω. In addition,
the correlations do not capture the range in mean values
between the models, which can be seen as an indication
of how well the models represent this variable. For ex-
ample, from Figure 4, one can infer that the models are
better at predicting ω850 than ω200, and yet the correlation
is much higher for the former than the latter. Therefore,
one should not place too much emphasis on the degree
of correlation, and the main message of Figure 5 is to
strengthen our previous observation that models tend to
do less bad in P when they overestimate the magnitude
of ω.

4 DISCUSSION AND CONCLUSION

In the previous section, we examined the properties of
CR1 in models through its geographical distribution, daily
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precipitation rates P and grid-mean vertical motion ω. The
CR1 regime describes an environment with considerable
amounts of high-topped and optically thick clouds, which
in observation indicates organised deep convection. We
found that models generally underestimate P and predicts
a value of ω that is too negative, especially at 200 hPa.
Furthermore, we discovered that these two errors are re-
lated, such that a model which overestimates the ascend-
ing motion tends to produce rainfall that is closer to obser-
vation.

The tendency for models to produce insufficient heavy
rainfall and too much light precipitation is a well-known
problem (Stephens et al., 2010). This issue, especially for
heavy precipitation, is often linked to convective paramet-
risation schemes (Sun et al., 2006). Current schemes do
not explicitly account for organisation (Yano et al., 2012),
assuming instead that such organisation can manifest
from the large-scale conditions that drive the schemes.
Notwithstanding, the GCMs studied here still develop the
high-topped and optically thick clouds of CR1, clouds
which in observation are indications of organised deep
convection. We conjecture that in order for GCMs to
generate sufficient quantities of such clouds (and precip-
itation) to produce CR1, the convective parametrisation
scheme exaggerates the area of deep convection, as evid-
enced by the excessive grid-mean ascending motion, so
as to compensate for the lack of convective organisation.

If this conjecture is true, then it is imperative to account
for the organisation of convection. Recent observational
studies have found that different degrees of organisation
may emerge from similar large-scale environments (e.g.
Tobin et al. 2013, Tan et al. 2013), bringing into question
the assumption that organisation can emerge from the re-
solved variables. Our conclusion is in line with the growing
body of evidence that organised deep convection needs to
be better represented in models, elevating the need for the
development of schemes that explicitly account for organ-
isation, such as Mapes and Neale (2011).

In conclusion, we studied the precipitation and vertical
velocity distribution of a cloud regime with a high incidence
of high-topped and optically thick clouds. In observation,
this cloud regime characterise an environment of organ-
ised deep convection. In models, however, this cloud re-
gime has too low a precipitation rate and too high a grid-
mean ascending motion. On the basis that these two bi-
ases correlate, we conjecture that the convective paramet-
risation scheme overestimates the area of deep convec-
tion to make up for the absence of convective organisation.
If so, this strengthens the need to account for convective
organisation in global climate models.
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