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It is obvious that the form of an organism is determined by its rate of
growth in various directions, hence rate of growth deserves to be studied
as a necessary preliminary to the theoretical study of form.
D’Arcy Thompson [82, p79]
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1 Introduction
The discipline of computer graphics has boomed over the last two decades, driven by
the film, video game, and design industries. The need for more complex, realistic and
detailed models has driven research into texture synthesis, rendering techniques, and
geometric modelling. It has become increasingly evident that the complex geometries
of organic form require new and different techniques. Generative methods, and specifi-
cally developmental systems, have been successfully applied in creative domains, how-
ever much research still needs to be done. These systems have not been completely
adopted into mainstream modelling because of their non-intuitiveness, complexity, or
restriction to specific domains. The goal of this research is to develop and successfully
use a new developmental system built specifically for the synthesis of complex organic
forms, such as those illustrated in Figure 1.

This confirmation report proposes research, and presents some current work, into
a new system for modelling organic form. Properties of organic form are outlined first
(§2) followed by a discussion of existing developmental systems and their limitations
(§3). Some ideas and research questions regarding a new system are then outlined and
a timeline for the research proposed (§4).

2 Modelling Organic Form
The complexity of biological organisms far surpasses anything man-made. The geo-
metric intricacy and variety unique to life has inspired scientists, mathematicians, and
artists to study, model and reproduce these forms. Computer-aided modelling of or-
ganic form is applied in disciplines such as architecture, industrial design, computer
games, films, and art. The design of useful methodologies to construct complex forms
such as those illustrated in Figure 1 is an important goal and is pursued by this research.

2.1 Modelling Methodologies
Surface modelling is the most common method in geometrical modelling and involves
the manipulation of vertices on a polygonal surface, the manipulation of control points
of an interpolated surface (see Figure 2), or the use other higher level tools (such as
the virtual sculpting of ZBrush [57]). These systems give an extremely fine-level of
control and are conceptually elegant, but have numerous problems when modelling
organic or complex forms. Firstly, complexity is an issue in these systems, as generally
the amount of work required is proportional to the number of vertices or detail of
the surface. Secondly, models are usually constructed in isolation which makes this
method unsuitable for modelling sets of interacting forms. Thirdly, the created model
is the geometry, which means that semantics in the model is lost and must be manually
added or bound to the geometry. An example of this is the concept of vertex groups
which allows the identification of groups of vertices of a polygonal mesh in order to
isolate semantic parts (e.g., leg, head, eye).

The explicit construction of geometry quickly becomes tedious when dealing with
highly complex models, and seems vastly inappropriate when the model being con-
structed has a concise description. High-level descriptions of structures can be used to
synthesize geometry [83, 71, 23]. This approach is easy to use and supports complex
shapes and properties such as symmetry, variation, and modularity (Figure 3 illustrates
a complex tree shape and the corresponding model). As the model is synthesized from
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Figure 1: Haeckel’s illustrations of Siphonophorae ([24, Plate 17])
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Figure 2: A subdivision surface. A coarse mesh controls the surface of an organic
looking object.

the description the complete semantics of the model remains, which provides many
benefits, including context-dependant synthesis, easy integration of intra-species1 vari-
ation, and varying level of detail.

These systems are difficult to tune as there are usually a large number of parameters
for a complex model (though using the aesthetic mutation/evolution metaphor [83] can
alleviate this somewhat). The problems with these methods in their current implemen-
tations is that the user is constrained to the set of primitives in the system (there is no
method of building new primitives) and there is limited interaction between compo-
nents. For example, Figure 4 illustrates that the spatial interaction between a trunk and
its branch is extremely naı̈ve and not at all reflective of the underlying growth process
binding the two. The method of creating a high-level description and synthesizing ge-
ometry from it is quite powerful, however the implementations so far have been quite
simple using descriptive terms that are generally nothing more than specific geometric
primitives or transformations.

Generative systems are an alternative approach to form synthesis. The general
concept is to design a procedure that generates a complex structure. This is analogous
to the execution of a computer program, the simulation of some natural process, or the
development of an organism. The generative systems that closely resemble the process
of biological development are called developmental systems.

Developmental systems (in particular, Lindenmayer or L-Systems) have been suc-
cessfully applied to the generation of complex plant-like forms (Figure 5). In many
respects they are a dichotomous approach to high-level modelling as they abstract and
simulate the low-level interactions of biological development. These systems abstract
the process of growth over time, and have many benefits, such as database amplifica-
tion (the ability to generate complexity from a small description), complex interactivity
between components, concise descriptions, time-varying sets of developing structures,
and environmental awareness. The primary disadvantage is that a large conceptual gap
exists between the model and the form it generates, making the creative process less
intuitive. The limitations of these systems are discussed in more detail later (§3).

Developmental systems are a powerful method of generating complex form and
provide many benefits over other current methods. This research attempts to resolve

1The term species is used here to refer to the set of objects with identical descriptions or models.
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Figure 3: Left: A complex model built with XFrog (Cuspressus example from
http://www.xfrogdownloads.com/Walli/ retrieved 25/03/2008.) Right: The high-level
description. The model consists of a trunk object with a specific profile and branches
generated by the variation object. The variation object randomly selects one of its
children, allowing structurally different branches to be distributed on the trunk. Some
other objects of note are the tropisms (wind and photo).

Figure 4: A close up of Figure 3 illustrating the crude interface between trunk and
branching.
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some of the issues of developmental systems by designing a usable developmental
system that can be used to generate shapes of a kind described in Section 2.2. Devel-
opmental systems are reviewed in Section 3.

Figure 5: A complex structure evolved using L-Systems. (McCormack, J. Morphogen-
esis Series #11, Lightjet print on archival paper, 1.5m x 1.5m, 2006.)

2.2 Organic Form
The beauty of nature is exemplified by the illustrations of the naturalist, biologist and
artist Ernst Haeckel (1834–1919). Kunstformen der Natur [24] provides many excel-
lent archetypes (e.g., Figure 1) for the type of form this research is attempting to model.
Haeckel’s illustrations are schematic rather than realistic [63], and it is this quality that
makes them suitable for defining properties of organic form. This section elaborates
on the concept of organic form as defined for this research.

If we consider the abstract shape in Figure 6 we can attempt to elucidate the proper-
ties of it which make it seem organic. At a brief inspection it has a smooth appearance,
a distinct head-tail axis, is radially symmetric (around a curvy axis), has a donut topol-
ogy, and has bulges. It has a distinct main body, and tentacles which are similar and
arranged in a tight packing around a particular band of the body. The tentacles them-
selves are bulgy smooth cones that have a distinct, dynamic and curvy axis and are
seamlessly growing out of the body. The tentacles in the back are a lot more complex
and have sub-tentacles growing out of them. From this description we can identify
many properties such as symmetry, modularity, materiality, hierarchy, physicality, and
growth. A formal definition assists the direction of the research.

A mathematical definition: A shape in three dimensions is a compact set whose
boundary is a smooth surface. In other words, a shape is a solid smooth three dimen-
sional form. Note that this definition excludes objects such as fractals, points, lines,
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Figure 6: The author’s replication of one of Haeckel’s illustrations [24, Plate 7:
Siphonophorae].

infinitely thin shells, rough surfaces, and discontinuous surfaces. We classify an or-
ganic shape as a shape that has one or more of the following properties.

Symmetry Symmetry is the property of sameness. Most organisms are either bi-
laterally, radially, or phyllotactically symmetric [34]. Some organisms are segmented
and have translational symmetry. Self–similarity exists in organisms, as well as other
natural forms [47]. Symmetry in natural systems is not as precise as the mathematical
definition of symmetry, and usually variation over the symmetric transformation and
between symmetric parts occurs. A modelling system should provide a mechanism for
producing the above mentioned approximate symmetries with a fair amount of control
over variation and symmetry type.

Hierarchy Molecules, Amino Acids, Proteins, Organelles, Cells, Tissues, Organs and
Organisms: this is a natural hierarchy constituent in all animals. Evolution results in
hierarchical organisms due to the inherent stability of hierarchical systems and con-
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struction [70]. At a visual level we can divide an organism up into a body, limbs,
hands, fingers, etc. This spatial hierarchy is also a temporal one when considering the
process by which these structures are developed. Flexible spatial and temporal hierar-
chies require a model that is limitless in the expression of detail on many scales.

Modularity Modularity is common to organisms in the form of limbs, cells, and or-
gans, for example. Modules are important as a design tool as they help encapsulate and
interface sub–shapes or logic in design. The organic, physical and epistemic bound-
aries of modules in organisms are sometimes well-defined (e.g., a skull) but usually
not (e.g., the boundaries of a limb seem undefined). Developmental systems usually
have defined concepts of modularity, however it is usually the emergent and ill-defined
modules that a user is interested in. Recognising and isolating these parts would be a
useful mechanism, but is a very difficult problem and has not yet been considered in
any implemented system. An artist using a system should be able to create and identify
modules, should be able to model a shape with specific modules in mind, and have
some control over the geometric or semantic interfaces between modules.

Physicality Physicality refers to the features of shape that imbue it with a sense of
physical existence. We can identify two separate contributors to this: the materiality of
the shape and the environment it inhabits.

Referring back to our discussion of Figure 6 we referenced terms such as bulgy,
smooth, and axis. These are material properties of the organism. Other terms describ-
ing materiality include: worn, eroded, fractured, rough, hairy, amorphous, and brittle,
however this research is concerned only with the properties of soft and volumetric
shapes like our archetype in Figure 6. Modelling systems have only recently appeared
[57, 3, 9] that incorporate materiality. Materiality in developmental systems has been
investigated with appealing results [35].

The notion that an environment exists is lacking in most modern form modelling
tools. In systems such as Xfrog [23] the environment is grossly abstracted into simple
idealised equations. Few systems incorporate interaction in space [36, 22, 85, 67], this
is primarily due to the computational complexity involved. Competition and interaction
in space helps arrange and give a strong sense of existence to form.

Topological Complexity Organisms are complex dynamic arrangements of cells and
matter, so ascribing a notion of topology to them is pointless. However, if we abstract
the skin (ecto- and endoderm) of an organism into a continuous surface with a solid
volume between, we can start to topologically describe them (Figure 7). We are also
concerned with the arrangements of modules and the relationships between them. Our
archetype (Figure 6) illustrates a complex set of spatial relationships that are dynamic
over ontological time. An appropriate modelling system would have to be flexible in
its modelling of spatial and temporal relationships.

L–Systems (§3.3) are powerful generative systems but are limited to branching
topologies. It is the goal of this research to design a system that is able to describe
more general topologies.
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Figure 7: Some topologies of different species of flat worms, hemichordates and lower
chordates. From [33, p2060].

3 Developmental Systems
Biological development is arguably the greatest success of nature. The self-construction
of an extremely complex multi-cellular organism from a single cell is a powerful phe-
nomenon. The study of the initial stages of development, embryology, can be traced
back to Aristotle in the fourth century B.C. [21, p5]. More recently, interest from ab-
stract [45], creative [61] and applied [73] point of views has led to the study of devel-
opmental systems: abstract systems that attempt to achieve the same representational
efficiency, generative capability and robustness of organismal development.

There are numerous established systems from theoretical biology, computer graph-
ics and artificial embryology that model structure or form and incorporate aspects of
biological development. Important surveys that cover these models include [43, 66, 20,
59, 58, 73, 41, 17, 6]. This section reviews the most relevant systems with a consider-
ation of the applicability or extensibility of these systems to model organic form.

3.1 Cellular Automata
The cellular automata (CA) approach is a simulation-based modelling methodology
that uses discrete time and space (and often state). Ermentrout and Edelstein-Keshet
[17] survey some biological applications and identify three main types of CA: deter-
ministic (von Neumann and Ulam’s original formalisation), lattice gas models, and
solidification models.

Deterministic CAs represent the system as a regularly connected set of (usually
finite state) automatons, which change state depending on the state of neighbouring
automatons. The concept of cell and space are one and the same, and it is generally the
case that an empty space is represented as a cell in a particular state. One of the first
and simplest models of cellular growth via accretion is the Eden model [15]. Branching
growth in CAs was studied by Ulam [86]. These ideas have been applied to computer
graphics to synthesize three dimensional form [22, 39]. Lattice gas and solidification
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Figure 8: An example simulation of the Eden process at 5, 50, 100, 200, and 500 time
steps. Simulated using [90].

Figure 9: Some realistic examples of Greene’s voxel space automata. [22, Figures 5
and 9]

models discretise space and model cells and molecules that move between sites. These
models have been used extensively to model various phenomenon, including growth
by diffusion limited aggregation [89], cell sorting [29, 30] and limb formation [8].

Eden The Eden model was introduced by Eden [15] to model the population growth
of cell colonies. The process begins with a single cell on a regular lattice and iteratively
grows the colony by adding a new cell at a site adjacent to the colony (determined
stochastically). The colony grows dense clusters with fractal surfaces (Figure 8). This
model is one of the simplest growth models possible.

Greene Greene’s voxel space automata models the growth of a structure through a
discretised three dimensional space. At each time step, the growing structure attempts
to add a new part to itself according to some set of rules (like available light, proximity
to some object, the result of an intersection test, etc.) Greene observed that some
complex structures arise (see Figure 9) through the interplay of probabilistic growth,
environmental effects, and feedback between the growth rules and space.

This model illustrates the expressive power inherent in a spatially embedded devel-
opmental system: the growth rules are simple, yet complex relationships arise from the
coupling between the rules and the space they act on. However, this model lacks the
ability to express detail across spatial scales (as it is tightly bound to its discretisation
of space) and is limited to accretive (boundary) growth. This makes it inadequate for
generating organic shape (as defined for this project §2.2.)
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Figure 10: One example of Kaandorp’s generated forms (original from
http://staff.science.uva.nl/ jaapk/example95.jpg retrieved on 27.03.08).

3.2 Kaandorp’s Coral Model
A developmental model of accretive growth that illustrates the combination of a ge-
ometric surface-based developmental model with a physical model of nutrients and
hydrodynamics is presented by Kaandorp and Kübler [36, 37]. The work is biolog-
ically motivated but successfully illustrates a model of surface growth and physical
simulation.

The developmental process is initialised with a triangulated sphere. A growth pro-
cess then repeatedly constructs a new triangulated surface around the old one. This
method is particularly interesting as it does not attempt to modify the old surface but
merely adds a new layer on top. This is conceptually appropriate for the accretive
growth processes it models. One growth process [37, §4.6.4] assumes that food par-
ticles are dispersed throughout the environment via diffusion and hydrodynamics and
that local growth is proportional to the concentration of food particles. A physical
simulation is performed to compute the distribution of food.

These experiments, when taken out of their biological context, reinforce the no-
tion that a simple growth logic combined with a physical model can result in complex
and organic forms (Figure 10). Kaandorp’s work is oriented towards the validation of
biological models of growth but could easily be applied to creative modelling.

3.3 L-Systems and Grammars
3.3.1 L-systems

L-systems were introduced by Aristid Lindenmayer [45] in order to describe the de-
velopment of multicellular organisms. Lindenmayer proposed that these systems could
integrate and express many facets of development including: gene control mechanisms,
cell lineages, organising centers, polarity, and allometry [28, Preface].

L-systems model cells as symbols and development with rewriting rules. An or-
ganism is represented as a string of symbols that develops through a process of paral-
lel rewriting. Different symbols denote different cell types or states. Developmental
processes such as division, differentiation, cell death, cell movement, and cell commu-
nication are all modelled by rewriting rules. The simplest class of L-systems are the
deterministic, context-free L-systems, denoted as D0L-systems2. A simple example

2The 0 (zero) stands for zero-sided. The alternatives are D1L and D2L-systems which, respectively, allow
one-sided and two-sided context dependant rules.

13



Figure 11: A D0L-system {ω : F, F → F [+F ][−F ]}. The interpretation of the
symbols are: F move in current direction one step while drawing, −/+ turn left/right
16 degrees, ‘[’ push the current position onto the stack, ‘]’ pop the last position off the
stack and move there. The sequence of drawings corresponds to the sequence of strings
generated by the system after (a) 0 steps, (b) 1 step, (c) 2 steps, (d) 3 steps, and (e) 6
steps.

which has the alphabet {a, b}, the axiom a, and a single transition rule is:

ω : a (1)
a→ ab (2)

We assume an extra rule exists that leaves b unmodified, i.e., b → b. The sequence
this system generates is a, ab, abb, abbb, abbbbb, . . . , abn, where bn indicates n con-
catenated b’s. L-systems were quickly adopted into formal language theory3.

L-systems can be used to synthesize shape by considering the symbols as drawing
instructions. The turtle-based interpretation is the most common method and uses the
concept of a drawing turtle or machine. The turtle exists in the drawing space and
reads each symbol in sequence performing commands such as draw line, turn, change
colour, store current position or reset position. Figure 11 illustrates an example. As
a form generating tool, L-systems are extremely powerful [61], furthermore they have
paralleled other grammar-based approaches to modelling shape. These include shape
grammars [75], collage grammars [13], graph grammars and grammars that operate
on polygonal surface representations.

L-systems are conceptually elegant as they use a simple but expressive abstraction
of development. From the perspective of computer science these systems are fast (as
they operate on symbolic strings) and are extremely expressive (context-sensitive L-
systems are Turing complete). However to generate realistic images various extensions
need to be used. These include the integration of continuous mechanisms [60, 59], the
modelling of physical and mechanical effects [35, 42], specifying explicit hierarchy
[87, 51] and coupling the developmental process more closely to the environment [56].
These extensions solve various issues but they corrupt the simplicity and elegance of
the original formalism.

Some of these extensions attempt to tighten the coupling between the discrete sym-
bolic representation space of L-systems and the continuous space and time they are
interpreted in. The difference between these spaces results in various issues, two of

3By considering the set of all organisms generated by a particular set of transition rules as a language we
can explore the generative power of various L-systems. One particularly interesting result is that context-free
Chomsky grammars form a proper subset of context-free L-systems. See [28, 64, 65] for a comprehensive
survey of results in this field.
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Figure 12: Translating the upper rectangle on the left image down by some amount
creates an emergent rectangle (highlighted in grey).

which limit these systems being applied to the generation of organic form. Firstly, the
topologies of the generated forms are tied to the topology of the representation4. Sec-
ondly, the interaction amongst components in the interpretation space is not reflected
in the representation space (e.g., the overlapping lines of Figure 11(e) are not reflected
in the symbolic description), requiring extra scaffolding to bind them more closely.

3.3.2 Other Grammars

The term grammar has been applied so broadly that it now loosely refers to any sys-
tem whose changes can be described using sets of replacement rules that replace one
component, sub-structure, sub-shape or schema with another.

Shape Grammars Shape grammars [76] are a formalism for describing transforma-
tions on shapes. A shape grammar usually consists of an axiomatic shape and a set of
transformations that act on shapes5. It differs fundamentally from other grammar-based
systems as it works directly on shapes, rather than symbolic representations of shapes.
This makes systems difficult to implement because they require shape recognition and
an extremely flexible internal representation. Shape grammars are inherently more
powerful than symbolic systems due to ambiguity within shapes and the emergence of
new shapes (Figure 12). This feature makes shape grammars ideal for art, architecture
and product design where emergent shapes contribute greatly to the aesthetic.

Shape grammars have been applied to the design of Palladian houses [77], Chinese
Lattices [74], Coffee Makers [1], and Coke Bottles [7], amongst others [7]. It is use-
ful to analyse the process of constructing these grammars, as they provide a practical
application of reverse engineering a set of shapes into a (relatively) concise grammar
specification. Shape grammars demonstrate the powerful consequence of having rep-
resentation and interpretation exist in the same space. This concept is referred to as
embeddedness in this report, and is a key component of the proposed system.

Polygonal Surface Grammars L-systems and grammar-based approaches have been
extended to operate on polygonal surfaces [27, 46, 72]. These address the topological
limitation of L-systems and provide generative methods for complex surfaces. These
methods have been applied to the generation of architectural and biological shapes,

4For example, strings are one dimensional, which constraints their practical representational ability to
one dimensional or tree structures.

5The term shape here is rather loosely interpreted but is usually restricted to a formally constructed object
from primitives (points, lines, polygons, surfaces, etc.)
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however none have incorporated the ideas of embeddedness, physicality, or the bio-
logical development analogy. Surface-based representations are more expressive than
string-based representations but still lack the ability to model internal growth and the
resulting physical effects.

3.4 Matela’s Triangulated Graph Model
Triangulated graphs have been successfully used to model cellular layers and applied
to theoretical studies of cell self-sorting [48, 49, 50, 62]. This research was specifically
targeted at modeling cellular layers, of which a two dimensional approximation was
adequate. Other representations have been investigated including using Voronoi [31]
and polygonal regions [88].

General Model Matela and Fletterick’s general model [48] uses a planar map to
model sheets of cells: regions represent cells and edges represent cell boundaries. The
resulting complex then approximates cells of polygonal shape that are densely packed
(see Figure 13.) Allowing cells to have an arbitrary polygonal shape is the primary
rationale behind the development of this model, as it provides greater flexibility over
previous (hexagonal or rectangular grid-based) models in topology, cell size and cell
shape [48].

Figure 13: A cellular layer. Cells are modeled as densely packed polygons. The topol-
ogy of the complex is given by the dual of the map (the dotted graph).

When reasoning about the model it is conceptually simpler and more mathemat-
ically tenable to consider the dual of the cell map rather than the map itself. Under
this interpretation we consider cell layers as planar graphs where cells are nodes and
edges indicate neighbourhood relationships. In this formal model there are three basic
operations that do not modify the cells: insertion, deletion and exchange of edges (see
Figure 14).

Triangulated Model Matela and Fletterick show that the general model results in
unstable networks from a biological perspective [48]. They restrict their attention to a
specific instance of the model: the triangulated graph (or trivalent map). This reduces
the set of primitive operations to the single operation of edge exchange (since the other
operations would void the triangulation requirement.)

Using just this operation and two cell types it was shown that cell self-sorting can
occur under different conditions [49]. The model was later extended to incorporate
cell division [50] and death [14]. The rules for cell division where based on a series
of division masks which combinatorially enumerated all possible subgraphs in which
a cell might divide and provided a transformed subgraph for each. The rules attempt
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Figure 14: A cellular layer (a) has an edge inserted (b) resulting in a change in topol-
ogy. It then undergoes an edge exchange (c) and an edge deletion (d). These cases
demonstrate the effects of the primitive operations of the topology (dotted graph) and
the conceptual cell map.

Figure 15: A cell complex (a) with a migrating cell (shaded). The cell moved towards
another cell in (b) (modelled as an edge exchange) then divided in (c).

to balance out the neighbourhood links of a dividing cell equally between its daughter
cells.

Matela et al. noticed that this division mechanism often resulted in cells with very
large numbers of neighbours, so they provided a balancing mechanism that allowed
cells with more than nine neighbours to locally rearrange themselves through edge
exchanges[50]. Figure 15 depicts a complex cell layer with an edge exchange followed
by a cell division.

Extension To Three Dimensions Ransom and Matela [62] present an extension of
this model to three dimensions, however it is still limited to cellular layers and gen-
erally not applicable to more complex shapes. The extension and embedding of this
model within three dimensions is the structural and geometric basis behind the pro-
posed developmental model.

3.5 Artificial Embryology
The study of abstract developmental systems is known as Artificial Embryology (AE)
(and is also known as Computational Development or Artificial Ontogeny). It is driven
by the need to autonomously create very complex systems such as neural networks,
robots, and other systems by harnessing principles in biological development. AE is
primarily concerned with the evolution of these structures rather than building them via
a user-directed creative process. We consider a select few systems from AE to illustrate
different developmental abstractions (a recent survey categorises others [73]).

Streichert et al. presents a complex system that grows groups of cells [78]. They
evolve the organisms to be limited in their growth (i.e., to grow to a certain size and
stop) and to self–repair if damaged. Their model incorporates continuous space, is
structure–oriented, and has dynamic neighbourhood relations between cells. Cell be-

17



haviour is controlled by Random Boolean Networks (RBNs) and S-systems. They
also implement endogenous communication between cells. Their model incorporates a
simple physics in which cells have a uniform size and attempt to attach to their seven
closest neighbours. Adhesion forces the cells into stable configurations. This structural
model is simple and elegant, however an extension to three dimensions does not seem
plausible.

Fleischer developed a continuous, mechanism–rich framework that integrates me-
chanical interaction (collision, adhesion) and intracellular processes ( transcription,
regulation, kinetics, transport, metabolism, a cell surface protein model, cell lineage,
cleavage plane control, neurite growth, and electrical activity) [19]. This model in-
corporates the connectionist ideas of Mjolness et al. [55] and illustrates a method of
abstraction that is closer to physical reality than other systems. Fleischer used his sys-
tem in an evolutionary way, attempting to evolve simple structures with concepts of
modularity, hierarchy, and symmetry. This system is more suited to generating net-
works of interacting components (like a neural network) than geometric form.

Dellaert and Beer explored the evolution of a developmental model for autonomous
agents with a simple morphology and control system [12]. Their model is divided into
the organism, cell, and biochemical levels. At the lowest level the DNA is represented
as a bit vector where the genes are the individual bits and have an on or off state.
The dynamics between the genes are modeled by an RBN. Each cell contains a bit
vector indicating which genes are active, this is updated at each time step using the
current state and the state of its neighbours (iterated repeatedly until the network enters
a stable state.) The cell divides if a certain gene is activated. Other mechanisms,
like communication and differentiation are also included. A key result of this paper
is that the evolution of the agents effectively reinforced and extended a developmental
pathway (in the RBN) that eventually built successful agents. This research presents
an extremely abstract model of cell division, differentiation, communication, and gene
regulation that motivates the interesting question of what is the appropriate level of
abstraction in a developmental system.

Eggenberger describes an AE system that can generate interesting and simple shapes
out of connected cells [16, 32]. His goal is to evolve simple forms through the inter-
play of a simple developmental system, evolution, and a simple physical environment.
He notes that the inclusion of an artificial physics assists the evolutionary process in
finding specific forms. This balance of development and physics is emphasized in this
research project.

3.6 Morphogen Models
Turing showed in 1952 that complex patterns can arise from simple systems of inter-
acting chemicals or morphogens [84]. Turing postulated that these reaction-diffusion
systems exist in biological systems and assist in coordinating the spatial expression of
genes. This has recently been confirmed [69]. These systems have been investigated
deeply [53, 54] and applied to the creative synthesis of complex patterns (Figure 16)
[85, 67]. More recently, these systems have been coupled to geometry to investigate
morphogen-directed growth [25, 44, 10].

Leung and Berzins present an interesting computational model of development
[44]. They link concepts of cell bio-chemistry and surface deformation to model sim-
ple developing shapes (Figure 17). Their model uses a reaction-diffusion simulation
of morphogens on a surface. The surface curvature is locally altered by the presence
of morphogens, thus tightly coupling the surface geometry and cell chemistry. This
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Figure 16: A complex reaction-diffusion pattern (original from [67, Figure 15].)

Figure 17: Leung and Berzin’s model of a developing polyp (from [44, Figure 9]).

system successfully demonstrates that patterning combined with surface alteration can
produce organic forms.

These systems are targeted at demonstrating principles in theoretical biology, and
are not creative systems. Their application to the creative modelling of organic form is
hindered by a few reasons:

• the reaction-diffusion process is notoriously hard to control;

• these systems lack important developmental processes such as apoptosis, mito-
sis, and migration;

• the geometric representations prevent topological changes; and

• growth is limited to the surface;

3.7 Conclusion
The reviewed systems demonstrate that the developmental metaphor is a powerful tech-
nique when modelling form or process. The goal of this research is to apply this
metaphor to the creation of complex and organic form and demonstrate a working sys-
tem. The systems reviewed are all, at some level or another, too limited for the specific
research goal. With these limitations in mind we present five main principles that guide
the development of a new system:

embeddedness the representation and interpretation of shape spatially co-exist;
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geometrically expressive the representation can approximate arbitrary organic shapes
(as defined in §2.2);

biological relevance the system should have facilities to efficiently and accurately im-
plement models from biology;

physicality aggregate or differential effects of physical forces should be easily incor-
porated; and

efficiency the system should be fast, and can trade-off accuracy for usability.

We now present some ideas for a new developmental system.

4 A New Developmental System for Modelling Organic
Form

This research project involves the design, implementation and analysis of a develop-
mental system that supports the generation of complex organic geometry. Research
and experimentation to date has led to a preliminary design and partial implementation
of a new system, the simplicial developmental system (SDS). Further research is still
required to expand the detail and compare design choices in this system. This system
uses processes from biological development and physics to grow three dimensional
solid forms that have the properties outlined in Section 2.2. It is inspired by a number
of models from theoretical biology [48, 53, 53], computational development [78, 19, 2],
and computer graphics [61], and attempts to address the major limitations inherent in
previous systems (§3). The model incorporates physical effects such as adhesion, elas-
ticity and spatial constraints that help organise the shape and drive development. The
theoretical basis of the model has foundations in engineering, computational geometry
and theoretical biology.

This section describes the components of SDS, including the shape representation,
transformation rules, physical constraints, and the mechanisms underlying cell commu-
nication, organisation, and autonomy. Two models from biology already implemented
in this system are presented. Finally some interesting further research questions are
posed.

4.1 Structure
The structural aspects of SDS build upon the triangulated graph representation of cell
layers (§3.4) and extensions [62, 14]). The proposed system generalises it to the con-
cept of a pure simplicial n-complex in n-space controlled by adhesive cells compet-
ing for space. Compared to the original model, the domain of use and advocacy for
the representation is different, since we are not bound exclusively by biological rel-
evance6. The rationale for this representation is driven by computational, geometric,
and physical constraints.

6The gap between the real and artificial should ideally be small for the sake of implementing models.
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4.1.1 Representation of shape

Numerous theoretical and computational models of shape exist, including interpolating
representations, implicit and explicit surfaces, iterated function systems, and construc-
tive solid geometry (see e.g., [5],[18, §7],[68, §9.7],[4] and [52]). We outline some
discrete methods and motivate the choice of the simplicial complex as the representa-
tion sheme of SDS.

Discrete models The representation of shape by collections of discrete elements is a
common strategy in computer graphics.

Polygonal surface representations approximate surfaces with basic connected ele-
ments such as triangles or polygons. It is applied primarily in the geometric modelling,
computer graphics, and film industries. Modern graphics hardware deals with this rep-
resentation natively and numerous creative applications exist that directly support this
model. Subdivision surfaces (see e.g., [91]) extend this model with mechanisms to help
approximate smooth surfaces and handle varying levels of detail. Some grammar-based
generative systems have been developed that work with this representation (§3.3.2).

Volume discretisation methods use simple solid components such as cubes, hexa-
hedra or tetrahedra. The voxel approach (§3.1) is an extremely fast and conceptually
simple method; however, its major disadvantage is that it cannot represent multi-scale
detail well. Tetrahedralisation of volumes is more flexible and has been successfully
used in the popular Finite Element Method of computer-aided engineering. Recent
techniques for realtime physical simulation of tetrahedralised volumes [80] have pop-
ularised this representation.

The discrete representation is the most appropriate for a form generating develop-
mental system. Most of the systems reviewed (§3) use a discrete representation as the
correlation between cell (or homogenous module) and discrete element provides an el-
egance and simplicity to the conceptualisation and implementation of developmental
models. Moreover, the local specification of discrete elements and resulting aggregate
form maintain a close biological relevance (§3.4). The concept of a simplicial complex
generalises the tetrahedralisation and triangulation representations, and is used as the
geometric representation of shape in SDS.

4.1.2 Simplicial Complexes

An m-simplex is defined as the convex hull of a set of m+1 affinely independent points
(i.e., no three points are co-linear, no four points are co-planar, etc.) Hence, a triangle
is a 2-simplex and a tetrahedron a 3-simplex. A simplicial complex is a set of simplices
with the restriction that the intersection of any two simplices is a point (0-face), edge
(1-face), or face (2-face). Furthermore, a pure simplicial k-complex is composed only
of k-simplices and their intersections, it is this restricted type that forms the shape
representation scheme of the system (see Figure 18).

Restricting our attention to two and three dimensional space, these structures are
sets of edge-connected triangles (in 2-space) and face-connected tetrahedra (in 3-space).
Approximating surfaces or volumes with simplicial complexes has numerous benefits
over other representations. These include:

• conceptual simplicity;

• generality (can be used in an arbitrary number of dimensions);
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Figure 18: A pure simplicial 2-complex.

• computational efficiency;

• support of multi-scale detail;

• flexibility (can approximate arbitrary volumes and model complex topologies);
and

• the support of modern tools (many current tools support operations on this repre-
sentation, hence the developmental system could readily be integrated into such
tools).

SDS in n dimensions uses the n-simplex as an abstraction of a homogenous part of
a developing system. A pure simplicial n-complex represents a multi-cellular system.
Conceptually, the shape is a solid entity that has spherical cells at the vertices of the
simplices with the edges defining a direct-contact relationship between cells (see Figure
19). The size and shape of the simplices are governed by the sizes of the cells, as
discussed later §4.3.

4.2 Transformational
Early development consists of processes such as: cleavage divisions, pattern formation,
morphogenesis, cellular differentiation and growth (see e.g., [21]). We are primarily
concerned with morphogenesis, the process by which cells proliferate, organise and
form complex structures. The fundamental processes that drive morphogenesis are
(from [21, p13]):
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Figure 19: A set of cells and the corresponding simplicial complex.

• cell division;

• cell shape changes;

• cell movement;

• cell growth;

• cell death; and

• changes in the composition of cells and secreted products.

These fundamental operations on the simplicial representation are now defined.
The core operations in SDS that modify shape include cell division, cell growth, cell
movement, and cell death. These rules are given explicitly for two dimensions and
are based on Matela’s model §3.4. The three dimensional rules are yet to be formally
defined and constitute part of the ongoing research.

4.2.1 Cell Division

Cell division, or mitosis, involves a complex process of genome duplication and mem-
brane cleavage [21, p111]. It is this simple action that provides the multitude of cells
that constitute a multicellular organism (a Metazoan). Most developmental systems
use an axiomatic notion of cell and thus incorporate a division operation.

In the proposed system, there is no concept of nucleus or membrane, and the con-
tent of the cytoplasm is abstracted to a set of continuous values (see §4.4). Division is
abstracted to a process that replaces one cell with two daughter cells each half the size
of the parent and with a distribution of state variables governed by the cell program.
This division is usually symmetric.

We assume that upon cell division the two daughter cells are adjacent. We also
require a direction or axis of division7. The complex topology of the representation
requires that the local connectivity of the mother cell be distributed and reorganised
around the daughter cells, and here we follow Matela’s approach §3.4 by requiring that
the distribution is as equal as possible. A distinction is made between internal division
and division on a boundary.

7In a cell program this direction could be omitted, where it would then be computed to be the direction
of least resistance (i.e., the direction that results in the system with least energy).
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Figure 20: The process of internal cell division with an even number of neighbours. (a)
The cell has elected to divide in the direction shown. Using the direction of division
we (b) divide the mother’s neighbours into front and back and connect them to the
daughter cells. We reach a situation where the local structure must be re-triangulated.
We can do this in two ways. By (c1 or c2) assigning an equal number of neighbours
to each daughter. This results in one of two situations which can be selected based on
some criterion (e.g., minimise total length of edge connections). (d) The alternative is
to create a more symmetric topology by adding extra cells.

The general division procedures provide two alternate methods: one that uses sta-
bilising cells, and one that doesn’t. It is currently unclear which method is more ap-
propriate, hence both are presented. The final system will incorporate one of the two
alternatives.

Internal division Figure 20 illustrates the division of a cell internal to a complex.
Two alternate methods are proposed. One key part of this research is to investigate
both methods and determine which is more suitable for the application domain. If a
cell has an odd number of neighbours and divides then an asymmetric distribution will
occur. We abstract the notion of “direction of division” to “division into an attached
simplex”, as illustrated in the formal procedure for division given in Figure 21.

Boundary division There are two types of boundary division, along the boundary,
and away from the boundary (Figures 22 and 23).

Stabilisers The division rules mentioned above give two alternate rules: one that
includes special balancing cells, and one that excludes them. It is not yet obvious
which method is more appropriate for two dimensional and three dimensional systems.
The inclusion of these stabilisers results in increased structural complexity and stability
(it seems) in the growing shape; however, they also raise a few semantic issues. The
biggest problem is: what should the active genome and state of these stabilisers be?
We could attribute to them an interpolated state of their neighbours, however this may
result in cell programs that are hard to control or specify. The alternative option is to
reserve a special stabiliser gene that is activated upon their introduction.
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(a) (b) (c)

Figure 21: A cell division algorithm. (a) The input to the procedure is an internal cell
c and an adjacent face f1. The cell can have an arbitrary number n of neighbours. (b)
The first step is to order the remaining n − 1 faces f2, . . . , fn using a breadth–first
traversal of the adjacent face neighbourhood graph. (c) Remove the mother cell and
replace it with two connected daughters denoted the fore, cf , and aft, ca, cells. The
faces are divided equally among the daughters with faces f1 to fbn/2c connected to cf

and faces fbn/2c+1 to fn connected to ca as shown. If n is odd then ca will have one
more connected face than cf . We identify the cells a and b, which form part of new
simplices (a, cf , ca) and (cf , b, ca).

Figure 22: Cell division on a boundary. Division along the boundary. The upper figure
demonstrates the trivial division of a cell with an odd number of neighbours. The
lower figure illustrates a non–triangular region that can form when dividing, which can
be re-triangulated either asymmetrically or with a peripheral stabilising cell.
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Figure 23: Cell division on a boundary. Division away from a boundary results in two
cases, (a) one-sided or (b) symmetric. A one-sided division results in a quadrilateral
which must then be triangulated into either (c1) or (c2). Note that (c1) is the more
stable configuration as the all cells have more than two neighbours.

An appropriate default behaviour for the stabilisers is to be unresponsive to stimuli,
diffusing any protein that enters it (behaving essentially as empty space). The cell
could self-destruct if it deemed the surrounding space stable, or could merge together
with other stabilisers it came into contact with, leading to a larger, simpler structure.

4.2.2 Cell Growth

Cell growth combined with mitosis results in a massive change in size during develop-
ment. Different rates of growth (allometry) are evident in developing organisms (for
example, a comparison of a human baby to an adult reveals a proportionally differ-
ent skull size). Some developmental systems ignore this [12] but for an abstraction of
morphogenesis cell growth is essential.

The capability of the simplicial complex to represent detail on many scales is only
useful if mechanisms are in place that can modify the size and shape of the simplices.
Cell division is one mechanism, cell growth is another. SDS abstracts cells as perfect
spheres with a centered point mass. The system can control the radius and mass of the
cells. This is done through two state variables dr

dt and dm
dt which can be input to or

output from the cell program (see §4.4).

4.2.3 Cell Movement

The movement of cells in an organism or developing embryo is an important process in
its self-assembly. Cell movement supports: the aggregation of dispersed cells; the relo-
cation of groups of cells; the dispersal of locally manufactured cells around the organ-
isms; and the formation of connective cell networks [11, p96]. It has been extensively
demonstrated that cell movement (through differential adhesion) can self-organise spe-
cific structures and patterns [48, 30].

The model of movement of cells used here is essentially the same as Matela and
Fletterick’s model (§3.4). They consider cell movement as the addition or removal
of edges, which in a triangulated system can be reduced to the exchange of edges. In
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addition to this, Duvdevani-Bar and Segel [14] consider the positions of cells and allow
cells to move through space while undergoing neighbour exchange.

Two dimensional movement is illustrated in Figure 24. A cell can elect to move
through space, and in doing so the topology of the complex changes around it. The
fundamental operation of the edge-exchange is applied here as described in Section
3.4.

Figure 24: Cell movement through space and the exchange of edges.

Conceptually, cell movement in three dimensions uses the same ideas as the two
dimensional case, however the edge-exchange operation is more complex. Edges can
belong to more than two simplices and, as Figure 25 demonstrates, local manipulations
can propagate throughout the mesh.

The explicit exchange of neighbouring cells has not been considered with respect
to the triangulated graph representation. Trivially it involves swapping two adjacent
cells. This form of cell movement is more abstract and possibly more appropriate for
our circumstances. However, a problem with this method is that it involves a discrete
jump in the state of the system that may destabilise the simulation.

4.2.4 Cell Death

The death of a cell can arise necrotically from poisoning, membrane rupture, physical
stress and starvation. Cell death can also be a programmed part of development where
it is referred to as apoptosis [21, pp158–160]. This can be advantageous to an organism
by redistributing resources or creating specific structures. The formation of mammalian
fingers or toes via death of inter-digital tissue is a prime example of the use of apoptosis
[21, pp522–523].

Cell death in the system is based on Duvdevani-Bar and Segel’s model [14]. They
describe the process of cell death as the slowing down of activity and successive re-
moval of connections to neighbouring cells. This procedure uses the edge exchange
actions used in cell movement and is described in Figure 26. Apoptosis of boundary
cells is trivial.

In three dimensions a cell with four neighbours can remove itself trivially (Figure
27). With more neighbours the procedure follows that of the two dimensional case,
sequentially severing neighbourhood connections (via the edge-exchange operation)
until it forces itself into a four neighbour state.

4.2.5 Further operations

Additional operations that affect topology could easily be integrated into the system.
The system is quite amenable to additional operations, including many which are not
biologically motivated, yet may be useful. These include fusing cells together, subdi-
viding regions, and modifying connectivity of cells. The geometric operations could
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Figure 25: (a) Any edge in a tetrahedral complex can be part of many tetrahedra (six
in this example.) An edge exchange operation can be performed by removing the
edge of interest and connecting two unconnected vertices (b) belonging to the adjacent
tetrahedra. However this invalidates all of the connected tetrahedra (c) so the vertices
must all be re-triangulated (d). This may result in other edges being flipped (e) which
will then propagate throughout the complex.

(a) Cell death in Duvdevani-Bar and Segels model [14]. The inner cell elects to die and sequen-
tially severs its adhesion to neighbouring cells. Once it has three neighbours it is then destroyed,
implicitly preserving the triangulation. In our model this sequence could execute over time.

(b) Another approach could be to remove the cell and all connecting edges, then to re-triangulate
the local structure. This could incorporate some stability criterion to ensure the resulting structure
is appropriate.

Figure 26: Death of internal cells.
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Figure 27: A cell with four neighbours is internal to a larger tetrahedra and so can
remove itself without a propagating effect.

Figure 28: A fracture operator could detect when large forces are separating two cells
and remove the edges when appropriate.

be used to refine and clean the mesh or allow an adaptive level of detail. This is out of
the scope of the current research however, and is left for future consideration.

Fracture Cell death in the development of autopods (e.g., hands) allows the disin-
tegration of webbing and separation of digits. The cell death mechanism mentioned
above (§4.2.4) maintains the local connectivity of cells, and hence by itself would not
support a digital separation model. Consider the cell complex in Figure 28 and the
possible large forces that are separating the highlighted cells. An operation to remove
the links between cells would be beneficial when implementing features such as this.

Adaptive Structure As noted by Matela et al. [48] after many divisions the triangu-
lated graph becomes biologically unstable. Their system balances the mesh by forcing
cells with large amounts of neighbours to disconnect from the extra neighbours through
edge-flipping. The same problem occurs with this representation and it is beneficial to
require that the mesh remain as uniformly triangulated as possible. This ensures that it
is physically more stable and approximates as best as possible the shape and aggregate
effects of cells. The method of Matela et al. is appropriate, however it is a purely
topological method. Research into maintaining a stable structure constitutes part of
this project.

4.3 Physicality and Embeddedness
The physical elements of our world that affect ontogenetic and phylogenetic develop-
ment include gravity, pressure, surface tension, temperature, radiation, magnetic fields,
friction, viscocity, and adhesion. Evolution exploits these physical rules to generate
functional forms with minimal cell behaviour. For example, using just differential cell
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adhesion Hogeweg demonstrated that a variety of natural patterns such like segmenta-
tion and budding could form [30].

Embeddedness was referred to in the previous section with respect to space. To re-
iterate: the system is spatially embedded because the representation and interpretation
of the structure are in the same space. The space in which the shape exists can be ex-
tended to include the concept of physics (or other rules about the world). Incorporating
physical rules into the output space affects its capability of containing specific forms.
We call this physical embeddedness. The intrinsic incorporation of these rules is a key
feature of this system and is considered vital to shaping organic forms.

The importance of physicality within the space becomes evident when we consider
the coupling between the properties of cells, simplices, edges, and the effects of various
transformations. This coupling should reflect the properties of the space. To provide a
biologically and physically appropriate system a method for linking these variables is
established. This method provides:

• structure and volume conservation: a growing part of the shape should force
its surroundings to expand/organise around it, regions of the shape should resist
being compressed, and

• an overlapping constraint: no simplices should overlap.

4.3.1 Structure and Volume Conservation

As cells proliferate, move, and die, the effects on the organism are topological, geo-
metric, and physical. A homogenous collection of proliferating cells can be considered
as an expanding region that forces other neighbouring regions to change, which in turn
propagates further changes throughout the developing embryo. These effects are gov-
erned by physical laws.

The effect of cellular actions have been defined topologically, what remains is to
define the geometric effects of these actions. The relationship between the geometry
of the cells and the simplicial complex first needs to be defined. Loosely framed, the
position, size and topology of the cellular complex define the shape and topology of
the simplicial complex. The edges of the complex represent the adjacency of two cells,
and hence should have a length equal to the sum of the two cell’s radii. An ideal
situation is presented in the left part of Figure 29 in which the cells can be arranged so
the lengths of the edges of the simplices are the same as the sums of the adjacent radii
of cells. The right hand side illustrates the more common scenario where this doesn’t
occur, however the edges still represent an adjacency relationship and so the cells are
conceptually being stretched or squashed.

A cell that changes size or position will effect the local shape around it. We model
this by giving each edge a preferred size, which is the sum of the adjacent cells’ radii.
We incorporate physics into SDS using the concept of elastic potential energy. The
energy of the system is:

E1 =
∑

e∈edges
kde |length(e)− preferredlength(e)|2 ,

with kde representing the strength of the adhesion. Furthermore we can include a
volumetric constraint on the simplices that assist in enforcing nice simplices. This can
be modelled by calculating a preferred volume for each simplex from its adjacent cells,
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Figure 29: A collection of cells and the simplicial complex representing its topology
and spatial organisation. A cell changes its size causing the simplices to be changed.

and then defining a similar energy:

E2 =
∑

s∈simplices
kvs |volume(s)− preferredvolume(s)|2 ,

with kvs representing volumetric conservation strength. We then define the best shape
as the shape which minimises E1+E2. Approximating cells as point-masses and using
newtonian physics, we can specify the dynamics of the system as:

∂2c

∂t2
=

f(c)
mc

,

for each cell c, where mc is the mass and

f(c) =
∑
e|c∈e

− ∂

∂x
E(e),

summing over all edges and simplicial elements.
Teschner et al. provide a method of local volume and structure conservation [80]

that uses a similar model, is conceptually elegant, fast, and supported by fast collision
detection and analysis [79, 26]. The algorithms underlying these methods have been
implemented and constitute the physical component of the three dimensional imple-
mentation of SDS.

4.3.2 Spatial Constraints

An important physical property of the system is that no two elements overlap in space.
The mathematical description of shape requires that no two simplices overlap in space.
The volume and structure constraints specified above do not maintain this constraint.
The fast collision detection and penetration depth algorithm by Teschner et al. [79, 26]
has been implemented in the system. This ensures that no cell penetrates an element.
This technique is not exact but provides a visually acceptable and fast approach to
approximately enforcing the overlap constraint.

4.4 Information, Communication, Organisation and Autonomy
The success of development relies heavily on the ability of cells to organise and coor-
dinate their actions. This requires cells to be able to disseminate, obtain and process
information.
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4.4.1 Communication

Cells communicate via the use of proteins and receptors which bind to them. Once
bound the receptor releases another protein internal to the cell which results in a series
of reactions usually ending in the activation or repression of a particular gene. Sig-
nalling can also occur by passing proteins through special gap junctions in the cell
membrane of adjacent cells. As an abstract mechanism we can considered proteins
as messages that move through an organism and modify the behaviour of cells. Inter-
action of proteins can generate patterns [69] (postulated by Turing in 1952 [84]), this
reaction-diffusion mechanism has been heavily explored in mathematical models [53].

The coordination and organisation of the developing embryo and complex organs
such as the vertebrate eye [21, p143] rely extensively on communication amongst cells.
The diffusion and decay of protein throughout cellular or syncytial complexes can set
up morphogenetic gradients which cells can use to infer coordinate systems or posi-
tional information [21, pp63–66]. Many aspects of shape in organisms rely on these
gradients hence SDS incorporates a continuous signalling mechanism that abstracts
protein diffusion.

In our developmental system we assume the following

• There is a finite set of proteins;

• Every cell accepts and diffuses all proteins;

• Cell membranes are negligible;

• Protein can be manufactured or destroyed (from nothing) in a cell;

• Proteins transport around the organism via diffusion (at a protein specific diffu-
sion rate); and

• Proteins decay over time.

To model the diffusion of proteins through the shape we need to balance simplicity
and accuracy. Figure 30 illustrates some different alternatives. Option (b) provides the
simplest approach capable of modelling morphogenetic gradients. This results in the
following assumptions about the biological relevance of this model:

• Proteins only exist inside cells where they can be measured by a continuous
proportion (0 empty, 1 full);

• Signalling is juxtacrine8, occuring only between adjacent cells along edges of
simplices; and

• Diffusion is isotropic.

Diffusion of protein occurs between cells and degradation of protein occurs within
cells. These are modelled together using the Fickian law of particle diffusion:

∂P

∂t
= DP∇2P − CP P,

where DP is the diffusion rate of the protein and CP is the decay rate. This is discre-
tised according to the selected diffusion approximation (in this case: Figure 30(b)) and
assumptions.

8Cell signalling in early development can be categorised as juxtacrine or paracrine. Juxtacrine signalling
occurs between two neighbouring cells by passing proteins through gap junctions in the shared membrane,
and paracrine signalling involves diffusing proteins through the extracellular matrix (over short distances).
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Figure 30: (a) The ideal model, where protein diffuses continuously throughout the
shape. The simplest approximation to this is to (b) restrict the protein to be internal (and
uniformly so) to cells. Alternately, we can model the protein internal to the simplices
and either (c) constant across the simplex or (d) varying. Another approach would be
to (e) discretise the space the shape is inhabiting and use that to model the protein
distribution.

4.4.2 Autonomy

The universal abstraction in developmental systems is that of the autonomous cell.
There are many different models of cellular autonomy, all abstracting the role of the
genome and the effects of proteins. We can identify some different general schemes,
which from most abstract to most biologically appropriate are machine (turing, pro-
gram, automaton), grammar, regulatory network, and connectionist.

Some systems use an imperative programming approach (e.g., the Cellular Pro-
gramming Language [2]). The cell is conceptualised as a computer that communicates
and executes logical instructions in sequence. An alternate approach could be to use a
parallel communication calculus (such as Π-calculus) that would be more appropriate
in modelling the complex highly parallel nature of gene regulation and development.

L-systems implement autonomy through rules that execute based on context, cell
type and state. Given a cell with a particular type, state, and context, the grammar
encodes a replacement rule that acts on that cell. There are a finite set of rules and
types, however (parameterised) state may be continuous.

An abstraction that is closer to biology than all these methods is the Genetic Regu-
latory Network (GRN). Each cell has a finite set of genes which are active or inactive.
Active genes can cause the production of protein, activate or repress other genes, and
can be activated or repressed by protein thresholds. The coupling between genes and
proteins is then described by a network. More abstract forms of these networks (Ran-
dom Boolean Networks, or RBNs) have been identified to contain interesting dynamics
(see e.g., [38]) and used in artificial embryological systems [12].

The connectionist approach of Mjolsness, Sharp and Reinitz provides a phenomeno-
logical framework for modelling development [55]. Their approach abstracts collec-
tions of interacting cells, proteins and genes. It integrates continuous dynamics with
grammar-based rules of cellular actions. The general idea is to define a matrix T ab of
continuous values that defines the interaction between genes a and b, where a positive
value indicates activation, a negative value repression, and a zero value no interaction.
Other assumptions about the system (e..g, that gene effects are approximately additive)
lead to a set of simplified differential equations describing the dynamics of the sys-
tem. This system has been used to model and evolve primitive neural networks and
shapes out of cells roaming on a plane [19] and extended to more accurately model
development (e.g., [40]).
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These last two approaches seem better suited to the continuous messaging frame-
work argued for in the previous section. As the developmental system develops it
should become clear what the advantages and disadvantages of these approaches are,
and whether higher-level constructs (sub–networks, sub–matrices) can help to design
particular forms. At the time of writing, research into the feasibility of these mecha-
nisms in SDS is yet to be undertaken.

4.5 Implementation and Examples
SDS has been partially implemented. A two dimensional system has been implemented
that incorporates cell division, growth, movement, mesh balancing, simple physics (a
basic spring model along edges), protein diffusion and decay, and simple cell programs.
Key features to be completed are the overlapping constraint, cell death, and volume
conservation physics. Nonetheless, several models of development have already been
implemented using the system (§4.5.1,4.5.2) and serve as basic proofs of concept.

A three dimensional system has also been partially implemented. At the time of
writing this has a fast scheme of structure and volume conservation, along with colli-
sion detection and response. The methods used are closely based on the recent real-time
soft-body physics papers of Teschner et al. [26, 79, 80, 81]

Some examples demonstrating SDS and the implementation of some biological
models in it are now presented.

4.5.1 Drosophila–like segmentation

Segmentation is the process by which some form is divided into parallel bands. It
occurs primarily along the principle axes of the shape, however, as is the case with
Drosophila the principal axes are usually defined by the segmentation process. This is
a powerful mechanism as arbitrarily shaped form can then be segmented without the
explicit specification of any coordinate system or axis.

The early development of Drosophila melanogaster is well studied and provides a
useful model of segmentation. We will consider an abstract model concerned only with
antero-posterior segmentation and the expression of a single band.

Initial Configuration Consider the initial configuration as a homogenous collection
of cells. Drosophila development essentially begins with the insertion of maternal
factors (mRNA and proteins) into the anterior side of the egg. Applying this to our
model we have the initial configuration shown in Figure 31 (the protein shown here is
representative, and should be considered internal to the adjacent cells only.)

Figure 31: An abstract Drosophila embryo with maternal factors (the shaded regions.)
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Antero-posterior gradient development The maternal factors include bicoid mRNA
which is responsible for the antero-posterior axis formation. After translation of the
mRNA the Bicoid protein diffuses and degrades eventually forming a morphogen gra-
dient along the antero-posterior axis. This can be modeled on the developmental system
using protein diffusion (Figure 32).

Figure 32: After some period of simulation the Bicoid protein has diffused and set up
a concentration gradient.

Segment formation Bicoid activates the hunchback gene in the anterior of the egg
which produces Hunchback protein. The diffusion and degradation of this protein sets
up a hunchback antero-posterior concentration gradient. The Krüppel gene has two
thresholds: a Hunchback concentration that activates it, and a Hunchback concentration
that represses it.9 If the Hunchback concentration is between these two thresholds the
gene is activated. This model in SDS uses a simple regulatory network as shown in
Figure 33.

Implementation Figure 34 demonstrates an example execution of the implementa-
tion. The model accepts an initial shape and insertion of maternal product P1 into an
arbitrary location. P1 is used to set up a region that autocatalyses the production of
another protein P2 which performs the same function as the Hunchback protein in the
model above. The region of Krüppel gene activation (refer back to Figure 33) is spec-
ified via the steady state of Hunchback. To model this we add another internal protein
P3 which is catalysed by P2 at a rate that regulates the time of activation of the growth
action.

This model results in various parameters: diffusion and degradation rate of each
protein, activation and repression threshold for each interaction, rate of growth, and rate
of protein synthesis. By altering the parameters of the model, the isolated segment can
be modified both in size, position, and time to activation. These parameters are not all
independent and it would be a useful task to reduce it to a smaller set of (dimensionless)
parameters. The research will investigate issues such as these and attempt to design
useful and robust phenomenological models of organic shape.

9Modelling a protein concentration PA that activates and represses a gene GA at different levels can
be thought of as abstracting a more complex process. For example, PA activates GA at level a, PA acti-
vates GB at level b, GB causes the production of PB which immediately represses GA, hence from our
perspective PA activates GA at a and represses it at b.
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Figure 33: (a) A simple logic showing the relationship between Hunchback protein,
Krüppel gene and a cell action. (b) The effect of this program.

4.5.2 Limb development

The proximal-distal growth and differentiation during early limb development is the
result of interactions between the epithelium (a primitive skin) and mesenchyme (free
floating cells) beneath it. In brief, the apical ectodermal ridge (AER) is a small bump
on the epithelium that induces the underlying mesenchymal cells (via the protein Fgf8)
to differentiate and produce Fgf10, which induces the AER to create more Fgf8 (Figure
35).

The model of limb growth is interesting as it contains a feedback loop that sus-
tains development and uses local induction to direct growth. A simple model has been
implemented (Figure 36). Note the tumour-like growths, these arise as the model is
essentially uncontrolled growth biased towards a certain direction.

5 Plan
The nature of this research falls into two streams, work on SDS and the study, im-
plementation and analysis of biological models of development. These streams inform
each other, but can proceed independently to some extent. The research will be iterative
in the biological stream (research a model, abstract it, implement it, analyse it) and in-
cremental in the developmental system stream (observe bad behaviour, fix model, add
a new rule, etc), the former driving the latter. The short-term research goals are quite
clear and presented here. A general outline of the tasks needed for the longer project
are also given. An estimate of the time required for each component is given, based on
experience from the partial implementations and experiments, and the biological and
technical literature studied. The tasks are divided into four categories, based on the
stream of research they belong to. Some further or contingent research questions and
directions are given in the next section.
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Figure 34: A simulation of simple drosophila-like segmentation. The diagram shows
the cellular complex (as voronoi regions of the simplicial complex) with protein levels
represented by the shading. The underlying simplicial complex is not visible in this
image.

Figure 35: This figure demonstrates a simplified view of limb bud development: the
mesenchyme (grey), the epithelium (lines), the AER (blue) and the PZ (red). The AER
defines the PZ via diffusion of Fgf8. The PZ differentiates and releases Fgf10 which
induces the AER to release more Fgf8. This feedback loop enables continual limb
growth.
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Figure 36: The formation of a protolimb in the developmental system from an initial
state at the top then progressing in time downwards. The red region indicates level of
protein Fgf8.
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5.1 Structural
The cell operations have been designed for the 2D case and some hints given for the
3D case. The first important task that is to be done is to design the cell operations
completely for the three dimensional developmental system. Some initial investiga-
tions suggest that these rules are not trivial as in the 2D case and hence we estimate
2–4 months of research required to develop and implement these. A further 2 months
may be invested later into ensuring the rules are robust, clean, and simple. Other opera-
tions may be investigated according to the necessities of the biological models studied.
Additionally, other facets of research include: balancing and maintaining a clean and
smooth mesh and investigating adaptive behaviour.

5.2 Models of form
Research into biological models of developing systems constitutes a primary part of
this research. Some preliminary research indicates that these models are generally easy
to understand and implement, but difficult to abstract, control and reduce the parame-
ters of. The goal is to study a particular property of form (e.g., segmentation), inves-
tigate the available biological models of it, then abstract, compare, and implement the
models and illustrate how they can be used in a creative sense. Different models will
be investigated, including: segmentation, phyllotaxis, limb growth, branching, spatial
organisation, tropisms, and mechanical effects on growth, over a 12 month period. An
example set of forms will be grown that demonstrate these models, and illuminate the
benefits of the developmental system.

5.3 Logical
The cellular programming part of the research will develop alongside the modelling
part. Once the structural rules have been developed, some different cellular logic
mechanisms will be investigated over a 2 month period, focussing primarily on the
connectionist and GRN methods. It is likely that the system will incorporate different
aspects of different systems and be suited directly to the geometric aspects of SDS.
The implementation of a robust framework for the chosen method or methods should
take a period of no more than 2 months. A method for isolating modules, combining
different logics together, and using high-level constructs to define the logic may also
be investigated, depending on time.

5.4 Physical
The protein signalling equations in three dimensions need to be elucidated and the
framework implemented (2 months). The physical simulator is a non-trivial compo-
nent of the system, and it is highly likely that the aggregate of developmental actions
will have an unstable effect on the system, which could require up to 2 months of work
to alleviate.

5.5 Summary
The estimates above are quite lenient and the total (of 24 months) does not reflect the
simultaneity of the tasks. The thesis required for the academic qualification is estimated
to take up to 4 months full time work to write with contributions made to it throughout
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the next two years. A journal paper is also expected to be submitted at the start of the
third year (January, 2009). The following table summarises some key dates.

Date Milestone
July, 2008 Complete 3D structural operations
August, 2008 Get married
October, 2008 Complete 3D implementation
January, 2009 Have working demonstrations. Submit paper to SIGGRAPH
March, 2009 Have a useful methodology for building shapes
May, 2009 Finish usable implementation
August, 2009 First thesis draft. Explore some other issues.
March, 2010 Submit thesis

5.6 Thesis Outline
This research will be presented in a thesis upon completion. A proposed outline fol-
lows.

1. Introduction

2. Literature Review

3. A Developmental System for Modelling Organic Form

(a) Simplicial Complex and Transformational Operations

(b) Cellular Communication and Organisation

(c) The Genome

(d) Physical Simulation and Environmental Aspects

(e) Implementation Issues

4. How To Grow A Shape

(a) Biology to the Abstract

(b) Methodology

(c) Segmentation

(d) Phyllotaxis

(e) Allometry

(f) Radial Symmetry, etc.

(g) Combining Multiple Properties

(h) Some Complex Examples

5. The Artificial Embryo (outline of the software)

6. Conclusions and Discussion

5.7 Further research questions
There are numerous interesting research questions that arise from this work that in-
form possible alternate directions of research. These include questions of a theoretical,
applied, and miscellaneous nature.
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Theoretical

• What are the form generating capabilities of abstract mechanisms from embryo-
genesis? How expressive are some features (like protein signalling, RBNs, cell
death, etc?)

• Can we apply them appropriately? Are there better methods than simulation?

• Changes in topology occur during development (for example, gastrulation). Can
this integrate well into the system?

• Large cells are representative of an aggregrate of cells. Are there methods for
defining aggregate behaviours well? E.g., allometric growth.

Applied

• Is simulation useful in a creative context? Can this approach integrate well with
current methods? What tools/features do we need in order to interface them?

• Can simulation efficiency be improved? Can we get a preview of a program
without running and simulating it completely?

• Are non-biological mechanisms useful?

• Is a genome that requires external input during development useful in the creative
sense? Some examples are:

– A genome that asks the user at every cell division whether or not the divi-
sion should proceed.

– A genome that reads in data from an input device (e.g., a microphone) and
modifies activation thresholds accordingly.

– A genome that requires morphogenetic gradients to be set up in the envi-
ronment by the user during development, to e.g., grow a tentacle along a
specific path.

• Higher level mechanisms. Can we abstract parts of genomes into components?
And how would they combine? A library could then be built that has things like
segments, limb, phyllotaxis, thorns, eye, etc.

• Could models be evolved? Given a specific creature, a user could be presented
with various mutations and search the genome space via aesthetic selection.

Other

• Can this research apply to other domains? E.g., swarm robotics, replicating ma-
chines, etc.

• Could a neurocontroller, sensor and effector model be incorporated into the sys-
tem, in order to design and build artificially alive organisms.
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[37] KAANDORP, J. A., AND KÜBLER, J. E. The Algorithmic Beauty of Seaweeds,
Sponges and Corals. Springer, 2001.

[38] KAUFFMAN, S. At home in the universe. Oxford University Press, New York,
1995.

[39] KAWAGUCHI, Y. The art of the growth algorithm. In Artificial Life V: Proceed-
ings of the Fifth International Workshop on the Synthesis and Simulation of Living
Systems (Nara, Japan, 1996), C. G. Langton and K. Shimohara, Eds., MIT Press,
pp. 159–166.

[40] KRUL, T., KAANDORP, J. A., AND BLOM, J. G. Modelling developmental
regulatory networks. In Computational Science - ICCS 2003, Pt IV, Proceedings.
Lecture Notes in Computer Science. (2003), vol. 2660, Springer, pp. 688–697.

[41] KUMAR, S., AND BENTLEY, P. J. Theory and Application of Evolutionary Com-
putation: Recent Trends. Springer–Verlag, UK, 2003, ch. Computational Embry-
ology: Past, Present and Future.

[42] LAM, Z., AND KING, S. A. Simulating tree growth based on internal and en-
vironmental factors. In GRAPHITE ’05: Proceedings of the 3rd international
conference on Computer graphics and interactive techniques in Australasia and
South East Asia (New York, NY, USA, 2005), ACM Press, pp. 99–107.

[43] LANTIN, M. Computer simulations of developmental processes. Tech. rep., SFU
CMPT, 1997.

44



[44] LEUNG, C. H., AND BERZINS, M. A computational model for organism growth
based on surface mesh generation. J. Comput. Phys. 188, 1 (2003), 75–99.

[45] LINDENMAYER, A. An axiom system for the development of filamentous organ-
isms. In Abstracts of the III International Congress on Logic, Methodology and
Philosophy of Science (Amsterdam, 1967), pp. 127–128.

[46] MAIERHOFER, S. Rule-Based Mesh Growing and Generalized Subdivision
Meshes. PhD thesis, Vienna University of Technology, 2002.

[47] MANDELBROT, B. B. The Fractal Geometry of Nature. W. H. Freeman and
Company, 1982.

[48] MATELA, R. J., AND FLETTERICK, R. J. A topological exchange model for cell
self-sorting. Journal of Theoretical Biology 76 (1979), 403–414.

[49] MATELA, R. J., AND FLETTERICK, R. J. Computer simulation of cellular self-
sorting: A topological exchange model. Journal of Theoretical Biology 84 (1980),
673–690.

[50] MATELA, R. J., RANDOM, R., AND BOWLES, M. A. Computer simulation
of compartment maintenance in the Drosophila wing imaginal disc. Journal of
Theoretical Biology 103 (1983), 357–378.

[51] MCCORMACK, J. A developmental model for generative media. In Lecture Notes
in Artificial Intelligence (Proceedings of the 8th European Conf. on Advances
in Artificial Life) (2005), M. S. Capcarrere, A. A. Freitas, P. J. Bentley, C. G.
Johnson, and J. Timmis, Eds., vol. 3630, Springer–Verlag, pp. 88–97.

[52] MCNEEL. Rhinoceros.

[53] MEINHARDT, H. Models of Biological Pattern Formation. Academic Press,
1982.

[54] MEINHARDT, H. The Algorithmic Beauty of Sea Shells. Springer, 2003. Illus-
trated by D. R. Fowler and P. Prusinkiewicz.

[55] MJOLSNESS, E., SHARP, D. H., AND REINITZ, J. A connectionist model of
development. Journal of Theoretical Biology 152 (1991), 429–453.
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