
International Journal of Heat and Mass Transfer 70 (2014) 779–792
Contents lists available at ScienceDirect

International Journal of Heat and Mass Transfer

journal homepage: www.elsevier .com/locate / i jhmt
Scaling properties of the equation for passive scalar transport
in wall-bounded turbulent flows
0017-9310/$ - see front matter � 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.11.057

⇑ Corresponding author. Tel.: +61 3 8344 6748; fax: +61 3 8344 4290.
E-mail addresses: sumons@student.unimelb.edu.au (S. Saha), klewicki@unimel-

b.edu.au (J.C. Klewicki), aooi@unimelb.edu.au (A.S.H. Ooi), hugh.blackburn@eng.-
monash.edu.au (H.M. Blackburn), twei@nmt.edu (T. Wei).
S. Saha a,⇑, J.C. Klewicki a,b, A.S.H. Ooi a, H.M. Blackburn c, T. Wei d

a Department of Mechanical Engineering, University of Melbourne, Melbourne, VIC 3010, Australia
b Department of Mechanical Engineering, University of New Hampshire, Durham, NH 03824, USA
c Department of Mechanical and Aerospace Engineering, Monash University, VIC 3800, Australia
d Department of Mechanical Engineering, New Mexico Institute of Mining and Technology, Socorro, NM 87801, USA
a r t i c l e i n f o

Article history:
Received 25 June 2013
Received in revised form 8 November 2013
Accepted 17 November 2013

Keywords:
Turbulent channel flow
Heat transfer
Prandtl number
Reynolds number
Scaling
a b s t r a c t

Data from direct numerical simulations (DNS) of fully-developed turbulent channel flows subjected to a
constant surface heat-flux are used to explore the scaling behaviours admitted by the mean thermal
energy equation. Following the framework of Wei et al. (2005) [1,2], the analysis employs a theory based
on the magnitude ordering of terms in the mean thermal energy equation of wall-bounded turbulent heat
transfer. A four layer thermal structure has been identified from the leading order terms in the mean
energy equation. A review of the limitations of traditional and existing scaling of mean temperature
and turbulent heat flux is conducted. The possibilities of a new scaling approach with the introduction
of generalized thermal length scale are discussed within the context of the four-layer framework. This
methodology generally seeks to determine the invariant form(s) admitted by the relevant equation.
Investigation of normalized statistical quantities applicable to inner, outer and intermediate regions of
the flow, whose properties are dependent on a small parameter that is a function of either Reynolds
number or both Reynolds and Prandtl numbers, shows inconsistencies between the normalizations on
the different subdomains. Although the present scaling approach successfully explores the generalized
properties of intermediate layer, issues pertaining to simultaneously and self-consistently reconciling
the inner and intermediate normalizations remain unresolved.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Wall-bounded turbulent flows are present in numerous indus-
trial, technological, aerospace and naval applications that involve
heat and mass transport. The knowledge of the mean temperature
profile is generally essential, and a number of approaches have
been attempted to predict the variation of this scalar field over
the flow domain. Based on the Reynolds analogy between momen-
tum and scalar transport, many researchers have employed
approaches that effectively assume ‘the law of wall’ [3–5]. This
approach supposes that the mean temperature and turbulent heat
flux profiles become invariant when the viscous or inner scaled
distance from the wall is employed. Conveniently, one may then
apply this form of the ‘Reynolds analogy’ to relate the eddy
viscosity to the eddy thermal diffusivity. A brief review of the
many variations of this approach are listed by Dhotre and Joshi
[6]. Such approaches also naturally embrace the use of higher order
closures for the Reynolds averaged momentum and heat balance
equations. Although these kinds of models are fast and amenable
to use at very high Reynolds and Prandtl numbers, the correct
estimation of mean quantities critically depends on the accurate
determination of the appropriate normalizations and the length,
velocity and temperature scales they employ. Earlier investigations
showed that the normalized mean temperature only exhibits slight
variations due to the Reynolds number [7,8]. Temperature profiles,
however, are seen to change much more rapidly with varying Pra-
ndtl number, both in turbulent channel [7] and pipe [9] flow. To
date, the combined effects of Reynolds and Prandtl numbers have
not been systematically investigated in the context of the underly-
ing transport equation. It is important, however, to understand
how the thermal transport equation can be cast into invariant
forms that properly reflect the dominant physical mechanism, as
this reveals the effects of the governing parameters on the thermal
field statistics.

Traditional representations of temperature and turbulent heat
flux profiles generally employ either inner or outer normalizations.
These normalizations, however, fail to provide invariant profiles as
the relevant non-dimensional parameters are varied [7–25].
Moreover, neither of these normalization are successful in
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the vicinity of the peak turbulent heat flux profiles. Inner
normalization of the mean temperature uses the so-called friction
temperature, and the wall distance is normalized by the friction
velocity and the kinematic viscosity. This normalization, however,
is traditionally relevant over a small region adjacent to the wall,
the conductive sublayer [4], whose width varies as a function of
Prandtl number. Furthermore, the data from the logarithmic layer
for temperature exhibit different mean temperature profiles as a
function of both Reynolds and Prandtl numbers. This range of phe-
nomena is richer than exhibited by the momentum field. It arises
from the additional parameter, Prandtl number.

In order to understand the underlying physics of heat transfer in
turbulent flows for moderate to high Reynolds and Prandtl num-
bers, dimensional and similarity analysis play central roles. In this
regard, the literature is extensive, and thus here we only discuss a
subset of recent findings. Wang et al. [5] introduced the tempera-
ture scaling for forced convection turbulent boundary layers using
a variant of the similarity theory by George and Castillo [26]. A
power law was found for the temperature profile in an intermedi-
ate region, and this melds into a composite profile in the wake and
near-wall regions. Apart from dimensional analysis or similarity
analysis, Churchill and Chan [27] and Churchill et al. [28] intro-
duced a new approach by proposing an algebraic model to predict
the mean temperature profile from a knowledge of the velocity
profile and the turbulent Prandtl number. Using the model of Chur-
chill and Chan [27] and Churchill et al. [28], Le and Papavassiliou
[29] developed a temperature profile for low Reynolds number tur-
bulent flow. But they pointed out the limitation of the theoretical
predictions by Churchill and co-workers at very high Prandtl num-
bers. Marati et al. [30] derived the symmetry invariant mean pro-
files for a passive scalar in wall-bounded turbulent flow based on
the symmetry properties of the Navier–Stokes equation and the
energy equation. Their results showed the validation of the well-
known logarithmic laws as well as interpreted linear, algebraic
and exponential profiles in different physical regimes.

Building upon his initial studies indicating the existence of an
intermediate layer (mesolayer), Afzal [31] employed a different ap-
proach to investigate the properties of the mean momentum and
thermal balance in fully developed turbulent channel flow having
both smooth and transitionally rough surfaces. Seena and Afzal
[32] proposed a power law temperature distribution for a fully
developed turbulent channel flow for large Peclet numbers (prod-
uct of Reynolds and Prandtl numbers). They supposed that both the
mean turbulent flow and thermal fields were divided into inner
and outer layers. The matching of the velocity profile by the Isak-
son–Millikan–Kolmogorov hypothesis [33–35] led to a power law
velocity profile [36,37], in addition to the traditional log laws. Sim-
ilar analyses were used to deduce a power law temperature profile
[32], which was proposed to be equivalent to the log-law temper-
ature profile for large Peclet numbers. Seena and Afzal [38] also
studied the scaling properties of the intermediate layer in a fully
developed turbulent channel flow by employing the method of
matched asymptotic expansions. They proposed a half-defect
velocity law and a half temperature defect law in association with
the intermediate layer. Their prediction of Reynolds shear stress
and Reynolds heat flux profiles in the intermediate layer show
good agreement with available experimental and DNS data. More-
over, by assuming the existence of overlap layers Seena et al. [39]
constructed a closure model that leads to a series of logarithmic
functions of the mesolayer variable for Reynolds shear stress and
Reynolds heat flux profiles.

Herein we take a different approach to study the scaling
properties admitted by the mean thermal energy equation. This
framework only relies on the magnitude ordering of the terms in
the mean energy equation, and thus does not invoke additional
assumptions or resort to the use of a closure model. Recent
analyses of turbulent wall bounded flow for both pipe and channel
[1,40–43] indicate that many of the statistical properties of these
flows are similar, even though they possess different geometric
configurations. Notably, analyses of the mean momentum equa-
tion can be directly employed to explore the underlying physics
and scaling of the dependent variables in that equation. Wei
et al. [1] introduced a generic first-principles framework to charac-
terize the four layer regime in wall bounded flows, an extension of
which leads to a mesoscaling of Reynolds shear stress [43] and
mean velocity field [44] in turbulent channel flows. The limiting
value of Reynolds number at which the four layer magnitude
orderings are first established has been investigated for channel
flows by Elsnab et al. [45]. However, the onset of four-layer regime
for thermal field is not yet well characterized, as it is a function of
both Reynolds and Prandtl numbers. In fact, as shown herein, a
number of conditions depending on the magnitude of Reynolds
and Prandtl numbers factor into determining the onset of the
four-layer thermal structure.

An important observation obtained from the mean momentum
balance theory [46,47] is the existence of a hierarchy of scaling lay-
ers with each having an analytically well-defined characteristic
length. The conditions for logarithmic dependence of the mean
velocity profile were explored by using this approach [48,49].
The analogous method was subsequently applied to channel flow
heat transfer by Wei et al. [2]. This effort revealed a qualitative
characterization of the four layer regions, Peclet number depen-
dence of the scaling of temperature, and the conditions associated
with the existence of the logarithmic mean temperature profile.
However, a more comprehensive elucidation of the scaling behav-
iours of the mean energy equation is still lacking, and this moti-
vates the present effort.

Multiscale analyses are used herein to clarify the scaling prop-
erties admitted by the mean energy equation. In order to describe
mean flow structure properly, a length scale intermediate to the
traditional inner and outer scales is necessary. According to the
present theory, the transition from inner to outer scaling physically
takes place owing to a balance breaking and exchange of the lead-
ing order heat transport mechanisms as a function of scale. This
underlies the existence of an intermediate region between inner
and outer layers (thermal mesolayer) where, in the mean, all terms
in the energy equation are of equal order [2]. In order to gain a bet-
ter understanding of the possibilities for generating invariant pro-
files of the mean temperature and turbulent heat flux, the current
investigation exploits the properties of four distinct balance layers
in a magnitude ordering and scaling analysis of the mean energy
equation. The analyses primarily employ existing DNS data sets
of Kawamura and co-workers [17,20,50].
2. Mean momentum layer structure

To provide a context for the heat transfer problem, it is useful to
briefly review the four layer structure associated with the mean
momentum balance. The relative magnitude of the terms in the
Reynolds-averaged Navier–Stokes equations are used to define
the layer properties. This fundamentally differs from the tradi-
tional four layer structure for turbulent channel flows [51–53];
namely the viscous sublayer (yþ ¼ yus=m < 5, where y is the wall-
normal distance, m is the kinematic viscosity and us is the friction
velocity), the buffer layer (5 6 yþ 6 30), the inertial (or classical
logarithmic layer, 30 6 yþK 0:15Res, where Res is the Kármán
number, Res ¼ usd=m) and the outer boundary layer or wake layer
(0:15 6 y=dK 1:0). It also fundamentally differs from the structure
proposed by Wosnik et al. [54]. They divided the flow into the main
‘viscous sublayer’, ‘overlap’ and ‘outer’ regions. The near-wall
region, where 0 < yþ < 30, was composed of the linear viscous



Fig. 1. Schematic of the mean temperature profile based layer structure.
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sublayer and the buffer zone. The overlap region, where
30 K yþK 0:15Res is built of a mesolayer and the inertial sublayer.
The viscous sublayer and overlap region constitute the inner re-
gion. The outer region extends from 0:15Res to the channel center-
line. Another important observation from their work was that
there might be an underlying layer which extended from near
yþ ¼ 30 to approximately yþ ¼ 300 where the dissipative motions
were not fully separated in scale from the energy containing mo-
tions. This region was related to what they called a mesolayer, fol-
lowing the same concepts of George and Castillo [26] for boundary
layers.

By considering the relative magnitudes of the terms in the mean
momentum equation, Wei et al. [1] rationally deduced a different
four layer structure for wall-bounded turbulent flow. They ob-
served from the available experimental and numerical data that
three of these layers reflect the dominance of two out of the three
dynamical effects in the mean momentum equation. But there ex-
ists another layer, where all three terms make non-negligible con-
tributions to the overall balance. This leads to an identification of
the dynamical balance characteristics of distinct physical layers
from the mean momentum equation theory. Close to the wall,
the first layer (layer I) is reflected by a nominal balance between
mean pressure gradient and viscous stress gradient. This layer is
similar to the traditional viscous sublayer whose thickness is
Oðm=usÞ. The next adjacent layer exists where the leading-order
balance occurs between Reynolds stress gradient and viscous
stress gradient. Layer III is the one where all three terms in the rel-
evant mean momentum equation are of equal order. Within this
layer, the zero crossing of the Reynolds stress gradient and its loca-
tion play a significant role. The fourth layer represents a balance
between the Reynolds stress gradient and the mean pressure gra-
dient. Elsnab et al. [45] further pointed out that the four-layer
structure and its order-of-magnitude scaling behaviours remain
valid for all Kármán numbers above the transitional regime.

Klewicki et al. [49] explained the existence and properties of the
layer hierarchy on the basis of the first-principles-based theory
developed in [1,46,47,55]. They revealed an underlying hierarchy
of scaling layers, and the conditions for a logarithmic mean veloc-
ity profile. These properties all stem from the mean momentum
equation admitting an invariant form on each layer of the contin-
uous layer hierarchy. This similar approach is also applicable to
the mean thermal layer structure. However, the problem gets more
complicated because of the extra governing parameter, the Prandtl
number.

3. Mean thermal layer structure: traditional and four-layer
description

Following the analogy between heat and momentum transfer,
the common way to characterise the mean thermal layer regions
is an inspection of the structure of the governing equations for en-
ergy and momentum. This analogy becomes exact if the Prandtl
numbers are unity. Thus the thermal boundary layer for wall
bounded turbulent flow can be divided into the classical four layer
structure within two separate scaling regions through the observed
properties of the mean temperature and turbulent heat flux profiles
[3,4]. An inner thermal region close to the heated solid wall is com-
posed of a molecular or conductive sublayer and thermal buffer
layer, whereas an outer region commonly known as core thermal
region extends to the centerline of the pipe or channel. The classical
logarithmic layer and the outer layer constitute the outer thermal
region. This picture also proposes the existence of an overlap region
where both inner and outer representations are valid.

Using ‘equilibrium similarity analysis’, George and Castillo [26],
Castillo and George [56], and Wang and Castillo [57] derived the
temperature scaling for turbulent boundary layers. The mean
structure they proposed is depicted in Fig. 1. The thermal overlap
region (i.e., the common region between the inner and outer lay-
ers) has two sublayers namely convective sublayer with negligible
conduction effect and thermal mesolayer where the conduction
term has certain effects on the turbulent heat flux. Over the past
century, this traditional four layer structure along with the similar
depiction of the momentum field provided the basis for many
researchers (e.g., [3,4]) to develop the mean temperature profiles
valid within each thermal layer.

Wei et al. [2] developed a mean energy equation analysis anal-
ogous to that for the mean momentum equation [1]. As with
momentum analysis, the relative magnitudes of the terms in the
energy equation determine the underlying layer structure: layer
I: molecular diffusion/mean advection balance layer, layer II: heat
flux gradient balance layer, layer III: molecular diffusion/mean
advection balance meso layer, layer IV: inertial/advection balance
layer. Fig. 2 provides a schematic of the four layer thermal struc-
ture by examining the ratio of the heat flux gradients. Wei et al.
[2] attempted to describe the scalings associated with thermal four
layer structure using available DNS data. They introduced a new in-
ner variable for thermal boundary layer based on the magnitude of
centerline temperature and Peclet number. Here we extend their
analysis by adopting a more general approach to clarify the exis-
tence of thermal layer properties.

In related analyses, Seena and Afzal [38] introduced a meso
scaling theory of turbulent heat transfer in smooth and transition-
ally rough channel. Their theory was based on the mesolayer the-
ory for turbulent flows developed by Afzal [31,58]. Similar to the
three layer model for turbulent flow, Seena and Afzal [38] pro-
posed that the fully developed turbulent heat transfer in a channel
consists of three main layers: inner, intermediate and outer. They
also proposed the existence of two overlap domains where TðyÞ be-
comes logarithmic. Their inner thermal length scale is dti ¼ a=us

where a is the thermal diffusivity, and their outer scale is dto ¼ d,
where d is the channel half width. The thermal mesolayer scale
dtm is the geometric mean of inner and outer length scales
dtm ¼

ffiffiffiffiffiffiffiffiffiffiffi
dtidto
p

¼ d PrResð Þ�1=2, where Pr is the Prandtl number. Their
analyses indicated that the temperature profile in the mesolayer
scale provides the half temperature defect law where mesolayer
temperature is Tm ¼ Tw þ Tcð Þ=2 and Tw and Tc are the temperature
on the wall and the axis of the channel respectively. Within the
intermediate layer, they also proposed generalized logarithmic
laws for temperature profiles in terms of the mesolayer variable
using the method of matched asymptotic expansions. Moreover,
Seena et al. [39] proposed a closure model of Reynolds heat flux



Fig. 2. Sketch of the four layers of turbulent heat transfer in canonical flows for one
Peclet number; layer I is the molecular diffusion/mean advection balance layer,
layer II is the heat flux gradient balance layer, layer III is the molecular diffusion/
mean advection balance meso layer and layer IV is the inertial/advection balance
layer. Note that the layer III is also called the balance breaking layer where the
turbulent heat flux gradient crosses through zero.
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as a function of a series of logarithmic functions in the mesolayer
variable. Distinct from Afzal and co-workers, the present analyses
do not assume overlap layers and do not employ asymptotic
expansions.

The mean energy balance equation is governed by the balance
between the molecular diffusion, turbulent transport and mean
streamwise advection. Due to a balance breaking and exchange
of these mechanisms, the intermediate region (thermal mesolayer)
exists between inner and outer layers where, in the mean, all these
three terms are nearly in balance. Finding the appropriate length
scales that allow the construction of a self-consistent invariant
form of the appropriate leading order equation on the inner, outer
and intermediate domains is inherently a two parameter problem.
Herein we present a systematic study that clarifies the nature of
the underlying parameter dependencies.

4. Derivation of mathematical model

4.1. Mean energy balance equation

The present analysis begins with the appropriate form of the
mean energy equation. The analysis considers statistically station-
ary, fully developed, incompressible, pressure driven turbulent
flow and heat transfer in a two-dimensional channel. The fluid
properties are assumed to be constant. Temperature is treated as
a passive scalar.

The three-dimensional instantaneous energy balance equation
for an incompressible flow with constant properties and negligible
viscous heating is given by

@~T
@~t
þ ~ux

@~T
@x
þ ~uy

@~T
@y
þ ~uz

@~T
@z
¼ a

@2~T
@x2 þ

@2 ~T
@y2 þ

@2~T
@z2

" #
; ð1Þ

where ~ux, ~uy and ~uz are the instantaneous velocity components in
the x, y and z directions, ~T is the instantaneous temperature, ~t is
time and q is the mass density of fluid. The terms in the above
energy balance equation are decomposed into their mean and
fluctuating parts using:
~ux ¼ U þ u; ~uy ¼ V þ v ; ~uz ¼W þw; and ~T ¼ T þ t; ð2Þ

where U, V, W are the mean velocity components in x, y and z direc-
tions, u, v, and w are the corresponding fluctuating velocity compo-
nents, T is the mean temperature and t is the corresponding
fluctuating temperature. The temporal average of the product ut,
vt and wt are denoted by huti, hvti and hwti, respectively. The
resulting time-averaged energy balance equation is

U
@T
@x
þV

@T
@y
þW

@T
@z
¼a

@2T
@x2 þ

@2T
@y2þ

@2T
@z2

" #
�@ uth i

@x
�@ vth i

@y
�@ wth i

@z
:

ð3Þ

For the given flow, (3) reduces to

U
@T
@x
¼ a

@2T
@x2 þ

@2T
@y2

" #
� @ vth i

@y
: ð4Þ

In fully developed heat transfer, the mean temperature is a linearly
increasing function of x and the rate of increase can be determined
by applying an energy balance to a differential element of the chan-
nel. This yields

@T
@x
¼ qw

qCpUbd
; ð5Þ

where, qw ¼ kð@T=@yÞw is the heat flux applied at the upper and bot-
tom walls, k is the thermal conductivity, Cp is the specific heat and
Ub ¼ 1

d

R d
0 UðyÞdy is the bulk mean velocity. The right hand side of (5)

is constant, and using the definition of Prandtl number, Pr ¼ m=a,
the averaged energy balance equation becomes

qwU
qCpUbd

¼ m
Pr

@2T
@y2 �

@ vth i
@y

: ð6Þ

Eq. (6) contains two unknown functions, mean temperature T and
turbulent heat flux hvti. These are the quantities of primary interest.
The boundary conditions at the channel wall, y ¼ 0, are

U ¼ u ¼ v ¼ t ¼ 0;
@T
@y
¼ qw

k
; ð7Þ

and at the centerline, y ¼ d, are

@T
@y
¼ vth i ¼ 0: ð8Þ
4.2. Normalizations

The friction velocity us, inner length for momentum, m=us, and
outer length, d, are often considered as the basic normalization
parameters for turbulent flow problems. Moreover, the normaliza-
tion parameters used herein for the heat transfer problem are the
friction temperature Ts ¼ qw=qCpus and an inner normalized
length mPr�b=us generalized by considering a power law Prandtl
number effect. In addition to these parameters, the non-dimen-
sional temperature Hþ ¼ ð Twh i � TÞ=Ts gives (6) its convectional
inner normalized form,

1
Pr

d2Hþ

dyþ2 þ
dTþh
dyþ
þ e2 Uþ

Uþb
¼ 0; ð9Þ

where Tþh ¼ �hvtiþ is the inner normalized turbulent heat flux. The
small parameter e is defined by

e ¼ 1ffiffiffiffiffiffi
dþ
p ; ð10Þ

where dþ ¼ usd=m is the Reynolds number (Kármán number), so that
e! 0 as dþ ! 1. The outer normalized form of (6) is found by using
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the channel half-width d to normalize the wall normal distance
g ¼ y=d. This gives

e2

Pr
d2Hþ

dg2 þ
dTþh
dg
þ Uþ

Uþb
¼ 0: ð11Þ

The boundary conditions at the channel wall, yþ ¼ 0, are

Uþ ¼ Hþ ¼ Tþh ¼ 0;
dHþ

dyþ
¼ Pr; ð12Þ

and at the centerline, yþ ¼ dþ, are

dHþ

dyþ
¼ Tþh ¼ 0: ð13Þ

Both Pr and dþ play important roles in the following analysis. Eq. (9)
implies a fully developed thermal field hence there is no depen-
dence on axial direction. At sufficiently high Res, Uþ=Uþb is Oð1Þ
for all values of yþ values beyond the peak in the Reynolds shear
stress, and in this region Uþ=Uþb ! 1 as dþ ! 1. Note that the
wall-normal distance is still normalised by the length scale of the
viscous sublayer, m=us.

Wei et al. [2] developed an alternative normalized form of (6)
by introducing the parameter r which is a function of dþ and Peclet
number Pes ¼ Prdþ, and is defined as

r2 dþ; Pes
� �

¼max
Hþ

Prdþ

� �
¼

Hþ
��
g¼1

Pes
¼ Hþm

Pes
: ð14Þ

Given this, a new r-dependent temperature variable w follows and
is expressed as

w ¼ Hþ

Pesr2 : ð15Þ

This renders w ¼ Oð1Þ near the channel center and r� 1. The cor-
responding outer normalized form of (9) is

r2 d2w
dg2 þ

dTþh
dg
þ R gð Þ ¼ 0; ð16Þ

where RðgÞ ¼ Uþ=Uþb is the scaled advection function. By employing
the generic inner-outer variable relation, Wei et al. [2] defined a
new inner scaled distance yr as

yr ¼
g
r2 ; ð17Þ

which generates a scaled advection function
RrðyrÞ ¼ RðgðyrÞÞ ¼ Rðr2yrÞ. This yields a new ‘inner’ form of (6),

d2w

dy2
r

þ dTþh
dyr
þ r2Rr yrð Þ ¼ 0; ð18Þ

Aþ Bþ C ¼ 0;

where the relationship between the inner and outer coordinates is
given by (17). The boundary conditions on (18) are

w ¼ Tþh ¼ 0;
dw
dyr

0ð Þ ¼ 1 at yr ¼ 0: ð19Þ

In the following analysis, we examine three alternative forms of (6),
distinct from (18), in order to clarify the dependences on Pr. We
introduce a new inner variable yþh ¼ Prbyþ. Its use yields three cases
for (6).

Case I.

d2Hþ

dyþ2
h

þ
dTþ/
dyþh
þ /2Rh yþh

� �
¼ 0; ð20Þ

Aþ Bþ C ¼ 0;
where Tþ/ ¼ Pr1�bTþh and the small parameter / is defined by

/ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dþPr2b�1

p : ð21Þ

The thermal boundary conditions at the channel wall, yþh ¼ 0, are

Hþ ¼ 0;
dHþ

dyþh
¼ Pr1�b: ð22Þ

Here Hþ is not scaled by Pr, and both the boundary condition and
the advection term depend on Pr. If we consider b ¼ 1, then the
new inner scaled energy equation takes the form of the traditional
inner Eq. (9).
Case II.

d2Uþ

dyþ2
h

þ dTþh
dyþh
þ /2Rh yþh

� �
¼ 0; ð23Þ

Aþ Bþ C ¼ 0;

where Uþ ¼ Prb�1Hþ and the small parameter / is defined by

/ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
dþPrb

p : ð24Þ

The thermal boundary conditions at the channel wall, yþh ¼ 0, are

Uþ ¼ 0;
dUþ

dyþh
¼ 1: ð25Þ

Here Tþh is not scaled by Pr, and nor are the boundary conditions at
the wall. There is, however, a Prandtl number dependence in the
advection term.
Case III.

d2Uþ

dyþ2
h

þ
dTþ/
dyþh
þ /2Rh yþh

� �
¼ 0; ð26Þ

Aþ Bþ C ¼ 0;

where Uþ ¼ Pr2b�1Hþ, Tþ/ ¼ PrbTþh and the small parameter / is
defined by

/ ¼ 1ffiffiffiffiffiffi
dþ
p : ð27Þ

The thermal boundary conditions at the channel wall are

Uþ ¼ 0;
dUþ

dyþh
¼ Prb: ð28Þ

Here there is no Pr dependence in the small parameter.
All three cases of above suggest that 1=/2 must be large enough

to maintain a turbulent state for flow and heat transfer. Three
distinct mechanisms are clearly apparent in Eqs. (18), (20), (23),
(26): A = gradient of the molecular diffusion flux, B = gradient of
the turbulent transport flux and C = mean streamwise advection.
5. Data sets

Herein we use the DNS data sets from Kawamura’s group
[17,20,50] for 0:025 6 Pr 6 10:0 and 180 6 Res 6 1020. Optimally,
one would like to have a high Res condition and then vary Pr. Ow-
ing to existing computational limitations, high Pr and high Res are,
however, not simultaneously possible. Thus, a single Kármán
number near the onset of the four layer momentum structure
(Res ¼ 180) is selected to study Pr effects, see Fig. 3 [45]. The
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domain size, number of grid points (Nx, Ny and Nz), spatial resolu-
tion, parameter ranges and symbol are shown in Table 1.
6. Establishment of thermal four layer regime

6.1. The heat flux gradient ratios

The relative orders of magnitude of terms A, B and C in Eqs. (18),
(20), (23), (26) become distinct in four layers as Res !1 and
Pr !1. One of the possibilities is that the three physical effects,
in order of magnitude, balance. Otherwise two terms in Eqs. (18),
(20), (23), (26) balance to leading order with the third much smal-
ler. The ratio of any two terms exposes the leading order balance.
At any fixed Prandtl number, the scaled advection function ap-
proaches a constant in the outer portion of the flow as Res becomes
large. This is similar to the behaviour of the mean advection func-
tion in the boundary layer [59].

Fig. 4 clarifies the onset of the four layer regime by examining
the ratio of terms A=B. This figure shows that near the onset of
the four layer regime for momentum (Res K 180), the thermal field
exhibits a similar and discernible layer structure that depends on
the magnitude of Prandtl number. Fig. 5 shows the existence of
the four layer thermal structure for varying Res and Pr. Different
leading order balances organize on four distinct layers: layer I:
jCj ffi jAj � jBj , layer II: jAj ffi jBj � jCj , layer III: jAj ffi jBj ffi jCj ,
layer IV: jCj ffi jBj � jAj. The data of Fig. 4 demonstrate that the bal-
ance between the dominating terms A and B smoothly develop the
structure of Fig. 2. In fact, we are able to connect the transitional
four-layer thermal regimes by determining the minimum values
of the governing parameters at which the predominant character-
istics of the thermal four-layer regime exist.

The data plotted in Fig. 4 are selected for 0:025 6 Pr 6 0:71 and
reveal that the heat flux gradient ratio attains very large negative
values at low Pr. With increasing Pr, the ratio continually progress
toward a plateau at �1. As explained by Wei et al. [2], the reason
for such behaviour completely depends on the balance between
the terms A and B. For example, at low Pr the molecular diffusion
term A dominates over the turbulent term B across the whole layer.
Moreover, the Reynolds heat flux gradient is crucial to the thermal
energy balance in the region interior to the location of the peak
heat flux. Note further that, the ratio plotted in Fig. 4 comes close
to �1 in layer II with increasing Reynolds number for very low
Prandtl number (Pr ¼ 0:025). It is found, however, that the layer
Fig. 3. Ratio of the gradient of the viscous stress to the gradient of the Reynolds
stress for increasing dþ in the transitional regime. These data reveal the emergence
of the four layer momentum field structure. This figure is adapted from Elsnab et al.
[45].
IV ratio for the lowest Prandtl number retains non zero values all
the way to the centerline even with increasing Reynolds number.
This is consistent with an outer region influence of the molecular
diffusion flux in the transitional heat transfer regime. When the
Prandtl number is Pr P 0:6, there is a region (layer II) where the
ratio approximately equals�1 and near-zero region in layer IV. An-
other important observation is that the �1 ratio region moves in-
ward with increasing Prandtl number and decreasing Reynolds
number.

6.2. Minimum Prandtl number of the four-layer regime

Establishment of thermal four-layer structure depends on the
combined effects of Kármán and Prandtl number. As these param-
eters are varied, different routes to the four layer regime become
apparent. There are two possibilities that are especially note wor-
thy. One is the existence of the thermal four layer regime below the
onset of the momentum four-layer regime (Res < 180). However,
due to the lack of available DNS data in this range, it is not possible
to examine this case. Hence we focus on the investigation of min-
imum Prandtl number in order to determine the existence of the
thermal four-layer structure for a Res at least near or above the on-
set of the four-layer regime for the momentum field.

Elsnab et al. [45] and later Klewicki et al. [48,59] used two pri-
mary criteria to determine the minimum Reynolds number at
which the ordering of terms in the mean momentum equation
are estimated to enter its four layer regime. The first criterion per-
tains to the ordering of terms in layers II and IV described relative
to Fig. 2. The second requirement is to check the consistency of the
layer thickness and the velocity increments across the layers doc-
umented in [48,59]. For turbulent heat transfer, the analogous cri-
teria are applicable. Since the available data is within the range of
Reynolds number for four-layer regime, our aim is to focus on Pra-
ndtl numbers for which the ordering of terms satisfy the thermal
four-layer structure. The thermal layer scaling properties in terms
of the layer width and temperature increments across the layers
are at present, not known analytically. Thus, we concentrate on
the minimum Prandtl number for the establishment of thermal
four layer regime for Res J 180.

Following Elsnab et al. [45], we assumed that both in layer II and
IV, the smaller of the two dominant terms is ten times larger than
the smallest term. For the lowest Pr ¼ 0:025 when Res ¼ 1020, nei-
ther layer II (jB=Cjmax ’ 7:69) nor layer IV (jB=Ajmax ’ 1:82) criterion
is satisfied. Close examination of data for Pr ¼ 0:4 and Res ¼ 180 re-
veals that jB=Cj attains a maximum value of 12.6 in layer II, but
jB=Ajmax ’ 8:4 in the inner part of layer IV. As a result, the require-
ment is satisfied only in layer II for this Pr. On the other hand, the
heat flux gradient ratios barely satisfy the layer IV criterion at
Pr ’ 0:6, where the magnitude of the Reynolds heat flux gradient
first attains 12.3 times the magnitude of the molecular diffusion
flux gradient near the centre of layer IV. Similarly, the heat flux gra-
dient ratio A=B in Fig. 4 rapidly attains a value in near �1 in layer II,
though the molecular diffusion flux gradient does not become 10
times the value of the mean advection term until Pr ’ 0:4. From
these considerations, we conclude that the four layer thermal re-
gime exists when Pr J 0:6 at Res ’ 180.

6.3. Properties of thermal four-layer regime

Fig. 5 displays mean energy balances for yþh as a function of b in
the manner represented in Fig. 2. Detailed examination reveals the
following. Layer I is a thin sublayer (0 6 yþh 6 yc , where the value of
yc depends on the selection of b in yþh ¼ Prbyþ) in which the mean
streamwise advection and the gradient of the molecular diffusion
dominate the balance equation. The next layer is a region character-
ized by an increasingly exact balance between the molecular



Table 1
Summary of DNS database for turbulent heat transfer in channel flow. Data is adopted from the DNS database of Kawamura’s group [17,20,50] at http://
murasun.me.noda.tus.ac.jp/turbulence/poi/poi.html.

Res Pr Pes Lx=d Nx Ny Nz Dxþ Dyþ Dzþ Symbol

180 0.025 4.5 12.8 256 128 256 9.0 0.20–5.90 4.50 .

180 0.05 9 6.4 128 66 128 9.0 0.4–11.5 4.50 €
180 0.1 18 6.4 128 66 128 9.0 0.4–11.5 4.50
180 0.2 36 6.4 128 66 128 9.0 0.4–11.5 4.50 |
180 0.4 72 6.4 128 66 128 9.0 0.4–11.5 4.50 H

180 0.6 108 6.4 128 66 128 9.0 0.4–11.5 4.50
180 0.71 127.8 6.4 1024 480 512 1.1 0.05–0.97 1.1 �
180 1.0 180 6.4 1024 480 512 1.1 0.05–0.97 1.1 I

180 2.0 360 6.4 1024 480 512 1.1 0.05–0.97 1.1 r

180 5.0 900 6.4 256 128 256 4.50 0.20–5.90 2.25 N

180 7.0 1260 6.4 2048 480 512 0.56 0.05–0.97 1.1 J

180 10.0 1800 6.4 2048 480 512 0.56 0.05–0.97 1.1 j

395 0.025 9.875 12.8 512 192 512 9.88 0.15–6.52 4.94 O

395 0.71 280.45 6.4 2048 480 512 1.2 0.11–2.1 2.5 �
395 1.0 395 6.4 2048 480 512 1.2 0.11–2.1 2.5 .

395 2.0 790 6.4 2048 480 512 1.2 0.11–2.1 2.5 }
395 5.0 1975 6.4 2048 480 512 1.2 0.11–2.1 2.5 M

395 7.0 2765 6.4 2048 480 512 1.2 0.11–2.1 2.5 /

395 10.0 3950 6.4 2048 120 512 1.2 0.11–2.1 2.5 �

640 0.025 16 12.8 1024 256 1024 8.00 0.15–8.02 4.00 ø
640 0.71 454.4 12.8 1024 256 1024 8.00 0.15–8.02 4.00 �
1020 0.025 25.5 12.8 2048 448 1536 6.38 0.15–7.32 4.25 �
1020 0.71 724.2 12.8 2048 448 1536 6.38 0.15–7.32 4.25 	
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Fig. 4. Ratio of the gradient of the molecular diffusion flux to the gradient of the
turbulent transport flux (A=B). Symbol shapes for DNS data are given in Table 1. The
solid lines show data for Pr P 0:6. The wall normal distance yþh is chosen as yþ for
the case at b ¼ 0. Data sets are from the DNS database of Kawamura’s group
[17,20,50].
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diffusion flux and turbulent heat flux gradients (layer II). This
behaviour is similar to the mean momentum balance where the vis-
cous force and turbulent inertia constitute the leading order bal-
ance. The thickness of the heat flux gradient balance layer shows
a definite Reynolds and Prandtl number dependence which extends
more into the traditionally accepted logarithmic region of the mean
temperature profile at sufficiently large Reynolds and Prandtl num-
ber. Near the location of peak turbulent heat flux, molecular diffu-
sion and mean advection are nearly in balance again (layer III). In
layer III, there is a balance breaking and exchange process in which
all the terms in the mean heat equation are important. In this layer,
the turbulent heat flux gradient changes sign and the molecular dif-
fusion flux gradient becomes much smaller than either the turbu-
lent heat flux gradient or the streamwise mean advection
gradient terms. By the end of layer III the gradients of turbulent heat
flux and the streamwise mean advection are leading order, which
defines layer IV. It is clear here that this layer structure establishes
a definite departure from the layer structure of Fig. 1.

A closer look at Fig. 5 reveals some interesting parameter
dependencies of the thermal four-layer structure. The open
symbols in this figure represent data for higher Reynolds number
(Res P 395), whereas the closed symbols indicate Res ¼ 180. The
balance breaking and exchange of forces characteristic of layer III
in the momentum equation is known to become distinct with
increasing Reynolds number. The same feature also appears in
the thermal four-layer regime with increasing Reynolds and Pra-
ndtl numbers. However, when the viscous length scale used to rep-
resent the layer structure (Fig. 5(a) at b ¼ 0), the effects of Res and
Pr on the heat flux gradient ratio act opposite to each other. With
the introduction of thermal length scale (b – 0), the Prandtl num-
ber starts showing similar influence as Reynolds number and final-
ly for b ¼ 1, the inner scaled variable takes the Pr-dependent form
yþh ¼ Pryþ which clearly contains the effect of Reynolds and Prandtl
number (Fig. 5). The initial opposite nature of Pr causes one to sus-
pect that the profiles of Fig. 5 will become invariant for a certain
value of b.

Although Wei et al. [2] described the characteristic properties of
the thermal four-layer structure, they did not determine the scal-
ing behaviours associated with the widths of these layers and tem-
perature increments across them. As observed in Fig. 5, the inner
length strongly influences these layer widths and temperature
increments. Herein, we aim to clarify the factors involved in
solving this task. A principal intention is to mathematically and
physically describe the mean heat transfer properties of the four
layer regime with respect to the balance breaking and exchange
mechanism in layer III, as this describes the transition from the
inner to intermediate length.

7. Inner and outer scaling of turbulent heat transfer

Fully developed thermal statistics in turbulent flow typically
use inner and outer normalizations analogous to those used to de-
scribe the mean streamwise velocity profile. This inner and outer
scaling of temperature can be expressed by the following relation
(e.g., [14,15,20]),

Hþ ¼ fiðyþÞ; ð29Þ

Hþc �Hþ ¼ foðgÞ; ð30Þ

where fi and fo are assumed to be universal functions and the sub-
script c represents the centreline value. Eq. (29) is referred as the

http://murasun.me.noda.tus.ac.jp/turbulence/poi/poi.html
http://murasun.me.noda.tus.ac.jp/turbulence/poi/poi.html
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Fig. 5. Heat flux gradient ratio (A=B) of fully developed turbulent heat transfer in a channel for Pr P 0:6. (a)–(d) Results from the present proposal of (20), (23), (26) for
different value of b. Data sets are from the DNS database of Kawamura’s group [17,20,50].
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law of the wall for the mean temperature and (30) is called the tem-
perature defect law. Fig. 6 shows the inner and outer-normalised
mean temperature and turbulent heat flux profiles. The present
DNS data reveal that (29) generally fails to produce invariant tem-
perature or heat flux profiles for varying Reynolds and Prandtl num-
bers. Outer normalization, however, convincingly scales both the
mean temperature and the turbulent heat flux profiles over a large
outer domain. Interestingly, neither of these normalizations scale
the data near the peak heat flux. It is evident from Fig. 6(d) that
the outer normalised maximum turbulent heat flux location moves
inward with increasing Reynolds and Prandtl numbers and gradu-
ally the peak value increases and apparently approaches one. For
large Reynolds and Prandtl numbers, when the value of e2=Pr
becomes very small and RðgÞ is Oð1Þ, the Oðe2=PrÞ term in the outer
normalised mean energy balance (10) may be neglected, leaving

dTþh
dg
þ R gð Þ ¼ 0; ð31Þ

and integrated using the boundary condition to obtain

Tþh gð Þ ¼ �
Z g

1
R gð Þdg ¼ 1� g; ð32Þ

results a linear variation of the heat flux independent of Reynolds
and Prandtl numbers. This condition satisfies in the domain where,
from (10), the mean streamwise advection and turbulent transport
flux gradient comprise the leading order balance. The inner normal-
ized mean temperature profiles also fail to merge (see Fig. 6(a)) due
to dependences on both Res and Pr. An apparent reason for this is
that the conventional normalization does not explicitly include
the effect of Prandtl number. This results in poor characterisation
of the mean temperature profiles under different diffusive transport
conditions. On the other hand, the outer scaling of mean tempera-
ture as shown in Fig. 6(b) merges temperature profiles in the outer
layer (say, g > 0:2).
Fig. 6(a) depicts the inner scaling profile considered from the
present proposal for case I at b ¼ 0 and this type of inner scaling
for mean temperature has been proposed by many researchers
[7,10–14,16–20,23–25]. Moreover, cases II and III for b ¼ 0 repre-
sent the inner scaled heat flux profile shown in Fig. 6(c) which
was also previously shown [7,12–16,18]. Due to the limitation of
this kind of inner scaling, an alternate was proposed based on a
Taylor series expansion of the mean temperature profile. This
results in a Pr-dependent normalized mean temperature, Hþ=Pr,
as successfully adopted by Abe et al. [10] and Kawamura et al.
[17,18]. Fig. 7(a) shows the alternate inner scaling of mean temper-
ature which is described by cases II and III for b ¼ 0. This alternate
scaling supports an extension of the conductive sublayer up to
yþ ’ 5. Like the mean temperature, the turbulent heat fluxes can
also be normalised by Prandtl number to account for the near wall
effect. Kawamura et al. [7,17,18] deduced this alternate scaling for
the heat flux profile based on the series expansion of fluctuating
components of velocity and temperature, see in Fig. 7(b).

The mean temperature and turbulent heat flux profiles derived
from the formulation of Wei et al. [2] are shown in Fig. 8. Their
inner normalization yields a convincing invariance for the mean
temperature. The heat flux profile, however, exhibits a small but
discernible Reynolds number effect for yr < 1:0. Here the closed
symbols indicating Res ¼ 180, seem to merge for varying Pr. The
open symbols (Res > 180), however, exhibit variations. This scaling
will be discussed further in Section 9.

Here we have considered case I to show the effect of the coeffi-
cient b on the inner scaling of mean temperature and turbulent
heat flux. For the reasons explained in Section 9, we omit a detailed
presentation of the other cases. The parameter b varies from 0 to 1
showing the dependence of Prandtl number on the thermal length
scale. The influence of Reynolds number on both the mean temper-
ature and heat flux is accounted for by using the traditional viscous
length scale. However, only the thermal length scale considers the
effect of both Reynolds and Prandtl numbers, and this effect is
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Fig. 6. Traditional inner and outer scaling of mean temperature and turbulent heat flux for fully developed turbulent heat transfer in a channel. (a) Inner scaling of mean
temperature, (b) outer scaling of mean temperature (temperature defect law), (c) inner scaling of turbulent heat flux and (d) outer scaling of heat flux. Data sets are as for
Fig. 5.

⊗

⊗

⊗
⊗

⊗
⊗

⊗
⊗

⊗
⊗

⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

⊕

⊕
⊕

⊕
⊕

⊕
⊕

⊕
⊕

⊕
⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

y+

Θ
+ /P
r

10-1 100 101 102 103
0-1

100

101

102

(a)

⊗

⊗

⊗
⊗

⊗
⊗

⊗
⊗

⊗
⊗

⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
⊗
⊗
⊗
⊗

⊕

⊕

⊕
⊕

⊕
⊕

⊕
⊕

⊕
⊕

⊕
⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕
⊕
⊕
⊕

y+

T θ+ /P
r

10-1 100 101 102 103
10-6

10-5

10-4

10-3

10-2

10-1

100

101

(b)

Fig. 7. Alternate inner scaling (log–log) of (a) mean temperature and (b) turbulent heat flux. Data sets are as for Fig. 5.

⊗ ⊗ ⊗
⊗

⊗
⊗

⊗
⊗

⊗
⊗

⊗
⊗

⊗
⊗

⊗
⊗

⊗
⊗

⊗
⊗

⊗
⊗

⊗
⊗

⊗
⊗

⊕ ⊕ ⊕ ⊕ ⊕ ⊕
⊕

⊕
⊕

⊕
⊕

⊕
⊕

⊕
⊕

⊕
⊕

⊕
⊕ ⊕

⊕
⊕

⊕
⊕

⊕
⊕

⊕
⊕

yσ

ψ

10-2 10-1 100 101 102
0.0

0.2

0.4

0.6

0.8

1.0

(a)

⊗ ⊗ ⊗ ⊗ ⊗ ⊗
⊗

⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗

⊗
⊗

⊗ ⊗ ⊗ ⊗
⊗

⊗
⊗

⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕
⊕

⊕
⊕

⊕
⊕
⊕
⊕

⊕
⊕
⊕
⊕
⊕

⊕
⊕

⊕ ⊕ ⊕ ⊕ ⊕
⊕

⊕
⊕

⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕

yσ

T+ θ

10-2 10-1 100 101 102

(b)

Fig. 8. Inner scaling of (a) mean temperature and (b) turbulent heat flux following Wei et al. [2]. Data sets are as for Fig. 5.
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exemplified in Figs. 9 and 10. When b ¼ 1, one recovers the alter-
nate scaling of Fig. 7(a). On the other hand, the inner scaled turbu-
lent heat flux fails to match near the wall, as the expression of heat
flux profile changes with b. With increasing b, the limit of turbulent
heat flux approaches unity, although the near wall profile shows
dependencies on both Res and Pr (Fig. 10(d)). Thus, in summary,
the introduction of b on the thermal length scale allows us to
determine the condition under which the inner normalization
yields the invariant profiles of mean temperature and turbulent
heat flux near the wall.

8. Intermediate length scaling

The inner and outer flow subdomains are characterized by the
distance variables yr in (18) or yþh in (20), (23), (26) and g respec-
tively. The theory of Wei et al. [2] indicates that these subdomains
are connected by the continuous layer hierarchy discussed at the
end of Section 3. Layer III in Fig. 2 is the consequence of this under-
lying layer hierarchy. In wall-bounded turbulent heat transfer, the
intermediate layer (layer III) is accurately described as the central
layer on the hierarchy. This layer is centered about the peak in the
turbulent heat flux Tþh [1,31]. We present rescaled versions of the
thermal energy equation that reflect and thus clarify this descrip-
tion for the three cases considered.

Following Wei et al. [2], rescaling is most easily accomplished
for the differentials dyr and dTþh ,

dyr ¼ p1dŷr; dTþh ¼ p2dTh; dw ¼ dŵ; ð33Þ

where ŵ and Th are the rescaled Oð1Þ functions of ŷr and r and p1

and p2 are scaling factors to be determined. The terms in (18) trans-
form as,

d2w

dy2
r

¼ 1
p2

1

d2ŵ
dŷ2

r
;

dTþh
dyr
¼ p2

p1

dTh

dŷr
: ð34Þ
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Fig. 9. Inner normalizations of mean temperature for Case I of Eq. (20). (a)
We now require that the derivatives on the right of (34), namely
d2ŵ=dŷ2

r and dTþh =dŷr, be Oð1Þ quantities. By this requirement, the or-
ders of magnitude of both terms on the right, namely 1=p2

1 and p2=p1,
must match the third term in (18), namely r2 : p�2

1 ¼ p2=p1 ¼ r2.
This is only possible if p2 ¼ r, p1 ¼ r�1. Thus from (33)

dyr ¼ r�1dŷr; dTþh ¼ rdTh: ð35Þ

Integrating (35) gives two integration constants which are conve-
niently chosen to be yrm and Tþhm, as they are the values of yr and
Tþh where ŷr ¼ 0 and Th ¼ 0. The result is

yr ¼ yrm þ r�1ŷr; Tþh ¼ Tþhm þ rTh; ð36Þ

where the quantities with subscript m are the values of those vari-
ables at the maximum point yrm of Tþh . The meso-scaled variables
now become

ŷr ¼ rðyr � yrmÞ; Th ¼ ð1=rÞðTþh � TþhmÞ; ŵ ¼ w� wm; ð37Þ

where yrm and Thm are the peak turbulent heat flux location and va-
lue, respectively, and wm is the value of normalised mean tempera-
ture at yrm. Normalization of the mean energy equation according
to these variables results in the invariant equation,

d2ŵ
dŷ2

r
þ dT̂h

dŷr
þ 1 ¼ 0; ð38Þ

in which all terms are Oð1Þ. Here we note that dTþh =dg equates to
dTh=dŷr. This indicates that the intermediate scaling melds seam-
lessly into the outer scaling, and thus will be applicable from inte-
rior to yþm to the channel center.

Similarly, the three alternative forms of the inner normalised
energy equations (20), (23), (26) yield

Case I.

ŷ ¼
ffiffiffiffiffiffi
Pr
dþ

r
yþ � yþm
� �

; ð39Þ
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b ¼ 0, (b) b ¼ 1=3, (c) b ¼ 1=2 and (d) b ¼ 1. Data sets are as for Fig. 5.



⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

T φ+

10-1 100 101 102 103
0

2

4

6

8

10

(a)

⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

⊗⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
⊕

⊕
10-1 100 101 102 103
0

1

2

3

4

5

(b)

⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
⊗

⊗
⊗

⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
⊗

⊗
⊗

⊗⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
⊕

⊕
⊕

⊕
⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕
⊕

⊕
⊕

yθ
+

T φ+

10-1 100 101 102 103
0

1

2

3

(c)

⊗ ⊗ ⊗ ⊗ ⊗
⊗

⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗

⊗
⊗

⊗ ⊗ ⊗ ⊗
⊗

⊗
⊗

⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗⊕ ⊕ ⊕ ⊕ ⊕

⊕
⊕

⊕
⊕

⊕

⊕

⊕
⊕
⊕
⊕
⊕
⊕

⊕
⊕

⊕ ⊕ ⊕ ⊕
⊕

⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕

yθ
+10-1 100 101 102 103

0

0.2

0.4

0.6

0.8

1

(d)

Fig. 10. Inner normalizations of turbulent heat flux for Case I of Eq. (20). (a) b ¼ 0, (b) b ¼ 1=3, (c) b ¼ 1=2 and (d) b ¼ 1. Data sets are as for Fig. 5.
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T̂/ ¼
ffiffiffiffiffiffiffiffiffiffi
dþPr

p
Tþh � Tþhm

� �
; ð40Þ

Ĥ ¼ Hþ �Hþm
� �

: ð41Þ

Note that these meso-scaled variables are independent of the coef-
ficient b.
Case II.

ŷ ¼

ffiffiffiffiffiffiffi
Prb

dþ

s
yþ � yþm
� �

; ð42Þ

T̂/ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
dþPrb

p
Tþh � Tþhm

� �
; ð43Þ

Ĥ ¼ Prb�1 Hþ �Hþm
� �

: ð44Þ

If we consider b ¼ 1, then all these meso-scaled variables become
the same as case I and (23) takes the form of case I (20).
Case III.

ŷ ¼

ffiffiffiffiffiffiffiffiffi
Pr2b

dþ

s
yþ � yþm
� �

; ð45Þ

T̂/ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dþPr2b

p
Tþh � Tþhm

� �
; ð46Þ

Ĥ ¼ Pr2b�1 Hþ �Hþm
� �

: ð47Þ

A similar situation as case II for b ¼ 1 will happen if we consider
b ¼ 1=2 for case III. From this we conclude that case I yields a uni-
versal form of the intermediate scaling of (23). This intermediate
form is derivable from the other cases and recovers the form pro-
posed by Seena and Afzal [38]. Using these meso-scaled variables,
the mean energy equation takes the parameter-free form as
follows:

d2Ĥ
dŷ2 þ

dT/

dŷ
þ 1 ¼ 0; ð48Þ

where all scaled terms have values that are Oð1Þ. As now discussed,
however, the pure Peclet number dependence of case I has yet to be
reconciled with Pr dependent inner scaling discussed previously.
9. Discussion of implications

Fig. 11 shows the mesoscaling of the mean temperature and
turbulent heat flux profiles for case I. All of the profiles convinc-
ingly merge to a single curve. This scaling for turbulent heat flux
extends from inside the peak in Tþh to a zone very near the center-
line. At a minimum, the mesoscaling should be valid over an Oð1Þ
Dŷ domain, surrounding yþmðŷ ¼ T/ ¼ 0Þ. The outer normalization
of mean temperature and turbulent heat flux show invariant pro-
files away from the wall, and hence as noted above the intermedi-
ate normalization also scales these data. The mesoscaling does not
hold very near the wall, as this is where inner scaling is expected to
hold. This behaviour is also similar to the mesoscaling of Reynolds
shear stress in the momentum field as explained by Wei et al. [1].
The matched asymptotic expansions analysis of Seena and Afzal
[38] also reveals the similar meso-scaled profiles of the mean tem-
perature and turbulent heat flux. The main feature of this case is
that it does not depend on the choice of thermal length scale,
which is a strong function of the coefficient b. But without having
any proper inner scaled thermal heat flux limits the applicability of
this approach. This is clarified further below by considering the
properties of the layer hierarchy.

Cases II and III also show the same meso-scaled profiles of the
mean temperature and turbulent heat flux as shown in Fig. 11
for b ¼ 1 and b ¼ 1=2 respectively. Other choices of b in these
two cases fail to produce invariant temperature profiles. On the
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Fig. 11. Mesoscaling of (a) mean temperature and (b) turbulent heat flux for Case I. Data sets are as for Fig. 5.
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other hand, the meso-scaled heat flux profiles can always be made
invariant by choosing the appropriate value of b in the other cases.
The existing theory proposed by Wei et al. [2] also faces a similar
limitation. Their results are depicted in Fig. 12. As mentioned
before, the meso-scaled temperature fails to merge from yþm and
into the outer region. On the other hand, the inner normalized
temperature of Wei et al. [2] (Fig. 8) melds smoothly into the
meso-scaling of Fig. 12. A thorough investigation of the inner
normalised energy equation reveals that the normalised tempera-
ture function is most difficult to scale, even though the leading
order balance of terms is known. The similarity between the nor-
malised Uþ and Hþ profiles allow them to generate the invariant
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for Fig. 5.
meso-scaled profiles both theoretically and quantitatively. How-
ever, any other normalization of the mean temperature profile
(Hþ, e.g., for w or U) results in a non-invariant profile of the
meso-scaled variables.

The existence of the underlying invariant form of the mean
thermal energy equation (38) or (48) reveals the self-similar heat
transfer mechanisms from layer to layer with each having a dis-
tinct characteristic length. As a whole, these scaling layers are
called as the Lc hierarchy where L refers to the family layers on
the hierarchy, and the subscript c reflects the properties of the
layer hierarchy. Namely, that the decay rate of the turbulent heat
flux gradient establishes the width of each layer [2]. This inner
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normalized length distribution, W, accounts for the width of each
Lc as a function of yþh . The layers on this hierarchy have increasing
width with distance from the wall, with the first layer starting near
the wall and the last layer ending near the centerline. Using the
theory developed by Wei et al. [2], one can compute the layer
width distribution, WðyrÞ, which effectively depends upon the de-
cay rate of term B in (18) across the hierarchy. Namely,

W yrð Þ ¼ O c�1=2� �
; ð49Þ

where the parameter c can be evaluated as

c ¼ dTþh
dyr
þ r2Rr yrð Þ: ð50Þ

The introduction of the new inner scale yr allows one to determine
how the scaling approach effectively satisfies the layer hierarchy
requirement with increasing Reynolds and Prandtl numbers. The
mean momentum balance theory indicates that a linear WðyþÞ pro-
file (exact or approximate) is required for the existence of a loga-
rithmic mean velocity profile [49]. The same is applicable to the
mean thermal energy balance relative to the development of a log-
arithmic mean temperature profile, and the evolution of the WðyrÞ
profiles is shown in Fig. 13(a) for the existing channel flow DNS
data. The same theory also allows one to compute the layer width
distributions, Wðyþh Þ under the normalization of case I and this is
illustrated in Fig. 13(b). The remarkable finding here is that while
both of the W distributions of Fig. 13 develop an approximately
(emerging) linear W distribution, this W distribution is nearly
invariant under the formulation of Wei et al. [2], but exhibits clear
variations for the case I formulation.
10. Conclusions

The scaling properties of mean thermal energy balance equa-
tion for turbulent heat transfer in a channel have been investigated
with the aid of existing DNS data. A generalized framework was
employed. This allowed the relative influences of Re and Pr on
the construction of invariant forms of the equation to be explored.
Only one meso-normalization was found that accurately scaled
both mean temperature and turbulent heat flux irrespective of
the variations in Reynolds and Prandtl numbers. The derived mes-
oscaling (pure Pe) applied to both the turbulent heat flux and the
mean temperature serves to merge the various data profiles to a
single curve over a range of distances from the wall that extends
from interior to the peak heat flux to the channel center line. This
scaling characteristics exhibits similarity to the Reynolds stress at
high Reynolds number. Unlike the momentum analysis, the pro-
posed scaling approach fails to display the correct profile of the
layer hierarchy associated with the intermediate normalization.
The framework underlying the pure Peclet number scaling fails
to yield viable inner scaling. Physically this may be because this
framework does not automatically embrace the differential rates
of heat and momentum transport in the region where the molecu-
lar diffusion is dominant.
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