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INTRODUCTION

Atherosclerosis, the formation of plaques within the ar-

terial wall, continues to be a major cause of death in the

developed world. The associated narrowing, or stenosis,

of the artery can lead to potential significant restriction of

blood flow to downstream vessels. Related to this condition

is the potential of plaque ruptures and thrombosis forma-

tion leading to particles becoming lodged in smaller vessels

possibly inducing myocardinal infarction or stroke.

This association of arterial disease with flow related

mechanisms, such as wall shear stress variation, has mo-

tivated the study of steady and pulsatile flow within both

model and anatomically correct arterial model stenoses [1].

Under standard physiological flow conditions most arterial

flows are usually considered to be laminar, although typ-

ically separated and unsteady. However in the case of a

stenotic flow the the increase in local Reynolds number at

a contraction can lead to transitional flow associated with

the early stages of turbulence. The occurrence of turbu-

lent like flow phenomena makes the numerical simulation of

these flows particularly challenging especially when consid-

ering the large range of parameters required to describe both

the geometrical and flow features.

An efficient methods to analyse these types of flow is

simplified geometries is using Biglobal stability analysis.

Biglobal stability analysis is the numerical determination

of the linearised stability of the two-dimensional flow state.

The computational cost associated with this method is

primarily associated with the cost of computing the two-

dimensional flows. Therefore it provides a computationally

efficient approach to understanding the stability of flows

over a range of parameters for a comparatively small cost

when compared to full three-dimensional unsteady flow sim-

ulations. Previously [2] we have applied this method to

understand the stability of stenotic channels. In the cur-

rent work we turn our attention to the linearised stability of

steady and pulsatile flow in an axisymmetric stenotic tube.

NUMERICAL METHODOLOGY

Governing equations and parameter space

We consider the flow in our stenotic tube (see fig 1) to

be governed by the incompressible Newtonian Navier-Stokes

equations

∂u

∂t
= −N(u) −

1

ρ
∇p +

1

Re
∇2

u ∇ · u = 0 (1)

where u is the three dimensional velocity field, ρ and p are

the fluid density and pressure respectively, and Re is the

Reynolds number Re = uD/ν. In the following problem

we will take our length scale D as the pipe diameter and

base the Reynolds number on the temporally and spatially

average inflow velocity u. N(u) is the nonlinear advection

operator N(u) = (u · ∇)u and equation (1) is subject to

no-slip boundary conditions at the walls, a prescribed ve-

locity at the inflow (steady or periodic), conditions of zero

pressure and zero outward normal derivatives of velocity at

the outflow and consistent regularity boundary conditions

at the axis as explained in [3].

The axisymmetric stenosis shown in fig 1 is described by

a sinusoidal stenotic shape which can be described by two ge-

ometric parameters: The stenosis degree S = 1−(Dmin/D)2

and the stenosis length λ = L/D. In the following study we

have considered the geometry defined by S = 0.75 and λ = 2.

To complement the geometric factors we also need to

consider the physiological flow parameters which describe

our problem. If we permit the inflow to have a pulsatile

waveform of period T and restrict our attention to cases of

non-reversing, spatially averaged flow we can identify three

important flow parameters: The Reynolds number, Re; the

Womersley number, α = (D2π/(2νT ))1/2 and the peak to

mean flow ratio Qp2m = Qpeak/Qmean, where Q is the mass

flux. The Womersley number can be interpreted as the ratio

of the diameter (or radius) to the viscous boundary layer

growth in time period T which is the ratio of two sectional

length scales. An alternative parameter commonly used in

fluid mechanics is the reduced velocity Ured = uT/D which

is the ratio of the convective length the mean flow moves

in time T to the diameter. For geometries where there is

a length scale in the flow direction, as is the case of the

stenosis, this non-dimensional parameter can prove to be

a useful alternative to the Womersley number. We note

that Ured and α are dependent parameters related by the

Reynolds number according to Ured = πRe/(2α2).

BiGlobal stability analysis

Following the formulation in [4, 5, 3] we set up our

bigobal stability problem by decomposing the instantaneous

flow field into a two-dimensional base flow, U, and a small

perturbation u
′:

u(x, r, θ, t) = U(x, r, t) + u
′(x, r, θ, t) (2)

U is an axisymmetric solution of equation (1) which by

definition is invariant in the θ-direction in cylindrical co-

ordinates. Inserting the decomposition (2) into (1) and

neglecting quadratic we obtain the linearised Navier-Stokes

equations:

∂u′

∂t
= −DN(u′) −

1

ρ
∇p′ +

1

Re
∇2

u
′ (3)

where DN is the linearised advection operator and u′ is di-

vergence free with zero Dirichlet boundary conditions on the

inflow and outer wall. At the outflow and along the axis we

enforce the same outflow conditions as imposed previously
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Figure 1: Macro spectral element computational mesh on meridional semi-plane. Thefull computational domain was extended

to x = 50D with a similar mesh structure to that shown at x = 45D.

on u. A further simplification to the form of u′ can be made

due to homogeneity of the domain in the θ direction by ex-

pressing the perturbation as a Fourier expansion, i.e.

u
′(x, r, θ, t) =

β=∞
∑

β=−∞

ûβ(x, r, β, t)eiβθ (4)

Applying the Fourier transform, equation (3) can be written

more compactly as:

∂ûβ

∂t
= L(ûβ , β) (5)

where the linear operator L(ûβ , β) represents the Fourier

transform of the right hand side of (3) and is dependent on

the base flow U.

Solutions of (5) comprise a sum of exponential functions

of the form ûβ(x, r)eiβθeσt. When the flow is time periodic

the modes ûβ are referred to as the ‘Floquet eigenfunctions’

of operator L. For steady base flows we consider the expo-

nents σ and a mode is linearly unstable (will grow in time)

if the real part of this exponent is greater than zero. Equiv-

alently, in the study of periodic flows we generally consider

the ‘Floquet multipliers’, µ = eσT , which give a measure of

the growth of the perturbation mode throughout one base

flow cycle. The corresponding mode becomes unstable if the

magnitude |µ| becomes greater than unity; if µ leaves the

unit circle in the complex plane.

Defining the operator A which describes the evolution of

u′ over the period T as

A(û) = exp

(
∫ T

0

L(û)dt

)

(6)

The Floquet multipliers are the eigenvalues of A, and the

eigenmodes of A correspond to the Floquet eigenfunctions.

In the case of steady base flow then an arbitrary time period

T is chosen for computational convenience and the relevant

exponents reclaimed via the relation σ = (ln(µ)/T ).

Numerical Methods

Both the Navier-Stokes equations for the base flow and

the linearised Navier-Stokes equations for the perturbation

field were solved using the cylindrical coordinate implemen-

tation of the spectral element equations [3]. This solver

uses a Lagrange tensor product expansion based upon the

Gauss-Lobatto-Legendre quadrature points together with a

velocity correction splitting scheme to discretise the Navier-

Stokes solver[6]. Fig 1 shows the 743 macro elements used

to discretise the solution within which which a polynomial

expansions or order 7 were applied make a total of 47, 552

local degrees of freedom per variable.

The eigenvalues of A were evaluated using an Arnoldi

method which requires the time integrating equations of (3)

at every iteration. Further details of this approach can be

found in [4, 5, 3]. The Arnoldi iteration was converged to a

tolerance of at least 1e−6 on all calculations.

RESULTS AND DISCUSSION

Biglobal stability of Steady Flow

β

β

Figure 2: Top figure indicated the variation of σ with az-

imuthal wavenumber β for different Reynolds numbers. Bot-

tom figure shown the base flow streamlines and axial velocity

at Re=722.

In figure 2 we see a snapshot of the base flow at Re = 722

showing the streamline pattern of the separated flow imme-

diately after the stenotic region. The inset of the top plot in

figure 2 shows the leading real part of the eigenvalue, σ, as

a function of Reynolds number at an azimuthal wave num-

ber of β = 1.0. From this plot we observe that the critical

Reynolds number for growth of the linearised perturbation

occurs at a Reynolds number of Re = 722 ± 1. Also shown

in the top plot of figure 2 is the the real part of the max-
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imum eigenvalue as a function of azimuthal wavenumber β

where we observe that the case of β = 1 is the most unstable

azimuthal wavenumber.

BiGlobal stability of Pulsatile flow
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Figure 3: Plot of largest absolute Floquet multiplier, |µ|max

for reduced velocities of Ured = 2.5, 5.0 and 7.5 as well as

the multiple waveform using two harmonics

In figure 3 we show the results of a biglobal stability

analysis for a range of different pulsatile flows as indicated

by the inset plots. Most of the velocity waveforms con-

tained a single harmonic and are of the form um(t) =

1.0 + 0.75 sin(2πt/Ured) with Uref = 2.5, 5.0, 7.5. A two

harmonic waveform was also considered and with a velocity

waveform um(t) = 1.0+0.75(sin(2πt/Ured)−cos(4πt/Ured))

with Ured = 5.0.

From figure 3 we observe that the critical Reynolds num-

bers for the single harmonic pulsatile waveforms at Re ≈ 389

when Uref = 2.5 (α = 15.6), Re ≈ 415 when Ured = 5.0

(α = 11.4) and Re ≈ 500 when Ured = 10.2. For the two

harmonic waveform we observe a critical Reynolds number

of Re ≈ 437 when Ured = 5.0 (α = 11.7).

Discussion and Conclusions

From the results we have observed that the linearised

instability of the flow in a 75% axisymmetric stenosis oc-

curs at a Reynolds number of Re = 722 when the flow is

steady and between 389 ≤ Re ≤ 500 for the pulsatile wave-

forms considered. The unstable mode was completely real

indicating a stationary instability at β = 1. The steady

flow critical Reynolds number is relatively high for normal

physiological conditions in the systemic or coronary arteries.

However in an axisymmetric stenosis the sectional Reynolds

number increases as the inverse of the local diameter. We

might therefore expect that higher degrees of stenosis (i.e

greater reduction of diameter) would lead to a reduction of

the critical Reynolds number.

The introduction of unsteadiness into the base flow has

led to a reduction in the critical Reynolds number as com-

pared to the steady base flow case. For the single harmonic

waveforms considered we have a peak to mean ratio of Qp2m

of 1.75. Although this implies that the peak Reynolds

number of the flow is similar in magnitude to that of the

instability of the steady flow case, we do not believe that the

mechanisms are similar. This is partly supported by the dif-

ferences in the base flow characteristics. For the steady flow

we observe a single, large recirculation ring behind the steno-

sis. In contrast, for the pulsatile flow we observe a series of

ring vortices which are generated just after the stenosis and

then advected downstream whilst reducing in magnitude as

they interact with the pipe wall. The unsteady instability is

also associated with a period doubling phenomenon which is

not possible in the steady flow case. The introduction of the

two harmonic waveform allowed the peak to mean ratio to

be increased to Qp2m = 2.25 and represents a more realis-

tic physiological waveform. However despite the increase in

peak Reynolds number for this case we observe an increase,

rather than the expected reduction, in the critical Reynolds

number for onset of instability as compared to the single

harmonic waveform at Ured = 5.0.

In addition to the linearised stability analysis we have

perform direct numerical simulations at mildly unstable

Reynolds numbers for both the steady and unsteady stenotic

flows. These simulations have supported the linearised anal-

ysis and also demonstrated that the flow becomes transi-

tional in a very localised manner at approximately 15D

downstream of the stenosis.

Future work. Using BiGlobal analysis we are able to cover

a wide range of parameters to understand the mechanisms

behind the transition to three-dimensional weakly turbulent

flow due to stenotic obstructions. This type of transition is

significant since it generates unsteady temporal and spatial

wall shear stress gradients that are implicated in the onset

of atherosclerosis. The flow features observed may further

help explain the occurrence of multiple stenosis. Currently

we are investigating the effect of multiple harmonics in order

to analyse more physiologically realistic waveforms. A final

extension to this work is to introduce geometry or inflow

asymmetry into the base flow to understand the important

effect of these modifications on the stability of the flow.
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