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Summary

Computational approaches are now making a substantial contribution to in-
vestigations in bluff body fluid mechanics, which were previously the sole
domain of experimentalists. Stability analysis, direct numerical simulation
and, increasingly, large eddy simulation, is being used to study fundamental
aspects of the phenomena involved. Accelerating reference frame solution
techniques have recently been developed and employed in the study of bluff
body aeroelasticity: these are described and applied to the study of flows past
slender cylinders with prescribed motion, and with aeroelastic fluid–structure
interaction.

1 Introduction

Bluff body fluid dynamics and aeroelasticity differ from more classical studies
in aeroelasticity primarily because the extensive regions of separated flow in-
herent in the problems under study defy compact theoretical treatment. For
this reason, progress is heavily dependent on experimental approaches, both
physical and numerical. As noted by the editors of a recent collection of works
in the area [1], computational fluid dynamics is now making a significant con-
tribution to fundamental understanding in bluff body fluid dynamics, owing
to the ability to control and observe independent and dependent variables in
ways that are difficult or impossible to achieve in physical experiments.

In this paper we describe ‘accelerating reference frame’, or ARF, tech-
niques — a class of methods that recently has been successfully applied to
studies of bluff body fluid–structure interaction problems. Example results
from computational studies of interaction between vortex street wakes and
circular cylinders are reviewed. Finally, we outline prospects for future work
in the area.
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Figure 1 Schematic illustrating the basis of accelerating reference frame
(ARF) techniques. Flows are solved in an ARF attached to the structure:
the mesh moves with the structure, does not distort with time, and is coupled
through motion-dependent forces to a global reference frame in which the far-
field flow U is prescribed.

2 Computational Methods

An elastic structure will distort in response to loads exerted on it by a flowing
fluid, and when the motion of the structure can feed back to affect the flow, an
aeroelastic coupling arises. In analysis techniques, separate discretisations of
the fluid and the structure are typically employed, and the problems are cou-
pled through boundary conditions. Here we will focus on the fluid-mechanical
part of the problem and assume that the dynamic structural motion can be
obtained through any appropriate technique.

Two basic methods of approach can be identified for mesh-based numer-
ical discretisations of the flow problems. The most general approach allows
the computational mesh local to the structure to distort continuously in time
as the structure moves. In this case, the far-field boundaries of the mesh, and
the associated boundary conditions, are usually kept fixed in time. This is the
‘arbitrary Lagrangian–Eulerian’, or ALE approach. However, the method has
significant computational overheads associated with the temporal changes of
the mesh interpolation functions. An alternative is leave the mesh unchanged
in time, but fix it to the structure and allow it to move in space, adjusting the
momentum equations and boundary conditions as appropriate. This is the
‘accelerating reference frame’ or ARF, approach, as illustrated schematically
in Figure 1. For open flows past an isolated structure, ARF methods can
be just as appropriate as ALE methods, and avoid computational overheads
associated with mesh distortion.



2.1 ARF Techniques for Fluid–Structure Interaction

Consider the interaction between an essentially two-dimensional slender elas-
tic structure and the (possibly three-dimensional) flow past it. The structure
is characterised by its mass per unit length m, natural frequency fn = ωn/2π
and dimensionless structural damping ζ, and it carries a set of reference frame
axes. In an inertial, global, reference frame, the structure moves in response
to the force per unit length f exerted on it by the fluid, according to

ẍ + 2ζωnẋ + ω2

n
x = f/m (1)

or as a set of first-order ODEs, with v = ẋ

v̇ = f/m− 2ζωnv − ω2

n
x, ẋ = v. (2)

The equations that describe the relative motion of incompressible fluid of
density ρ in the reference frame attached to the structure are

∂tu + N (u) = −ρ−1∇p + ν∇2u−∇ · τ − ẍ, ∇ · u = 0, (3)

where u is the velocity field, N(u) represents nonlinear advection terms, and
τ is a possible sub-grid scale stress in the case of a large eddy simulation.
Note the direct coupling of (3) to (1) through the frame acceleration ẍ.

At domain boundaries where far-field velocity boundary conditions, U ,
are prescribed in the inertial reference frame, the appropriate conditions in
the ARF are

u = U − v. (4)

On the surface of the structure, the velocity boundary condition is typically
u = 0. Pressure boundary conditions, if required, are obtained by dotting the
domain unit outward normal n into (3); employing also the vector identity
∇2u = ∇(∇ · u)−∇×∇× u provides

∂np = ρ n · [−N(u)− ν∇×∇× u−∇ · τ − ẍ− ∂tu] . (5)

Two special cases of (5) occur: on the far-field boundary, ∂tu = −ẍ, while,
on the surface of the structure, often ∂tu = u = 0.

Coupling of (1) back to (3) occurs through the force per unit length
exerted by the fluid on the structure through pressure and viscous stress

f =

∮

pn ds−

∮

µn ·
[

∇u + (∇u)T
]

ds, (6)

where the integrals are taken around the surface perimeter of the structure.
These techniques can also be applied to cases where the structure has

prescribed motion, in which case ẋ and ẍ are explicitly supplied.
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Figure 2 Schematic used to illustrate the application of ARF techniques to
cases in which the structure deforms in directions normal to its axis. Coupling
terms are computed on the basis of the mapping x → x′.

2.2 Generalised ARF Techniques

ARF techniques as described above were first applied to the study of vortex-
induced vibration of circular cylinders [2, 3, 4]. An extension allows the same
technique to be applied in cases where the flexible structure has a rotational
degree of freedom in addition to translational freedoms [5].

The method has also been generalised to the case where the displacement
of the structure varies in the third dimension, as illustrated in Figure 2 [6].
If the mapping that takes the position of a point on the structure, x′, into a
system of coordinates in which the structure is undistorted, x, is given by

x = x′ − ζ(z, t), y = y′ − η(z, t), z = z′, (7)

then the corresponding velocity components and the pressure are related by

u = u′ − ∂tζ − w∂zζ, v = v′ − ∂tη − w∂zη, w = w′, p = p′. (8)

This transformation supplies additional pressure and viscous coupling terms
to (3), which becomes

∂tu + N(u) = −ρ−1∇p + ν∇2u + A(u, p, t), (9)

with

Ax = −dttζ + ν
[

∂z′z′ (u + w∂zζ)− ∂zzu + ∂zζ∇
2

xyw + ∂tzzζ
]

, (10a)

Ay = −dttη + ν
[

∂z′z′ (v + w∂zη)− ∂zzv + ∂zη∇
2

xyw + ∂tzzη
]

, (10b)

Az = ∂zζ∂xp + ∂zη∂yp + ν [∂z′z′w − ∂zzw] , (10c)



where the operators

dt ≡ ∂t + u∂x + v∂y + w∂z , (11a)

∂z′ ≡ ∂z − ∂zζ∂x − ∂zη∂y, (11b)

∇2

xy ≡ ∂xx + ∂yy. (11c)

Now that the structure has a third degree of freedom, partial differential
equations, derived e.g. from beam theory, replace the ODEs (1).

2.3 Discretisations

ARF techniques can be allied with any suitable spatial discretisation or tem-
poral integration methods. In the applications to be described here, spectral
elements have been used for spatial discretisations, in conjunction with mixed
explicit–implicit time integration [7], usually of second order.

3 Prescribed Motion

First we review some studies of flows either past or generated by circular
cylinders with prescribed oscillation. In each case the focus of the study
has been to examine flow phenomena through numerical investigations that
would be difficult or impossible to replicate through physical experiments.

3.1 Phase Switching in the Wake of an Oscillating Cylinder

The purpose of this study [8] was to investigate the mechanism underlying
‘phase switching’ that occurs in the wake of a circular cylinder forced to
oscillate cross flow. In the primary synchronisation regime, when the Kármán
wake oscillation frequency is entrained by that of cross flow oscillation, it is
known from experimental studies that a rapid variation in the phase angle
between cylinder motion and lift force occurs over a narrow range of cylinder
motion frequencies. This phase switch is accompanied by a change in sign of
the time-average mechanical energy transfer between the structure and fluid.

The mechanical energy transferred from the flowing fluid, freestream
speed U , to the oscillating cylinder, diameter D, per motion cycle, period
T , can be written in dimensionless form as

E =
2

ρU2D2

∫ T

0

ẏFl dt =

∫ T

0

α̇Cl dt =
1

2

∮

(Cl dα + α dCl) , (12)

where α = y/D is the dimensionless cross flow displacement, Fl is the cross-
flow force per unit length and Cl the corresponding lift coefficient. The
quantity E is positive when work is done on the cylinder, negative when
work is done on the fluid. The last term in (12) assumes that a time-periodic
solution has been obtained; the path integrals are taken around a limit cycle
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Figure 3 Limit cycles of coefficient of lift vs. dimensionless cross flow displacement
for two-dimensional flow past an oscillating cylinder, Re = 500, αmax = 0.25 [8].
The dimensionless energy transfer between the cylinder and the fluid per motion
cycle (E) is given by the area enclosed by the cycle, and its sign by the orientation
of traverse. E is positive for fo/fv = 0.875, negative for fo/fv = 0.975. Also
shown are the corresponding vorticity contours, displayed at the point of maximum
cylinder displacement.

in (α, Cl) space. Figure 3 shows two of these limit cycles, obtained from two-
dimensional simulations at Re = 500 and an amplitude ratio αmax = 0.25,
and at two different frequency ratios fo/fv = 0.875 and 0.975, where fo is the
imposed cross flow oscillation frequency and fv is the fixed-cylinder vortex
shedding frequency. The orientation of traverse around the limit cycles, and
hence the sign of E, is opposite in the two cases. Also shown in Figure 3 are
contours of vorticity for these two frequency ratios, computed at the same
phase in the cylinder motion cycle, illustrating the fact that the timing of
vortex shedding is also changed dramatically by variation in fo/fv.

An hypothesis was advanced that the change in flow structure between the
two types of solution illustrated in Figure 3 resulted from a change in balance
between two different vorticity production mechanisms, one associated with
surface-tangential pressure gradients, the other with the tangential compo-
nent of cylinder acceleration. This hypothesis was investigated by numerically
manipulating the local tangential motion of the cylinder boundary to reduce
the motion-induced vorticity production progressively to zero. As this was
done, the solution branch associated with the flow shown for fo/fv = 0.975
became smaller in extent, and eventually disappeared altogether when the
motion-induced vorticity production was zero, while the extent of the other
solution branch was left comparatively unchanged. The outcome of this nu-
merical experiment thus appears to support the hypothesis.
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Figure 4 Vorticity contours for the two-dimensional flows produced by a cylinder
in vertical oscillation of indicated amplitude, KC = 7. For β = 13.5, the two-di-
mensional periodic flow shown in (a) is linearly unstable to the two-dimensional
symmetry breaking Floquet mode shown in (b), leading to another periodic two-
dimensional flow, but with broken reflection symmetry, illustrated in (c). The two-
dimensional asymmetric periodic flows are further unstable to three-dimensional
Floquet modes [9]. The symmetric base flow, its unstable Floquet mode, and the
resulting asymptotic flow are all presented at the phase of maximum oscillation
amplitude, αmax.

3.2 Instability of the Flow Generated by an Oscillating Cylinder

The oscillatory rectilinear translation of a long circular cylinder normal to
its axis in a quiescent body of fluid at low motion amplitudes and frequen-
cies generates a time-mean streaming flow which is inwards towards the low-
pressure shoulders of the moving cylinder and outwards along the motion axis.
The two dimensionless groups that describe the problem are the Keulegan–
Carpenter number KC = 2παmax and Stokes number β = foD

2/ν. At
low values of KC and β, the flow is time-periodic, two-dimensional and has
reflection symmetry about the translation axis, as shown in Figure 4 (a). In-
creasing either KC or β can lead to three-dimensional flows through either of
two instability mechanisms [9]. As the two-dimensional flow is time-periodic,
Floquet analysis is the appropriate tool with which to study the problem.

At low values of β, increasing KC leads to instability of a two-dimension-
al Floquet mode that breaks the reflection symmetry about the translation
axis (Figure 4 b); the subsequent asymmetric periodic flows (Figure 4 c) are
further unstable to three-dimensional Floquet modes. At low values of KC,
increasing β produces instability of three-dimensional Floquet modes that
break the cylinder-axis translation symmetry, leading to a three-dimensional
flow that retains reflection symmetry in the spanwise average.
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Figure 5 Particle-tracking visualisations of the two-dimensional flows produced
by a circular cylinder which has a vertical translational oscillation combined with a
rotational oscillation [10]. Flows generated (a), when the cylinder does not translate
in the horizontal direction; (b), with the cylinder swimming to left at its terminal
speed. Rerms = 200, based on vertical oscillation velocity.

3.3 Propulsion Produced by Oscillatory Rotation and Translation

In [10], it was reported that when a oscillatory rotation of the cylinder is
added to the rectilinear oscillatory translation (as in § 3.2), a new streaming
flow can result. If the periods of the two motions are the same, and the
phase angle between them set appropriately, the time-mean streaming flow is
directed outwards along a line perpendicular to the cylinder translation axis,
as seen in Figure 5 (a). Thus results a time-mean force in a direction normal
to the cylinder translation axis. If the cylinder is left free to accelerate in
the direction normal to the imposed oscillatory motion, it can gain speed
and eventually will swim at a terminal mean velocity, producing the flow
illustrated in Figure 5 (b). For two-dimensional flows, the asymptotic state
is time-periodic and again amenable to Floquet analysis, which shows three-
dimensionally-unstable Floquet modes.

4 Coupled Fluid–Structure Problems

4.1 Mass-Damping Effects

An early application of the ARF method in aeroelastic studies was to two-
dimensional flow past a flexibly mounted circular cylinder at Re = 200 [2].
The structural oscillation frequency fn was set to match the vortex shedding
frequency for the fixed cylinder. The remaining dimensionless groups are then
the structural damping ratio ζ and the density ratio m/ρD2. These may be
combined into a single mass-damping parameter of the form mζ/ρD2, often
used to correlate the observed maximum amplitude of cross flow response, as
in Griffin’s compilation of experimental results [11], shown in Figure 6. As
the damping ζ → 0, the peak amplitudes asymptote to maximum values,
and the simulation results, also plotted in Figure 6, show that these are only
weakly dependent on the density ratio.



Figure 6 Maximum values of asymptotic peak-to-peak free vibration oscillation
amplitudes as functions of the mass-damping product ζs/µ = 8π2St2mζ/ρD2 [2].
A comparison of computed values for density ratios m/ρD2 = 1 (◦) and 10 (4),
Re = 200, with a compilation of experimental values [11]

4.2 Lock-In Effects

In order to study the effect of variation of the ratio of structural natural
frequency to fixed-cylinder vortex shedding frequency, another set of two-
dimensional simulations was carried out [3], in this case with the damping
and density ratios set to ζ = 0.01 and m/ρD2 = 10 respectively. For these
simulations, the Reynolds number was fixed at Re = 250. The results are
summarised in Figure 7.

For all simulations, cylinder cross-flow oscillation and lift frequencies were
found to coincide in the asymptotic state, however the lift/oscillation fre-
quency fo was nearly the same as fv away from fn/fv = 1. Near fn/fv = 1
both frequencies changed together to fall near (but not exactly on) fn: exact
coincidence with fn is indicated by the slanted thin line near the centre of the
figure. This change in vortex shedding frequency to nearly match the cylinder
natural frequency is the lock-in phenomenon. During lock-in, amplitudes of
cross-flow oscillation increased markedly: the largest steady-state values cor-
respond to peak-to-peak oscillation amplitudes of approximately 0.9D (rms
values of α are presented in Fig. 7). The lack of exact coincidence of fo with
fn during lock-in can be accounted for by a phase difference between cylinder
motion and lift forces, which is known to be a function of fn/fv.



Figure 7 Cylinder response diagram for two-dimensional simulations at Re =
250 [3]. Abscissa values give the ratio of cylinder in vacuo natural frequency fn to
Strouhal frequency for the fixed cylinder fv. �, ratio of fluctuating lift coefficients
Clrms

/Clrms0
; ◦, ratio of mean drag coefficients Cd/Cd0

; 4, ratio of oscillation fre-
quency to fixed-cylinder Strouhal frequency fo/fv; , cylinder cross-flow response
amplitude αrms. Shaded region indicates a chaotic response regime.

4.3 Three-Dimensional Wake Effects

The simulations in §§ 4.1 and 4.2 were for two-dimensional flows, whereas
since fixed-cylinder wakes become three-dimensional for Reynolds numbers
above approximately 190, effectively all real-world occurrences of vortex-
induced vibrations of circular cylinders must involve three-dimensional wake
flows. Two-dimensional simulations, while significant, can potentially fail
to reveal effects of dynamically important flow physics. With increases in
computer capacity, full three-dimensional DNS and LES studies can now be
undertaken, however these are still expensive, owing to the long integration
times involved.

Figure 8, reproduced from [4], compares cylinder cross flow amplitude re-
sponses obtained using physical experiments with those obtained using both
two-dimensional and three-dimensional simulations, where all relevant pa-



Figure 8 Dimensionless average peak response amplitude αmax in vortex-induced
vibration of a circular cylinder as a function of dimensionless flow speed St · Vr for
Re ' 750 [4]: •, experimental results; �, three-dimensional simulations; ◦, two-di-
mensional simulations.

rameter values (Re, m/ρD2, ζ) were matched. The flow speed is given di-
mensionlessly as St · Vr, where St = fvD/U is the fixed-cylinder Strouhal
number and Vr = U/fnD is the reduced velocity. It is clear that the nature
of the responses for two-dimensional simulations and experiment are very
different, in terms of peak amplitudes achieved, but particularly in the num-
ber and extent of observed solution branches. The three comparable values
obtained using three-dimensional DNS reveal much better agreement with
experiment in terms of the extent and position of the response amplitude
envelope.

The comparison of response amplitudes obtained with three-dimension-
al DNS with those obtained experimentally is encouraging, although there
are significant differences and a more extensive study is desirable. However,
another important point of comparison is of the coherent structures of the
wake flows. No two-dimensional DNS result has been able to reproduce
the experimentally observed ‘2P’ wake mode, where two counter-rotating
pairs of vortices are formed in the near wake for each cylinder motion cycle.
Figure 9 shows a comparison of phase-averaged contours of the spanwise
vorticity component in the near wake, obtained from DNS and from physical
experiments (though at a slightly higher Re). It is clear that the simulations
reproduce the ‘2P’ wake mode observed in the experiment.
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Figure 9 Simulation results showing phase and spanwise average contours of span-
wise vorticity for four phases of the cylinder motion cycle at Re ' 750 (upper plots),
compared to (lower) similar (two-dimensional) phase averages from experiments at
a slightly higher Reynolds number [4].

Table 1 Global flow parameters from LES of flow past a fixed cylinder at
Re = 3900 compared to experimental values at Re = 3000.

Source St Cpb Cd

Norberg [13] 0.210 -0.88 0.99
Spectral element LES 0.218 -0.93 1.01

5 Stationary Bluff Body Flows

We complete our survey of computational bluff-body fluid dynamics by noting
that while most of the recent fundamental computational investigations in
the area have used direct numerical simulation techniques, progress to more
applicable Reynolds numbers requires some form of turbulence modelling. In
view of the relative infancy of turbulence models applied to bluff-body flows,
large eddy simulations would appear to be the most promising avenue for
extension in this area. Results from eddy-viscosity based LES of flow past
a stationary circular cylinder, Re = 3900 [12], are presented in Table 1 and
Figure 10. The relatively good agreement with the available validation data
encourages further development— but more detailed comparisons also serve
to highlight the need for more extensive validation experiments.



Figure 10 Time-mean pressure coefficient on the surface of a stationary cylinder
as a function of angular position, LES results for Re = 3900 [12]. , spectral
element simulation; •, experimental results for Re = 3000 [13].

6 Discussion and Prospects

The immediate prospects for application of ARF methods are to moderate
Reynolds number flows through adoption of LES approximations in the flow
solver. This will allow more direct comparison with experimental results,
and after this validation to better understanding of bluff-body vortex-induced
vibration. The path is also open to better understanding of buffeting and
quasi-steady aeroelastic effects such as stall-flutter and galloping.

While the applications of ARF techniques here have all been to sepa-
rated flows, they can equally be applied to DNS or LES of aeroelastic fluid–
structure interaction of attached flows. We can also anticipate extensions of
the method to deal with fully three-dimensional structures. Finally, the ARF
approach can be applied to any problem where the flow can be described in an
accelerating reference frame. An intriguing example presently under study
is the violent overturning instability in a spinning, precessing container of
fluid [14].
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