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1. Introduction

The Galerkin finite element method of spatially discretising the time-dependent
Navier-Stokes equations is attractive when the solution domain is irregular and can-
not be conveniently mapped to a rectangular grid. The method overcomes many of
the problems associated with finite difference or structured-grid finite volume tech-
niques, and is especially well suited to problems where unstructured mesh techniques
can be applied to reduce the number of mesh nodes.

The finite element formalism is usually implemented through the use of quadra-
ture rules to carry out the numerical integration required at element level. Typically,
multi-dimensional tensor-product extensions of the one-dimensional Gauss—-Legendre
(GL) formulae have been used to define the quadrature points and weights for quadri-
lateral or brick elements. In one space dimension, the GL formulae have the advantage
that the order of the quadrature rule can be selected according to the order of the
polynomial terms to be integrated such that the full theoretical rate of convergence is
achieved. In more than one space dimension, the situation is more complex and the
theoretical requirements of quadrature schemes are less well established. For example,
rules which establish the sufficiency of tensor-product GL rules for full integration of
multidimensional shape-function terms in distorted geometries are known, but other
kinds of quadrature schemes are also known to achieve full integration [8].

For certain types of problems GL quadrature can be costly, due to the requirement
that the nodal values be interpolated to the quadrature points. This fact, in part,
has prompted the adoption of Gauss-Legendre-Lobatto (GLL) rules for Galerkin
spectral and spectral element methods [1]. The primary advantage in the use of GLL
quadrature is that the quadrature points are located at the nodal points, thus leading
to savings since interpolation is no longer required. A secondary advantage is that
mass matrix terms are purely diagonal, without resort to any lumping technique,
leading to savings in time advancement or integration of forcing terms. A possible
disadvantage is the loss of full quadrature accuracy in some cases, however as noted
above there are few definitive theoretical or numerical results to guide the adoption
of quadrature schemes when the spatial dimension exceeds one.

In this paper, we examine the effect on solution accuracy when GLL quadrature is
applied to the advection terms in a finite element approximation to three-dimensional
incompressible Navier—Stokes equations where triquadratic velocity shape functions
have been used. The rate of convergence in the L, (energy) error norm will be
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compared for both formulations with both undistorted and distorted brick elements.
2. Time Discretisation

For an incompressible Newtonian fluid, the Navier—-Stokes equations are given by
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The time discretisation scheme adopted here is a fractional step method [6], using a
2nd order explicit Adams—Bashforth scheme with a group formulation for the advec-
tion terms and a 2nd order implicit Crank—Nicolson scheme for the diffusion terms:
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3. Spatial Discretisation

The discrete equivalent of equation (2.3) under the Galerkin finite element formula-
tion requires at each time step the solution of a set of equations of the form
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where [H] and [D] are appropriate operator matrices that are assembled from quadra-
tures for each element in the computational domain. For the advection terms these
operator matrices correspond to the derivative operator in each of the three coordi-
nate directions. If we consider just one of the advection terms
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we multiply by a weighting function and integrate over an element to get the MWR
form

(3.2)
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This is typical of an integration which is carried out using numerical quadrature.
Using the Galerkin formulation, isoparametric elements and a quadrature rule, the
equivalent discrete form is
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where the coordinate system has been mapped from (z,y, z) to (e,n,r), and the J3
represent the appropriate elements of the inverted Jacobian matrix. The summation
over the A, B and C indices takes place at the appropriate quadrature points with
discrete weights W.

4. Element Details

The elements used in this study were three-dimensional brick elements, with tri-
quadratic basis functions for velocity and trilinear basis functions for pressure. The
use of a lower order of interpolation for pressure is in order to satisfy the Babuska~-
Brezzi condition [3]. There were a total of 27 velocity nodes and 9 pressure nodes,
as shown in Figure 1. The location of the quadrature points for GL quadrature are
also shown.
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FIGURE 1. Node and quadrature points for triquadratic velocity shape
functions on a brick element. (a) Location of element node points,
which are the same as the GLL quadrature points (interior point not
shown); (b) location of GL quadrature points projected onto one sur-
face.

5. Quadrature Rules

Accuracy results for different kinds of Gauss quadrature rules used to integrate poly-
nomials of different orders in one spatial dimension are well established [1], however
as noted in the Introduction the situation is not as clear for a higher number of spatial
dimensions.

In order to obtain the full rate of convergence, the quadrature rules used must be
capable of integrating exactly all monomials of order k 4+ k — 2m, where k is the
order of the highest order monomial present in the element’s shape functions, & is
the degree of complete polynomial appearing in the element shape functions, and
m is the order of the Sobolev space [8, 5]. In tensor-product shape function forms,
k = nk, where n is the number of spatial dimensions. For the elements considered
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here, k = 6, k = 2, m = 1, so we require a quadrature rule capable of integrating
monomials of order 6.

If the number of quadrature points used for a one-dimensional integration is NV +1,
then GL rules exactly integrate polynomials of order 2N + 1, while GLL rules exactly
integrate polynomials of order 2N — 1. Since we require integration up to order 6, we
need N = 3 for GL quadrature, and N = 4 for GLL quadrature. In the work reported
here the GLL quadrature points coincided with the node points, as is usually the case,
meaning that N = 2 in the GLL quadrature (corresponding to 3 quadrature/node
points). In turn this means that the full rate of convergence may not be achieved,
however the degree of any loss of accuracy is not theoretically established.

The major advantage in using GLL quadrature is that the resulting elemental
matrices are faster to calculate and require less storage than the equivalent matrices
obtained using GL quadrature. Using full GL quadrature, the size of derivative
operator matrices to be carried for each element are of the order p® (where p is the
number of node points in one direction, 3 here), compared to p* when GLL quadrature
is employed. This leads to a potential reduction in total memory use of around 40%
for the code being used in this work.

6. Test Problem

The test problem employed was an analytical solution of the Navier—Stokes equations
[2]. The solution is given by
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The values of the constants used were a = 7/4 and b = 7/2, and the solution domain

was [—1,+1] in each of the z, y and z directions. Analytical initial conditions were
used. The vector field on the surface of the domain can be seen in figure 2.

7. Error Calculations

Numerical values for the L, error norm for the velocity field were established by
interpolating the solution onto a finer mesh (using 4 GL quadrature points in each
direction), and then integrating numerically:
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where 4 is the exact solution. Summation over spatial indices 7 is assumed.
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FIGURE 2. Surface vectors for the test problem.

For smooth problems the full rate of spatial convergence is given by A*+1=™) where

h is the element size, k is the degree of complete polynomial in the element shape
function, and m is 0 for the Ly norm [5]. For triquadratic-velocity elements, the
expected full rate of spatial convergence is 23 in the L, norm.

8. Convergence Properties for Undistorted Elements

The initial convergence properties were tested in order to confirm that the expected
rate of convergence was being achieved. A very small timestep (1.0 x 1075) was chosen
so that the spatial discretisation errors would dominate the temporal discretisation
errors. The simulation was then run for 100 time steps to ensure that the numerical
error would stabilise and not be affected by the initial condition. Meshes ranging
from 512 to 8000 elements were used. Full GL integration was used for all matrices.
The results can be seen in figure 3, indicating that the expected rate of convergence
was achieved.

Integration using GLL rules was then applied to the advection term using the
same undistorted meshes and the convergence rate examined. The results are given
in table 1. From these results, when an undistorted mesh is used there is almost
no loss of accuracy when GLL is used. This is similar to previously documented
behaviour for mass lumping with undistorted elements [7]. The good performance in
this case is however expected, owing to the fact that the lack of distortion leads to the
highest-order terms requiring integration to be the same as for one spatial dimension,
where three GLL points are sufficient to attain full quadrature accuracy in this case.
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FIGURE 3. Convergence rate in the L, norm for undistorted elements
and full Gauss Legendre quadrature for all terms.

TABLE 1. Ly error norm for undistorted meshes showing effect of
quadrature rules for advection terms.

| Mesh size | Total Elements | GL integration | GLL integration |

8x8x8 512 0.001595 0.001602
10 x 10 x 10 512 0.000818 0.000822
12 x12 x 12 1000 0.000475 0.000476
14 x 14 x 14 2744 0.000300 0.000301
20 x 20 x 20 8000 0.000107 0.000107

9. Convergence Properties for Distorted Elements

The principal motivation for using finite element methods rather than the computa-
tionally less expensive finite difference or finite volume methods lies in is its advan-
tages when applied to complex domains. This in turn means that element shapes are
often distorted rather than rectangular prismatic, leading to higher-order monomi-
als and possibly some loss in quadrature accuracy. In order to investigate the effect
that element distortion would have when GLL integration was used, the mesh was
distorted by adding random ‘noise’. Different levels of noise were added by setting
a ‘noise factor’, which was defined as the maximum distance that a node could be
moved as a fraction of the element length. Noise factors ranging from 0.0001 to 0.1
were used. Movement of nodes on the outside of the domain was not allowed so that
the extents of the domain remained the same as for the undistorted case.
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TABLE 2. L, error norm for different levels of mesh distortion.

Noise Factor ‘ GL | GLL
8 x 8 x 8 elements

0.0001 0.001599 | 0.001606
0.001 0.001830 | 0.001838
0.01 0.008934 | 0.008938
0.1 0.093899 | 0.093912
10 x 10 x 10 elements

0.0001 0.000841 | 0.000844
0.001 0.002039 | 0.002042
0.01 0.019340 | 0.019355
0.1 0.066164 | 0.066345
12 x 12 x 12 elements

0.0001 0.000480 | 0.000481
0.001 0.000782 | 0.000784
0.01 0.006259 | 0.006261
0.1 0.075527 | 0.075816
14 x 14 x 14 elements

0.0001 0.000306 | 0.000307
0.001 0.000648 | 0.000649
0.01 0.005782 | 0.005785
0.1 0.066164 | 0.066236

Mesh sizes ranged from 8 elements in each direction to 14 elements in each direction.
Solutions were obtained using GL. quadrature for all terms and GLL quadrature for
the advection terms only. The L, error norm for each case tested is given in table 2.
The error norm as a function of the mesh distortion level is shown in figure 4. The
error norm is higher for the more refined meshes in some cases as the level of mesh
distortion is effectively greater.

The results from table 2 showed that no loss of accuracy occurred when GLL
quadrature was applied to the advection term. The results are still not conclusive
however as the test problem used is diffusion dominant. This may mean that a lower
accuracy in the advection term is being masked by the size of the diffusion term. A
further series of tests are required using a problem which is advection dominated, or
on a linear advection problem. This will allow the advection term to be isolated from
the other terms in the Navier—Stokes equations.

10. Conclusions

For the cases presented, the use of GLL quadrature for the calculation of the advection
term matrix operators did not lead to any reduction in solution accuracy. Given the
substantial savings in memory usage which are possible using this approach, the
method looks promising. In order to further investigate this approach, it is necessary
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FIGURE 4. Variation of Ly error norm for different quadrature schemes

with changing mesh distortion levels.

to isolate the effects of the advection term from the other terms in the equations,
as the test case presented was diffusion dominated. Further work is planned in this
area.
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