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Abstract

Rotating waves are a generic instability mode of flows
that possess a rotation symmetry, such as Taylor–
Couette flow. In the enclosed swirling flow that is gener-
ated in a closed cylindrical container by a rotating end-
wall, the initial bifurcation to unsteadiness produced by
increasing the endwall rotation rate can be either to ro-
tating waves or unsteady axisymmetric flow, depending
on the aspect ratio of the cylinder. We examine a case
where the initial bifurcation is to a periodic axisymmetric
state, and follow subsequent bifurcations to other states
where the flow breaks axisymmetry as well. These result-
ing states possess rotating waves that are modulated by
the underlying axisymmetric behaviour. Although this
flow also has axial vortex breakdowns, they appear to
play no dynamical role in the symmetry breaking, re-
maining essentially axisymmetric.

Introduction

Flows of Newtonian fluid generated inside a closed cylin-
drical container by the steady rotation of one endwall are
interesting as prototypical swirling flows, the cylindrical
coordinate equivalent of the rectangular driven cavity.
There are two control parameters: the cylinder aspect
ratio Λ = H/R, where H is the height and R the radius
of the cylinder, and the Reynolds number Re = ΩR2/ν,
where Ω is the endwall rotation rate and ν the kinematic
viscosity.

Following the work of Vogel [9] which identified a vor-
tex breakdown (a region of reversed axial flow) on the
cylinder axis in such flows, Escudier [3] established the
envelope of cylinder aspect ratios and Reynolds num-
bers within which axial vortex breakdowns are observed.
At any value of Λ, the flows exhibit no breakdowns as
Re → 0; for Λ & 1, one or more breakdowns may be
observed as Re is increased. The flows with breakdowns
are steady and axisymmetric at Reynolds numbers below
the onset of instability. With further increase in Reynolds
number the flow becomes unsteady via Hopf bifurcation
in one of two alternative ways, either by production of
symmetry-breaking rotating waves (RWs), where the flow
is steady when viewed in an appropriate rotating frame
of reference, or by unsteady periodic behaviour where
axisymmetry is preserved. The choice between these two
alternatives is determined by the cylinder aspect ratio Λ.

General three-dimensional perturbations to the
axisymmetric, steady basic state have been exam-
ined in the linear stability analysis of Gelfgat et al .
[4] for the range 1 < Λ < 4. For low aspect ratios,
1 < Λ < 1.63, the analysis predicts symmetry breaking
via a Hopf bifurcation to a RW state with azimuthal
wavenumber k = 2. For high aspect ratios, Λ > 2.76,
the analysis again predicts a symmetry-breaking Hopf

to a RW with k = 4. At intermediate aspect ratios, the
predicted initial bifurcated state retains axisymmetry,
but is time-periodic. Near the boundaries Λ = 1.6, 2.8,
double-Hopf bifurcations can occur, as shown in [7] for
Λ ' 1.6. Here we use direct numerical simulation to
investigate the flow for a fixed aspect ratio Λ = 2.5 at
which the first bifurcation to occur with increasing Re is
a supercritical Hopf that preserves the axisymmetry.

Computational Methods

The numerical method adopted for this study employs
spectral elements for the discretisation of the meridional
semi-plane, coupled with Fourier expansions in azimuth,
and a mixed implicit–explicit second order time integra-
tion scheme. The use of Fourier expansions in the az-
imuthal direction preserves the SO(2) rotation symme-
try of the continuous system within the discretised one.
The mesh employs 60 spectral elements, concentrating
resolution in the boundary layers and in particular at
the boundary condition discontinuity where the spinning
end-wall meets the stationary cylindrical wall. The in-
terpolation order within each element was established on
the basis of a convergence study conducted at Re = 4000;
each element employs a two-dimensional tensor product
of 7th-order Gauss–Lobatto–Legendre Lagrange shape
functions. The number of Fourier modes employed in
azimuth was varied between five and 64; the presented
results employ the equivalent of 20 or more modes. For
further details of the numerical method, consult [2].

Evolution of the computed solutions is monitored
through a variety of runtime diagnostics. Central to
the current investigation is the (dimensionless) amount
of flow kinetic energy contained in each Fourier mode k
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k denotes the complex conjugate of the
velocity data in the kth Fourier mode. Energy of the
axisymmetric part of the flow is represented by E0.

To initiate three-dimensional solutions, a small amount
of white noise (standard deviation approx. 10−12RΩ) is
added to the first non-zero Fourier mode and the solution
evolved to statistical stationarity.

Results

As noted above, the first bifurcation to occur in this flow
(for Λ = 2.5) as Reynolds numbers are increased is a su-
percritical Hopf that preserves axisymmetry; this occurs
at Re = 2707 [4, 6]. Thereafter, while further solution
branches appear, it is the underlying axisymmetric flow
that dominates the behaviour in each case, up to the
maximum Reynolds number for this study, Re = 4300.



Figure 1: Fundamental oscillation periods for
axisymmetric simulations (◦), as a function of Reynolds
number, with transitions between different solution
branches indicated. Solutions on the V branch are
quasiperiodic, with very-low-frequency modulations,
while the A and M branches have periodic solutions.
The dashed line at Re = 2707 indicates the Reynolds
number for onset of unsteadiness at Λ = 2.5. Also shown
(¥) are the experimentally measured values [8].

Thus we first present results from simulations that are
restricted to an axisymmetric subspace (a single Fourier
mode, k = 0). These are shown in terms of the fun-
damental oscillation periods ΩT in figure 1, where three
distinct solution branches may be observed. Also shown
are experimentally measured values [8]; it can be seen
that the axisymmetric values are very similar to the ex-
perimental ones, but that branch extents are slightly dif-
ferent. The three solution branches are labelled as: A
(axisymmetric), for which our investigations show solu-
tions are stable to three-dimensional perturbations; M ,
where the flow is periodic but unstable to three-dimen-
sional perturbations, leading to RWs that are modulated
by the axisymmetric behaviour (MRWs); and V , where
the axisymmetric state has very-low-frequency (VLF)
modulations in addition to the ΩT ' 57 behaviour shown
in figure 1. For some of its extent, we have found that the
V branch is unstable to three-dimensional perturbations,
again leading to MRWs. Experiments [8] show similar
behaviour for each of these three branches, including the
VLF modulation on the V branch.

Symmetry Breaking

It was established in [1] that at Re = 3500 and Re =
4000, the axisymmetric flows were unstable to three-
dimensional perturbations, leading to MRWs on the V
andM solution branches respectively, with minimal mod-
ification to the dominant fundamental periods shown in
figure 1. In both cases the MRW structure was strongly
periodic in azimuth, with a 5-fold azimuthal symmetry
for the V branch solution and a 6-fold symmetry for the
M branch. These symmetry indices are used to further
classify the solutions obtained as V5 and M6. The MRW
structures are visualised in figure 2, which shows isosur-
faces and extracted contours of azimuthal velocity for the
two cases. The RW structures precess slowly around the
container in the same sense as the rotating endwall.

The energy in the MRWs is strongly coupled to that in
the axisymmetric component of the flow, as illustrated
in figure 3, which displays energies in the axisymmetric
component of the flow for example solutions on the A,
V5 and M6 solution branches, and in the leading non-
axisymmetric mode for the V5 and M6 solution branches.
The VLF modulation present in solutions of the V branch

(a) (b)

Figure 2: Rotating modulated waves of the (a) V5, Re =
3500 and (b) M6, Re = 4000 solutions, as manifest in
the azimuthal velocity component. Above, perspective
views of instantaneous isosurfaces—solid lines indicate
extent of cylinder, and the bottom wall rotates clockwise
when viewed from above; below, instantaneous contours
at elevation z/H = 0.8.

Figure 3: Time series of modal kinetic energies for the
axisymmetric mode (E0) and, if appropriate, for the lead-
ing nonaxisymmetric mode at (a) Re = 3000, A branch;
(b, c) Re = 3500, V5 branch; (d, e) Re = 4000, M6

branch.

can be clearly seen; while this does not substantially alter
the energy E0, it produces a two-magnitude variation in
E5, superimposed over fluctuations with periods ΩT ' 57
and 28.
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Figure 4: Contours of averaged flow kinetic energy
〈ûk · û

∗

k〉 /2R
2Ω2 in the meridional semi-plane for (a),

Re = 3000; (b, c), Re = 3500; (d, e), Re = 4000. Upper,
axisymmetric component; lower, energy in the leading
non-axisymmetric mode. In each plot the cylinder axis
is to the left and the rotating endwall is at the bottom.

The spatial localisation of the MRW energies is illus-
trated in figure 4, where contours of ensemble-average
contributions to E5 for the V5 solution to E6 for the
M5 solution are shown, and compared to contours of
ensemble-average contributions to E0. The MRW en-
ergies are concentrated near r/R = 0.67, z/H = 0.8, i.e.
near the end of a cylindrical wall-jet that results from
the deflection of the Ekman layer formed on the spinning
endwall situated at z = 0. The peak energies are re-
mote from the axis, where the flow remains essentially
axisymmetric, as is also demonstrated by the contour
plots of figure 2.

The M Branch

The M solution branch supports MRWs for all Reynolds
numbers at which we were able to follow it, but it is un-
clear if it is unstable to non-axisymmetric perturbations
at lower Reynolds number. At the lower Re-limit, both
the axisymmetric and non-axisymmetric solutions on the
M branch jump to solutions on the V branch.

In addition to the 6-fold symmetry apparent in figure 4,
the M solution branch also supports MRWs with a 5-fold
symmetry; initial conditions determine state selection.
The energy levels of the leading non-axisymmetric modes
are significantly lower for the M6 states than for the M5

states, as illustrated in figure 5, where the observed lower
Re-limits of branch extents for these non-axisymmetric
solutions are also shown (cf. figure 1).

Figure 5: Peak energies of leading non-axisymmetric
mode on the M5 and M6 branches.

Figure 6: VLF modulation periods on the V branch. •,
V5; ◦, V0. Note period-doubled and quadrupled values
near Re = 3300.

The V Branch

Solutions of the V branch possess richer dynamics than
the M branch. Figure 6 shows the VLF modulation pe-
riods observed on this branch, both for the axisymmetric
restriction (hollow symbols) and the states which break
axisymmetry (solid symbols). We have observed only 5-
fold-symmetric wave states on this solution branch. It
can be seen that there are two disjoint Re-ranges for
symmetry-breaking on the V branch: 3283–3362 and
3454–3683. At the central limits Re = 3362 and 3454,
the V5 solutions asymptote to the V0 axisymmetric state.
On the upper V5 branch, ΩTmod → ∞ at a single cusp
located at Re = 3618, but the branch continues until
Re = 3683, where again ΩTmod → ∞. Here the solu-
tions become M5 states, as the ΩT ' 57 frequency loses
dominance to ΩT ' 28, which was also present in the
spectrum. On the lower V5 branch, the VLF modula-
tion period-doubles, then doubles again before we lose
the branch at Re = 3283 and the axisymmetry of the V0

state is regained.

Figure 7 shows the Re-variation of peak energy in the
k = 5 mode on the V5 branch. This plot emphasises the
return to axisymmetry (V0) for Reynolds number ranges
3250–3283 and 3362–3454. Peak energies max(E5) and
max(E6) for the M5 and M6 branches are presented as
well, which also serves to demonstrate the close relation-
ship between the V5 and M5 states for the Reynolds num-
ber ranges where they overlap. The Re-ranges of branch
extents from experiment [8] are also indicated in figure 7;
the agreement in extents is good, and the overlap which
brings about a hysteresis in transitions between V and
M states is also present in the experimental results.



Figure 7: Peak value of energy in leading non-
axisymmetric mode, max(E5), on the V5 branch, with
corresponding values for the M5 and M6 branches indi-
cated by dashed lines. The experimental observations of
branch extents from [8] are also shown, hatched.

Figure 8: Peak energy in the leading non-axisymmetric
mode, E5, and MRW precession speed, ω/Ω, for the su-
percritical symmetry-breaking Hopf-type bifurcations on
the V solution branch.

The symmetry-breaking behaviour on the V branch at
the two bifurcations near Re = 3362 and 3454 is exam-
ined more closely in figure 8. In both cases max(E5)
rises linearly with changes in Reynolds number. The
linear relationships indicate that the amplitude of the
MRW varies with |Re − Rec|

1/2, identifying these bifur-
cations from the quasiperiodic axisymmetric V0 state as
being of supercritical Hopf type. Figure 8 also shows
that the MRW precession speed ω/Ω = 0.1318 for both
bifurcations. To three significant figures this is the same
value as found on the M6 branch at Re = 4000. Ar-
guments presented by Knobloch [5] demonstrate that,
near the bifurcation, RW speeds have the form ω/Ω =
C1−C2|Re−Rec|; here C2 ≈ 0 and C1 = 0.1318 for both
V5 states, presumably owing to a high degree of similarity
between between the V0 states from which each V5 MRW
bifurcates at Re = 3362 and 3454.

Discussion and Conclusions

Our investigations have shown that for Λ = 2.5, the ini-
tial Re-bifurcation from the axisymmetric, steady, “basic
state” is to a periodic flow that retains axisymmetry, fol-
lowing which another set of bifurcations occur that pro-
duce solutions which are unstable to symmetry-breaking
rotating waves. Comparison with the linear stability
analysis of the basic state [6] shows that the A branch
is associated with the first eigenmode to lose stability
(Re = 2707) and that theM branch is associated with the
third (which bifurcates at Re = 3150). However the V
branch would appear to be mixed-mode behaviour which

involves both the second bifurcating mode (Re = 3050)
and the third—definitely it has a contribution from the
third mode, as is demonstrated by the nature of the even-
tual transition of the V branch to the M branch at the
upper Re-limits.

Most previous work on flows with RW symmetry-
breaking has concentrated on the Taylor–Couette sys-
tem, where the first unsteady behaviour with increasing
Reynolds numbers manifests as rotating waves, however
these correspond to another steady flow when observed in
an appropriate rotating reference frame. Subsequently ei-
ther wave modulations or VLF behaviour can appear [10]
as a precursor to chaos. Here we have a new scenario, in
which axisymmetric modulations appear first, followed
by rotating waves that are modulated directly by the
underlying axisymmetric flow. In addition we have ob-
served period-doubling-on-torus behaviour that leads not
to chaos but back to an axisymmetric state.
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