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a b s t r a c t

We present results from direct numerical simulation of turbulent heat transfer in pipe flow at a bulk flow
Reynolds number of 5000 and Prandtl numbers ranging from 0.025 to 2.0 in order to examine the effect of
streamwise pipe length (pd ! pD/2 6 L 6 12pd) on the convergence of thermal turbulence statistics. Var-
ious lower and higher order thermal statistics such as mean temperature, rms of fluctuating temperature,
turbulent heat fluxes, two-point auto and cross-correlations, skewness and flatness were computed and it
is found that the value of L required for convergence of the statistics depends on the Prandtl number: lar-
ger Prandtl numbers requires comparatively shorter pipe length for convergence of most of the thermal
statistics.

! 2011 Elsevier Inc. All rights reserved.

1. Introduction

Within the last decade, simulation procedures based on compu-
tational fluid dynamics (CFD) have become an essential design and
analysis tool in a wide and ever-increasing range of applications
involving fluid flow and heat transfer. Direct numerical simulation
(DNS) is a well-accepted numerical tool among the most popular
branches of CFD for high-fidelity solution of turbulent flows. From
the time-dependent velocity and scalar fields obtained from DNS, a
huge range of information such as single- and multi-point statistics
can be readily calculated. This information is particularly useful
when research demands accurate analysis of quantities that are
difficult to measure experimentally, such as velocity and pressure
gradients. Additional details from DNS have complemented
existing experimental data and contributed significantly to the
understanding of turbulence physics, and to the improvement of
lower-order models.

Since the first successful DNS of turbulent channel flow and
heat transfer at Res = usd/m " 180 (where us is the friction velocity,
d is the half channel height or pipe radius, m is the kinematic viscos-
ity) for Pr = m/a = 0.1, 0.71 and 2.0 (where a is the thermal diffusiv-
ity) by Kim and Moin (1989), many researchers have used DNS
data to gain significant insight into the physics wall-bounded
turbulent flow and heat transfer. Most of these simulations were
performed for turbulent heat transfer in channel flow over a wide
range of Reynolds numbers as well as Prandtl numbers with

various configurations of thermal boundary conditions. By
comparison, only a relatively limited number of DNS studies for
turbulent heat transfer in non-buoyant pipe flow may be found
in the literature as can be seen from an examination of Table 1.
Typically if Prandtl number variations were examined, Res had
been comparatively low and conversely Prandtl number was often
fixed (typically at Pr = 0.71, the value for air) if Res variations were
examined.

In the majority of these DNS studies the flow is assumed to be
fully developed and hence it is justified to assume streamwise peri-
odicity. However, other studies found that turbulence statistics
may be affected by the length of the computational domain be-
cause large-scale streamwise structures, sometimes referred to as
the ‘‘large-scale motions’’ (LSMs) may extend further than the
streamwise periodic length. If the computational domain is too
short, then the LSM can be ‘‘contaminated’’ by the enforced
streamwise periodicity of the boundary conditions. If too long,
then there is a wastage of computational resources. Hence, it is
important to find the optimum length of the computational do-
main and to understand the effects on the DNS data that may result
if simulations were conducted in a domain of insufficient length.

It was experimentally observed that the interaction between
the outer layer and the inner layer in wall-bounded turbulent flow
increased with increasing Reynolds number (Naguib and Wark,
1992). Kim and Adrian (1999) in their studies explained that very
large-scale motions (VLSMs) in flat-plate boundary layers were
much longer than LSMs appeared in the outer layer of a turbulent
pipe flow. Monty et al. (2007) reported that the length of these long
meandering structures in pipe and channel flows was up to 25d.
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For DNS of turbulent channel flow with passive scalar transport,
Kawamura et al. (2004) inspected the very large-scale structures
of temperature fluctuation for a range of Reynolds numbers and
observed the existence of VLSMs in the outer region which was clo-
sely related to ‘‘temperature front’’ phenomenon reported by Chen
and Blackwelder (1978). With decreasing Prandtl number, near-
wall streak structures become more elongated, demanding longer
computational domains.

Computational cost typically increases with increasing Reynolds
and Prandtl numbers in order to resolve all relevant length scales in
the simulation.However, in general, our resultswill show the length
of thepipewill need tobe increasewithdecreasingPrandtl numbers.
This is because we have to consider the need to correctly capture all
key dynamical features of the LSMs and VLSMs in wall-bounded
flows, computational domain sizes must be chosen carefully. In
wall-bounded turbulent flows, computational cost estimated by
Jiménez (2003) to scalewith# L2xLyRe

4
s . Moreover, the ratio between

the largest and the smallest length scales in thermal field is roughly
proportional to Re3/4Pr1/2 at higher Prandtl numbers (Tennekes and
Lumley, 1972). As a result, the computational cost for a wall-
bounded thermal turbulence simulation can be approximated as
# L2xLyRe

4
sPr

3=2 (Kasagi and Iida, 1999). It is also important to consider
that themost energetic small-scale structure for temperaturefluctu-
ations is found at a streamwise wavelength of kþx " 700 (Yamamoto
et al., 2009) whereas that for velocity fluctuations has a streamwise
length of kþx " 1000 (Marusic et al., 2010) suggesting the computa-
tional domain must use at least l+ " 1000 in order to avoid any
‘‘contamination’’ by periodicity in the streamwise direction.

DNS studies for turbulent heat transfer in a channel have been
carried out using a number of different boundary conditions for
the flow and thermal fields: uniform heat generation with cold iso-
thermal walls (Kim and Moin, 1989), uniform temperature differ-
ence (Kim and Moin, 1989; Yamamoto et al., 2009), mixed
boundary condition (Kasagi et al., 1992; Saha et al., 2010),

Table 1
Overview of turbulent heat transfer in wall-bounded flows.

Previous DNS Res Pr Boundary conditions

Channel flows
Kim and Moin (1989) 180 [0.1, 0.71, 2.0] UHG1, UTD2, PF9

Lyons et al. (1991) 150 1.0 UTD2, CF10

Kasagi et al. (1992) 150 0.71 MBC3, PF9

Kasagi and Ohtsubo (1993) 150 0.025 MBC3, PF9

Kawamura et al. (1997) 180 [0.025, 0.05, 0.1, 0.2, 0.4, 0.6, 0.71, 1.0, 1.5, 5.0] MBC3, PF9

Abe et al. (1998) [180, 395] [(0.025, 0.1, 0.2, 0.4, 0.71, 5.0), (0.025, 0.2, 0.71)] MBC3, PF9

Matsubara et al. (1998) 150 [0.1, 0.3, 0.71, 1.5] SMTG4, PF9

Kawamura et al. (1998a) 180 [0.025, 0.05, 0.1, 0.2, 0.4, 0.6, 5.0] MBC3, PF9

Kawamura et al. (1998b) 180 [0.025, 0.05, 0.1, 0.2, 0.4, 0.6, 0.71, 1.0, 1.5, 5.0] MBC3, PF9

Kawamoto and Kawamura (1998) 180 [0.025, 0.05, 0.4, 0.71] SMTG4, PF9

Kawamoto and Kawamura (1999a) 180 [0.025, 0.71] UTD2, MBC3, PF9

Kawamoto and Kawamura (1999b) [180, 395] [(0.025, 0.05, 0.1, 0.2, 0.4, 0.6, 5.0), (0.025, 0.2, 0.71)] MBC3, PF9

Kawamura et al. (1999) [180, 395] [0.025, 0.2, 0.71] MBC3, PF9

Matsubara et al. (1999) 150 0.71 SMTG4, PF9

Johansson and Wikström (1999) 265 0.71 UTD2, PF9

Na et al. (1999) 150 [0.3, 1.0, 3.0, 10.0] UTD2, PF9

Na and Hanratty (2000) 150 [1.0, 3.0, 10.0] UTD2, PF9

Kawamura et al. (2000) [180, 395] [(0.025, 0.2, 0.71, 1.0), (0.025, 0.2, 0.71, 1.0)] UTD2, MBC3, PF9, CF10

Kawamura and Ogawa (2001) 180 0.71 UTD2, SMTG4, CWTDSMTG5, PF9

Matsubara et al. (2001) 150 0.71 MBC3, SMTG4, PF9

Piller et al. (2002) 150 [0.025, 0.05, 0.1, 0.3, 1.0] UTD2, PF9

Kawamura and Abe (2002) [180, 395, 640] [0.025, 0.71] MBC3, PF9

Abe and Kawamura (2002) [180, 395, 640] [0.025, 0.71] MBC3, PF9

Seki et al. (2003a) [180, 395] 0.71 UTD2, MBC3, PF9

Seki et al. (2003b) 180 0.71 UTD2, MBC3, CWTDSMTG5, PF9

Abe et al. (2004) [180, 395, 640, 1020] [0.025, 0.71] MBC3, PF9

Tsukahara et al. (2004) [64, 70, 80, 110, 150, 180] 0.71 MBC3, PF9

Kawamura et al. (2004) [180, 395, 640, 1020] [0.025, 0.71] MBC3, PF9

Seki and Kawamura (2004a) 180 0.71 SVTBC6, PF9

Seki and Kawamura (2004b) 180 0.71 UTD2, MBC3, CWTDSMTG5, PF9

Seki and Kawamura (2005) 180 0.71 SVTBC6, PF9

Seki and Kawamura (2006) 180 0.71 SVTBC6, PF9

Seki et al. (2006) 180 [0.71, 1.0, 2.0, 10.0] MBC3, PF9

Abe et al. (2008) [180, 395, 640] 0.71 MBC3, PF9

Antonia et al. (2008) [180, 395, 640, 1020] 0.71 MBC3, PF9

Yamamoto et al. (2009) [150, 1000, 2000] 5.0 UTD2, PF9

Pipe flows
Satake et al. (2000) [150, 180, 360, 500, 1050] 0.71 MBC3, PF9

Piller (2005) 180 0.71 IWT7, IWHF8, MBC3, PF9

Redjem-Saad et al. (2007) 186 [0.026, 0.1, 0.2, 0.4, 0.71, 1.0] MBC3, PF9

Saha et al. (2010) 170 [0.026, 0.1, 0.2, 0.4, 0.71, 1.0] MBC3, PF9

1 USG: uniform heat generation with cold isothermal walls.
2 UTD: uniform temperature difference (constant wall temperature difference).
3 MBC: mixed boundary condition (wall temperature is time independent and varies linearly along streamwise direction).
4 SMTG: spanwise mean temperature gradient (time-averaged wall temperature is uniform in streamwise and wall-normal direction).
5 CWTDSMTG: constant wall temperature difference imposed with spanwise mean temperature gradient.
6 SVTBC: streamwise varying thermal boundary condition.
7 IWT: ideal isothermal boundary condition (time-averaged wall temperature is uniform and constant).
8 IWHF: ideal isoflux boundary condition (time-averaged wall temperature varies linearly along streamwise direction).
9 PF: Poiseuille flow.

10 CF: Couette flow.
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spanwise mean temperature gradient (Matsubara et al., 1998,
2001), constant wall temperature difference imposed with span-
wise mean temperature gradient (Kawamura and Ogawa, 2001;
Seki and Kawamura, 2004b) and streamwise varying thermal
boundary condition (Seki and Kawamura, 2004a, 2006). The mixed
boundary condition (see e.g. Piller (2005) and Section 2.3 below for
details) for both pipe and channel flow where an isoflux heat
source applied on the wall surface is one of the most common ther-
mal boundary conditions that occurs in many practical
applications.

Among those previous studies listed in Table 2, it is clearly ob-
served that the domain length used by the investigators did not
change significantly with variations in Res and Pr. When the flow
and heat transfer was characterized by low Res(= 180) and low
Pr(= 0.025), the minimum domain length was taken as 6.4d
(1152 in wall units). As outlined above, the flow at higher Reynolds
number should require a longer domain length than was used in
the previous studies which were limited to a domain length of
12.8d for channel flow (Res = 1020) and 15d for pipe flow

(Res = 1050). In terms of wall units, this length should be approxi-
mately 13,000 and 16,000 respectively. Only Tsukahara et al.
(2004) tried to show the influence of domain length on turbulent
heat transfer in channel flow for low values of Kármán numbers
(Res). However, their results failed to provide any significant con-
clusion of selecting appropriate domain length based on variable
thermal scales as a function of Pr.

The minimum length required for the computational domain is
clearly dependent on both the Kármán and Prandtl numbers as
these have a direct influence on turbulent flow and heat transfer
characteristics in pipe flow. Satake et al. (2000) and Redjem-Saad
et al. (2007) carried out investigations of turbulent heat transfer
in pipe flows with the objective of elucidating the effect of the gov-
erning parameters, Kármán number (Satake et al., 2000) and Pra-
ndtl number (Redjem-Saad et al., 2007) on the turbulent heat
transfer quantities. DNS studies were conducted by Satake et al.
(2000) at Res = 150, 180, 360, 500 and 1050 for Pr = 0.71 while
Redjem-Saad et al. (2007) considered fixed value of Res = 186 with
Pr = 0.026, 0.1, 0.2, 0.4, 0.71 and 1.0. Satake et al. (2000) performed

Table 2
List of computational parameters for previous wall-bounded DNS studies with mixed boundary condition.

Previous DNS Res Pr L/d l+ Dx+ Dz+/Dr+ Dy+/D(rh)+

Channel flows
Kasagi et al. (1992) 150 0.71 5p 2356.2 18.4 [0.08, 4.9] 7.4
Kasagi and Ohtsubo (1993) 150 0.025 5p 2356.2 18.4 [0.08, 4.9] 7.4
Abe et al. (1998) 180 [0.025, 0.1, 0.2, 0.4, 0.71, 5.0] 6.4 1152 9.0 [0.40, 11.5] 4.5

395 [0.025, 0.2, 0.71] 6.4 2528 9.88 [0.44, 13.0] 4.94
Kawamura et al. (1998b) 180 [0.025, 0.05, 0.1, 0.2, 0.4, 0.6, 0.71, 1.0, 1.5] 6.4 1152 9.0 [0.40, 11.5] 4.5

180 5.0 6.4 1152 4.5 [0.20, 5.90] 2.25
Kawamoto and Kawamura (1999a) 180 [0.025, 0.71] 6.4 1152 9.0 [0.40, 11.5] 4.5
Kawamura et al. (1999) 180 [0.025, 0.2, 0.71] 6.4 1152 9.0 [0.40, 11.5] 4.5

395 [0.025, 0.2, 0.71] 6.4 2528 9.88 [0.44, 13.0] 4.94
Kawamura et al. (2000) 180 [0.025, 0.2, 0.71] 6.4 1152 9.0 [0.40, 11.5] 4.5

180 1.0 6.4 1152 4.5 [0.20, 5.90] 2.25
395 [0.025, 0.71] 6.4 2528 9.88 [0.44, 13.0] 4.94
395 [0.2, 1.0] 6.4 2528 9.88 [0.20, 9.46] 4.94

Matsubara et al. (2001) 150 0.71 7.85 1177.5 18.4 [1.03, 9.51] 7.36
Kawamura and Abe (2002) 180 [0.025, 0.71] 12.8 2304 9.0 [0.20, 5.90] 4.5

395 [0.025, 0.71] 12.8 5056 9.88 [0.15, 6.52] 4.94
640 [0.025, 0.71] 12.8 8192 8.00 [0.15, 8.02] 4.00

Seki et al. (2003a) 180 0.71 12.8 2304 9.0 [0.20, 5.90] 4.5
395 0.71 12.8 5056 9.88 [0.15, 6.52] 4.94

Kawamura et al. (2004) 180 [0.025, 0.71] 12.8 2304 9.0 [0.20, 5.90] 4.5
395 [0.025, 0.71] 12.8 5056 9.88 [0.15, 6.52] 4.94
640 [0.025, 0.71] 12.8 8192 8.00 [0.15, 8.02] 4.00
1020 [0.025, 0.71] 12.8 13056 6.38 [0.15, 7.32] 4.25

Tsukahara et al. (2004) 64 0.71 25.6 1638.4 6.40 [0.071, 2.11] 3.20
70 0.71 25.6 1792 7.00 [0.078, 2.31] 3.50
80 0.71 51.2 4096 4.00 [0.111, 3.59] 3.52
80 0.71 12.8 1024 4.00 [0.089, 2.64] 2.00
110 0.71 12.8 1408 5.50 [0.123, 3.62] 2.75
150 0.71 12.8 1920 7.50 [0.167, 4.94] 3.75
180 0.71 12.8 2304 9.00 [0.201, 5.93] 4.50

Seki et al. (2006) 180 [0.71, 1.0, 2.0, 10.0] 6.4 1152 1.1 [0.05, 1.0] 1.1
Antonia et al. (2008) 180 0.71 12.8 2304 3.00 [0.20, 5.90] 3.00

395 0.71 12.8 5056 3.29 [0.15, 6.52] 3.29
640 0.71 12.8 8192 4.00 [0.15, 8.02] 4.00
1020 0.71 12.8 13056 6.38 [0.15, 7.32] 4.25

Kozuka et al. (2009) 180 [0.71, 1.0, 2.0, 10.0] 6.4 1152 1.13 [0.0504, 0.972] 1.13
180 [7.0, 10.0] 6.4 1152 0.563 [0.0504, 0.972] 1.13
395 [0.71, 1.0, 2.0, 5.0, 7.0, 10.0] 6.4 2528 1.23 [0.111, 2.13] 2.47

Pipe flows
Satake et al. (2000) 150 0.71 15 2250 8.78 [0.24, 0.86] 7.36

180 0.71 15 2700 10.5 [0.29, 1.04] 8.84
360 0.71 15 5400 14.0 [0.11, 1.1] 8.83
500 0.71 15 7500 14.6 [0.1, 2.6] 8.18
1050 0.71 15 15750 15.4 [0.163, 4.16] 8.59

Piller (2005) 180 0.71 12.656 2278 7.03 6.28
Redjem-Saad et al. (2007) 186 0.026 15 2790 20 [0.01, 7] 10

186 [0.1, 0.2, 0.4, 0.71, 1.0] 15 2790 10 [0.01, 5] 10
Saha et al. (2010) 170 [0.026, 0.1, 0.2, 0.4, 0.71, 1.0] 4p 2148.8 14.3 [0.5, 3.6] 8.4
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their simulation inside a pipe of length 15d, which was the same
length used by Redjem-Saad et al. (2007). Satake et al. (2000) did
not mention why they chose this length or perform any related
analysis to justify this pipe length. Redjem-Saad et al. (2007) in
their investigation proved that correlations for both velocity and
temperature tend to zero at streamwise separation of half the pipe
length, indicating that the length of the pipe was sufficient to cap-
ture the largest flow eddies as well as thermal structure. Although
their results provide a reference pipe length for DNS studies, some
doubt remains if this was sufficient for convergence of all relevant
statistical information. Meanwhile, Piller (2005) used a shorter
pipe of 12.676d to compare the effect of different thermal bound-
ary conditions on the mean properties and turbulence statistics
up to fourth order, the budget and the wavenumber spectra of
the temperature fluctuations. Using the autocorrelation function
with streamwise separation for velocity and temperature fluctua-
tion, he proposed that the pipe length adopted was marginally suf-
ficient to capture the largest scale structures of the flow and
thermal field, even though the computed correlation functions
had finite values at streamwise separation of half a pipe length.

So far, no studies have specifically investigated the effect of
computational domain length on turbulent heat transfer in pipe
flow. Earlier studies of del Álamo et al. (2004) and Abe et al.
(2007) showed the effects of the computational domain size on
turbulent channel flow. Later, Chin et al. (2010a,b) made a thor-
ough investigation of the convergence of lower and higher order
statistics of the flow field as a function of the length of the compu-
tational domain. These studies have added valuable information
about saving the computational cost when one performs the DNS
at high Re. For turbulent heat transfer simulation, the work of
Tsukahara et al. (2004) provided very limited information on the
effects of computational box size on mean and rms of temperature
profile and turbulent Prandtl number at Res " 80 and Pr = 0.71.
Their results suggested that the computational domain size should
be large enough to capture large scale structures of the thermal
fluctuations for very low Reynolds number. However, they only
considered two different computational domains and did not in-
clude the convergence of higher-order statistics with the change
of Prandtl numbers.

The present study investigates how thermal statistics vary with
Prandtl number and domain length used in simulations of turbu-
lent pipe flow. The convergence of purely flow-based statistics
with domain length for turbulent pipe flow has already been ad-
dressed by Chin et al. (2010a,b) and the present paper aims to ex-
tend their findings to include statistical turbulent heat transfer
quantities. We have carried out a series of DNS in which different
pipe lengths are considered for a range of Prandtl numbers while
keeping all other parameters and grid resolution fixed at values
similar to those considered by Chin et al. (2010a,b) at Res " 170.
The subsequent comparison among various computed thermal sta-
tistics provides a good understanding of domain length required
for the convergence of turbulence statistics involving heat transfer
quantities.

2. Mathematical formulation

2.1. Model description

The turbulent heat transfer inside a pipe is simulated using the
cylindrical domain shown in Fig. 1. The turbulent flow is fully
developed, and the incompressible Newtonian fluid is heated with
a uniform heat flux qw imposed at the pipe wall. The fluid proper-
ties are assumed constant and temperature is considered to be a
passive scalar. The diameter of the pipe is denoted by D = 2d, and
the length of the computational domain by L. The length: diameter

ratio has been varied on the basis that previous pipe-flow DNS at
Res " 170 by Chin et al. (2010a,b). That study established that min-
imum pipe length required for a converged streamwise mean
velocity profile is 2pd. A length of at least 8pd is required to ensure
a minimum level of correlation associated with large-scale turbu-
lent structure, thus establishing the convergence of higher order
statistics. Moreover, the selected range of pipe lengths in the pres-
ent study covers the range of computational domain lengths for all
previous DNS studies for both channel and pipe flows at compara-
ble Reynolds and Prandtl numbers as given in Table 2.

2.2. Governing equations

The system under study is governed by the incompressible Na-
vier–Stokes equations

@u
@t

þ NðuÞ ¼ (rP þ mr2uþ F; ð1Þ

r ) u ¼ 0; ð2Þ

where P = p/q is the kinematic pressure, m is the kinematic viscosity,
N(u) represents the non-linear advection terms and F is a body force
vector. Coordinates x, r, h indicates the axial, radial and azimuthal
directions respectively in a cylindrical co-ordinate system and the
velocity u represents u(x,r,h, t) = (ux,ur,uh)(t). In the present formu-
lation, N(u) is implemented in skew-symmetric form for robustness,
i.e.

NðuÞ ¼ 0:5½u )ruþr ) uu+: ð3Þ

The pressure gradient (rP is split into a mean pressure gradi-
ent (r!P and a fluctuating pressure gradient (rP0 such that
streamwise periodicity can be employed for the fluctuating pres-
sure P0. The mean pressure gradient (rP only has a non-zero com-
ponent in the streamwise direction in order to balance the net
viscous friction at the pipe wall. For a fully developed turbulent
pipe flow the driving force F = (F,0,0) (body force per unit mass)
corresponds to the mean pressure gradient in streamwise x-
direction,

F ¼ 4sw
qD ; ð4Þ

which allows both the pressure and velocity to be periodic in the
streamwise direction. In the present study, the unit length scale is
pipe diameter D, and the unit velocity scale is Ub, which is defined
as the ratio of mean volumetric flow rate and pipe cross-sectional
area (4hQi/pD2). The time scale is therefore D/Ub. The bulk Reynolds
number ReD = UbD/m = 5000 is selected to be the same as the simu-
lations carried out by Chin et al. (2010a,b). Wall shear stress, sw, is
calculated using the Blasius relationship to allow the body force to
be present. The Blasius friction factor correlation for smooth pipes
(Blasius, 1913),

k ¼ 4sw
0:5qU2

b

¼ 0:3164
Re1=4D

; ð5Þ

is used to estimate the wall shear stress sw. The friction velocity
us ¼ ðsw=qÞ1=2 and the body force required per unit mass to drive
the flow is

F ¼ kqU2
b

2D
: ð6Þ

From Eq. (5), the smooth–pipe relationship can be obtained as,

Res ¼
usD
2m ¼ 99:436, 10(3Re7=8D ; ð7Þ

where Res = usD/2m is the Kármán number and for ReD = 5000 in the
present study, Res " 170. The spatial and temporal evolution of the
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governing Eq. (1) can be written in dimensionless form, using Ub

and D as velocity and length scales for normalization, as

@u
@t

þ NðuÞ ¼ (rP þ 1
ReD

r2uþ 4Res
ReD

! "2

: ð8Þ

The transport equation for passive scalar (temperature) is gov-
erned by the dimensional energy equation for the thermal field in
the form of an advection–diffusion problem:

@T
@t

þ u )rT ¼ ar2T; ð9Þ

where a is known as thermal diffusivity which can be expressed as

a ¼ k
qcp

¼ m
Pr

: ð10Þ

The dimensionless temperature H is defined as:

H ¼ hTwi( T
Tr

; ð11Þ

where Tr = qw/qCpUb is a reference temperature and hTwi denotes the
wall temperature averaged in time and in the circumferential direc-
tion. Normalizing using these variables, the thermal energy equa-
tion can be written as

@H
@t

þ u )rH( ux
1
Tr

@hTwi
@x

¼ 1
ReDPr

r2H: ð12Þ

2.3. Boundary conditions

Axial symmetry boundary conditions (internally setting either
as zero essential or zero natural depending on the physical variable
and the Fourier mode) for velocity components, pressure and tem-
perature are applied along the axis of the computational domain.
At the pipe wall no-slip boundary conditions are imposed for all
velocity components whereas Neumann boundary conditions are
computed for the pressure. Since the flow is assumed to be fully
developed, the velocity field is assumed to be homogeneous in
the streamwise direction.

The constant heat flux boundary condition over the wall of the
pipe is defined by

qw ¼ k
dT
dr

####
D=2

¼ const: ð13Þ

The flow is assumed to be statistically homogeneous in the axial
direction, with axial periodicity of velocity, pressure and tempera-
ture fields. So the axial temperature gradient should be corrected
in order to make the rate of change of ensemble-average tempera-
ture invariant at any location. The heating condition imposed on
the wall implies a linear increase of the bulk temperature hTbi in
the streamwise direction. For fully developed flows, the following
equalities are satisfied (Redjem-Saad et al., 2007),

@hTi
@x

¼ @hTbi
@x

¼ @hTwi
@x

¼ const ð14Þ

and using energy balance for the present problem and from Incrop-
era and Dewit (2000), we have

@hTwi
@x

¼ 4qw

qcpUb
¼ 4Tr : ð15Þ

Using Eq. (15), the dimensionless energy Eq. (12) can be written
as

@H
@t

þ u:rH( 4ux ¼
1

ReDPr
r2H: ð16Þ

The thermal boundary condition at the wall is

H ¼ 0: ð17Þ

By using Eq. (16) and applying boundary condition (Eq. (17)),
we are effectively able to satisfy both uniform heat flux and linear
axial wall temperature variation simultaneously. Piller (2005) re-
fers to this situation as a mixed type boundary condition.

2.4. Numerical methods

We employ the spectral element method which combines the
geometric flexibility of finite elements with the high accuracy of
spectral methods. Our implementation is a version of the Semtex
DNS code which is able to solve time-varying Navier–Stokes prob-
lems (with passive scalar transport) in both Cartesian and cylindri-
cal coordinates using Fourier expansion functions for spatially-
periodic directions. Parametrically mapped quadrilateral elements
having tensor product Gauss–Lobatto–Legendre (GLL) Lagrange
interpolants within each element are employed by this code in or-
der to achieve spectral accuracy. Spectral element scheme employs
a spatial discretization with Fourier expansions in one homoge-
neous direction coupled with two-dimensional spectral elements
in the remaining two coordinates. As the pipe flow features statis-
tical homogeneity in the axial and azimuthal directions, Fourier
expansion can in turn be applied to each direction separately. Here
we choose the discretization that employs Fourier expansions in
the azimuth direction and spectral elements in the meridional
semi-plane. The velocity u (same for pressure and temperature)
can be directly projected onto a set of two-dimensional (the equa-
tion is 2D in terms of k and h) complex Fourier modes,

ûkðx; r; tÞ ¼
1
2p

Z 2p

0
ukðx; r; h; tÞe(ikhdh; ð18Þ

where k is the azimuthal wavenumber. The time integration em-
ployed here is a second-order velocity-correction method described
by Karniadakis et al. (1991) and Guermond and Shen (2003). A
complete description of the numerical algorithm along with the
problem of dealing with the coordinate singularity is given in
Blackburn and Sherwin (2004).

Fig. 1. Schematic of pipe flow configuration.
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2.5. Mesh parameters

Table 3 shows the present simulation conditions consists of
three cases based on different Prandtl numbers. For each Prandtl
number, the pipe lengths are selected from pd (shortest) to 12pd
(longest) similar to the studies carried out by Chin et al.
(2010a,b). The spatial discretization consists of two-dimensional
spectral mesh elements (Nr , Nx grids) in r ( x plane combined
with Nh planes of data in the azimuthal direction (see Fig. 2). With-
in each spectral element, 10th order Gauss–Lobatto–Legendre ten-
sor-product shape functions are used. We have kept both Kármán
number and grid resolutions fixed in order to ensure that the var-
iation in the data is purely due to Prandtl number and length of the
computational domain. Supplementary calculations were carried
out to ensure that the spatial and temporal resolutions used in this
study are sufficient to resolve all velocity as well as thermal scales
for the Prandtl numbers considered here. A list of previous DNS
grid resolution parameters is already tabulated in Table 2 for com-
parison purposes. The near-wall radial spacing is 0.5 which is high-
er than Redjem-Saad et al. (2007) with r+ " 0.01 at Res " 186 but is
sufficient to capture the smallest scales for the range of Prandtl
numbers (0.025 6 Pr 6 2.0). The Prandtl numbers, Pr = 0.025, 0.71
and 2.0, are chosen for this study because they are relevant to prac-
tical problems involving heat exchange in fluids such as liquid
mercury (Pr = 0.025), air (Pr = 0.71) and liquid CO2 (Pr = 2.0). For
this range of Pr, using the scaling law

dv
dt

" Prn;

(see Bejan (2004))where n is 1/3 for PrP 1 and 1/2 for Pr- 1, the ra-
tio of the thickness of the velocity boundary layer, dv, to the thermal
boundary layer, dt, is approximately 0.1581, 0.8921 and 1.259. Since
the thickness of the thermal boundary layer for Pr = 0.71 and 2.0 is
#O(1), we would expect results to be similar for these two cases.

Turbulent flow is initiated from the fully developed velocity and
pressure distribution obtained from the data of Chin et al.
(2010a,b) whereas initial temperature field for turbulent heat
transfer calculations is assumed to be the distribution of the prod-
uct of streamwise velocity component and the Prandtl number due
to the analogous nature of mean profile of both temperature and
streamwise velocity component. Statistical data was only taken
after all the initial transients have convected out of the computa-
tional domain and the temperature field has reached a statistically
stationary state. The statistics are calculated over at least 300, 150,
100, 50 and 50 turnover times (TUb/L, where T is the time duration
in which the data is collected and computed) for pipe length of pd,
2pd, 4pd, 8pd and 12pd respectively for the range of Prandtl num-
ber considered here.

3. Results and discussions

3.1. Mean temperature profiles

Study of the convergence of the mean velocity profiles with var-
ious pipe lengths at low Res has been performed by Chin et al.
(2010b) and will not be repeated here. In this paper, we will con-
centrate on how the statistics of the thermal field are influenced
by the axial length of the computational domain. The variation of
mean temperature profile with pipe lengths and various Prandtl
numbers is shown in Fig. 3. The mean temperature normalized
using the friction temperature (Hs = qw/qCpus) as a function of nor-
malized wall distance is shown in Fig. 3a, c and e whereas Fig. 3b, d
and f shows the same profile normalized by the mean center-line
temperature Hc from the pipe center to the wall. Similar to mean
velocity profile (not shown here), the lack of convergence for the
mean temperature is observed at pipe length of pd for all three Pra-
ndtl numbers. Since (studies by Chin et al. (2010a,b) have shown
that) the mean velocity only starts to converge from a pipe length

Table 3
List of present simulation conditions.

Pr 0.025, 0.71, 2.0
Res 170
L pd, 2pd, 4pd, 8pd, 12pd
Nx 8, 16, 32, 64, 96
Nr 8
Nh 128
Dx+ 6.7
Dr+ [0.5, 3.6]
Ddh+ 8.4

Fig. 2. (a) Two-dimensional section of spectral element mesh for pipe length L = pd, (b) GLL interpolation node distribution along each mesh element and (c) a Fourier
expansion with 64 modes used in the azimuthal direction.

1088 S. Saha et al. / International Journal of Heat and Fluid Flow 32 (2011) 1083–1097



Author's personal copy

of 2pd, and the dynamics of the thermal field is dependent on the
dynamics of the flow field, it is obvious that the mean temperature
field would not show any convergence for any pipe shorter than
2pd. There is no remarkable discrepancy of mean temperature exist
for Pr = 0.025 except at the center of the pipe, but the results for
Pr = 0.71 and 2.0 clearly show the effect of shorter pipe on mean
profiles. For high Prandtl number (Pr = 2.0), even pipe length of
2pd is not sufficient to produce converged profile. This is clearly
noticeable from the buffer layer to the outer region when the pipe
length is measured in wall units (see Fig. 3e), but when scaled with
d the dependence of the domain length near the pipe center is not
visible at all. It is clear that the convergence of mean temperature
strongly depends on the magnitude of Prandtl number and the re-
sults confirm that it is necessary to consider longer pipe for higher
Pr. Hence, the minimum length required to have converge mean
temperature profile for Pr = 0.025 and 0.71 is 2pd (approximately
1000 wall units) and 4pd (approximately 2100 wall units) for other
higher Prandtl numbers considered here.

3.2. RMS of fluctuating temperature profiles

According to the convergence study by Chin et al. (2010a,b) for
rms values of the streamwise fluctuating velocity, it was proposed
that the minimum length was 4pd corresponding to l+ = O(2100)
for Res " 170. A similar study is carried out here to determine
the minimum domain length required for convergence of statistics
related to the fluctuating temperature field for different Prandtl
numbers. We have plotted rms profile of the fluctuating tempera-
ture normalized by the friction temperature as a function of nor-
malized wall-normal distance in Fig. 4a–c for Pr = 0.025, 0.71 and
2.0 respectively. As expected like fluctuating velocity profile (not
shown here), the profile H0þ

rms for pd varies significantly from the
other pipe lengths. Further, these variation is not only limited to
the vicinity of the peak rms location but also near the center of
the pipe depending on the magnitude of the Prandtl number. The
reason for a higher value in the peak turbulence intensity for
DNS of shorter pipe flow was described by Chin et al. (2010b). They
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Fig. 3. Mean temperature profile normalized by (a), (c) and (e) the friction temperatureHs and (b), (d) and (f) the center-line temperatureHc . The lines used are the same for
three different Pr to represent pipe lengths: pd (—), 2pd () ) )), 4pd (– ) –), 8pd (– – ) –) and 12pd (––).
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showed that an artifact of insufficient pipe length was a higher
value in the peak turbulence intensity and further investigations
of cross-correlation functions confirmed the existence of massive
periodic structures at shorter pipe contributing larger peak value.
Hence it is consistent here to have a similar higher value of the
peak rms temperature fluctuation for simulations carried out with
pipe lengths that are too short. Owing to the decrease in thickness
of the thermal boundary layer, the location of peak rms value
moves closer to the wall as the molecular Prandtl number in-
creases (Redjem-Saad et al., 2007; Saha et al., 2010). At Pr = 2.0,
even pipe length of 2pd does not give any converged peak rms va-
lue. Convergence of the peak rms value is only achieved for pipe
length of 4pd. It is interesting to note that at the center of the pipe,
there is clear convergence of the fluctuating temperature profiles
for all domain length computed here. It is speculated that the dis-
crepancy close to the wall is due to the ‘‘contamination’’ of the
smaller scales in the thin thermal boundary layer due to the peri-
odic boundaries. The thermal boundary layer is too thin for the
dynamics of the smaller scales to influence the motion at the cen-
ter of the pipe, hence the smaller variation of the statistics at the
center of the pipe. But when Pr 6 0.71, the non-convergence of sta-
tistics due to the artifacts of the pipe length occurs both at the loca-
tion of peak rms temperature and the center of the pipe. For
Pr = 0.025, the pipe length of 4pd is sufficient to give converged
peak value and at the pipe center, the difference of having en-
hancedH0þ

rms is easily compared from the result for the longest pipe
length. The value of the converged peak intensity for Pr = 0.71 is
2.48 at a wall-normal location of r+ " 19.4. Like Pr = 0.025, the min-
imum length for Pr = 0.71 is 4pd which does not seem to differ
noticeably from the longer pipe lengths in any other radial loca-
tion. However, it is clear that with the increase of Prandtl number,
there is better convergence of rms profiles near the pipe center for
all values of L/d. This results seem to suggest the presence of struc-
tures with smaller length scales at the pipe center at higher Prandtl
number. Finally, for all Prandtl numbers considered here, the re-
quired length is 4pd corresponding to l+ = O(2100) which is consis-
tent with the findings of Chin et al. (2010a,b).

3.3. Streamwise two-point correlations

The traditional way to choose a minimum domain length is to
investigate two-point correlations of the fluctuating velocity com-
ponents and temperature (Lyons et al., 1991; Piller, 2005; Redjem-
Saad et al., 2007) from where one can also obtain information
about the structure of the turbulent flow and thermal field. The
methodology used to calculate streamwise two-point correlation
of the fluctuating temperature has adopted from Ganapathisubra-
mani et al. (2005). Since periodicity is employed in the streamwise

direction, distribution of the two-point correlation coefficients is
symmetric for the location corresponding to half of the computa-
tional domain, L/2. The contours of the two-point autocorrelations
of fluctuating temperature are presented as a function of wall-nor-
mal location (r+) and streamwise separation in Fig. 5. The separa-
tion distance is non-dimensionalized by the inner variable (us/m)
rather than by the outer variable (d). Here the outermost correla-
tion contour lines have a value of (0.1 within the range of
Dx+((1200 6Dx+ 6 1200) and the contour interval is 0.1. It is
clearly observed in those figures that the abrupt end of contour
lines for pipe lengths pd, 2pd and 4pd shows the inadequacy of
periodic domain length. The incomplete contour lines for pd and
2pd signify that they are unable to accommodate the longest ther-
mal streaky structure within the computational domain. The effect
of Prandtl number on the correlations of temperature fluctuations
also shows an interesting trend. For Pr = 0.71 and 2.0, the correla-
tion curves are almost identical to each other due to very similar
length scales #O(1) and the outermost contour line (RHH = 0.0)
for pipe length 4pd fails to form a complete curve at Dx+ " 1050
in Fig. 5b and c. This suggests the limitation of the computational
domain for resolving the largest scales of motion due to the period-
icity in the streamwise direction. When Pr = 0.025, similar behavior
for pipe length 4pd is also observed at Dx+ " 1100. Moreover, the
pattern of the contour lines indicates longer size of the thermal
streaky structure which will be graphically presented later in this
paper. Fig. 6a–c shows the streamwise two-point correlations of
the fluctuating temperature at wall-normal location r+ for maxi-
mum H0þ

rms for Pr = 0.025, 0.71 and 2.0 respectively. The profile of
RHH at r+ " 72 (which is far away from r+ " 15 for maximum
uþ
x;rms) shows weak periodicity in the streamwise direction for

low Pr = 0.025. For this Pr, the two-point correlation coefficients re-
duce to a value close enough to zero as the pipe length increases
and become eventually zero when the pipe length is equal or long-
er than 2pd. But this result at this r+ location does not provide the
exact picture of convergence as the correlation curves in Fig. 5a for
pipe length up to 4pd do not seem to complete due to the existence
of bigger structure size. Interestingly, correlation curves for fluctu-
ating streamwise velocity component crossed zero for the pipe
length of 8pd or above (mentioned in Chin et al. (2010b)) although
it was measured at r+ " 15 whereas at least 8pd is also required to
achieve convergence for this low Pr = 0.025. The two-point correla-
tions for the other two Prandtl numbers are further characterized
by a longer length scale. It can be seen for PrP 0.71 that the
two-point correlations for streamwise component of velocity and
temperature are almost identical (Fig. 4a in Chin et al. (2010b)).
The decays of the two-point correlations are not enough in the re-
sults of 4pd for Pr = 0.71 and 2.0 and it is considered here that the
computational domain length 4pd is too short to obtain reliable
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Fig. 4. RMS of temperature fluctuation normalized by the friction temperatureHs for different pipe lengths at (a) Pr = 0.025, (b) Pr = 0.71 and (c) Pr = 2.0. Lines used are as in
Fig. 3. Scales shown in y-axis of each figure are given in different ranges.
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data. When Pr is 2.0, the self-correlation RHH at 8pd falls off more
rapidly than 12pd and zero correlations are obtained at a separa-
tion less than half the length of the computational domain. This re-
veals that this pipe length (8pd) is sufficiently adequate to capture
the largest scale structure of the thermal field. Besides, the profiles
of RHH at 4pd and 8pd for Pr = 0.71 are consistent with the results
of Redjem-Saad et al. (2007) at Res " 186 where they found zero-
correlation for the computational length, L = 15d. For Pr = 0.71,
the profiles of RHH at 8pd and 12pd closely agree with each other
at this r+ location and they have long tails along RHH = 0 over a
streamwise distance Dx+ " 1200, suggesting that the thermal
streaky structure of the temperature fluctuation prevails with the
long correlation length in the streamwise direction. The effects of
various length scales on the convergence of RHH are clearly dem-
onstrated by plotting correlation curves as shown in Fig. 7 at an-
other wall-normal location nearer to the pipe center r/d " 0.1.
The smallest thermal length scale due to low Pr (= 0.025) requires
the computational length of 8pd to obtain the convergence and the
RHH curves cross zero at x/d " 1.2. Although for higher Prandtl
numbers (PrP 0.71) the converged pipe lengths (LP 8pd) start
to cross zero at x/dP 2.0, the nature of these curves suggest that
even a shorter pipe length would be able to maintain convergence
when the thermal length scales grow larger .O(1). So the overall
results from Fig. 6b and c indicate that convergence is achieved
at a pipe length of 8pd corresponding to l+ " O(4300) for
Pr = 0.71 and 2.0 and the same length is also required for
Pr = 0.025 as observed in Figs. 5a and 7a.

3.4. Skewness and flatness factors

Higher order statistics such as skewness and flatness (also
known as kurtosis) indicate the intermittent characteristics of the

wall region. Fig. 8a, c and e represents the radial distributions of
skewness coefficient in the near wall region for Pr = 0.025, 0.71
and 2.0 respectively. For Pr = 0.025, the skewness decays linearly
from the wall and the results follow the same trend for pipe length
of 2pd to 12pd. It is interesting to note that the converged skewness
factor for streamwise fluctuating velocity is achieved at a longer
pipe length of 4pd (Chin et al., 2010a). When PrP 0.71, the skew-
ness of the temperature fluctuations at the wall is about 1.0 and it
decays rapidly from the wall below the Gaussian value (S(H0) = 0).
The asymmetric fluctuation of temperature in the near wall region
is indicated by the non-zero wall value of S(H0) which confirms
the intermittent behavior close to the wall, however the turbulence
is almost homogeneous far from the wall. The value of S(H0) for the
pipe length of pd always follows a different trend for all value of Pr
due to lack of convergence. On the other hand, pipe length of 2pd for
PrP 0.71 does not show any convergence inside the core region of
the pipe although the near-wall behavior is reasonably close to the
converged skewness profile. Hence, the minimum length is 2pd for
Pr = 0.025 and 4pd for other two Prandtl numbers in order to
achieve the convergence of third order statistics.

The flatness for fluctuating temperature H0 in the near wall re-
gion is shown in Fig. 8b, d and f for Pr = 0.025, 0.71 and 2.0 respec-
tively. It is obvious at Pr = 0.025 that results do not converge for
pipe length less than 2pd. But a closer look of these profiles dem-
onstrates that 8pd and 12pd provide converged flatness factor near
the wall. Similar to skewness profiles, for PrP 0.71, the profiles of
the flatness coefficient continuously dominate more near the wall.
However, the results for PrP 0.71 seem to show convergence in
the near wall until the pipe length becomes 4pd which is consis-
tent with the converged profile of Fðu0

xÞ as investigated by Chin
et al. (2010a). The value of F(H0) is also higher near the wall with
increase of Pr, indicating more intermittent region. For PrP 0.71,
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the converged value of F(H0) at the wall increases slowly from 4.6
to as high as 4.8 at Pr = 2.0 showing the probability of observing
large variations from the mean temperature in the vicinity of the
wall is much higher than in the center of the pipe. However, the

wall value for pipe length of 4pd is always higher than the con-
verged F(H0) both at Pr = 0.71 and 2.0. Far from the wall, the values
of the flatness factors tend approximately to the Gaussian values
(F(H0) = 3) for Pr 6 0.71, while F(H0) for Pr = 2.0 deviates from the
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0 25 50 75 100
2.0

2.5

3.0

3.5

4.0

4.5

5.0
    (f)

Pr = 2.0

2.0

2.5

3.0

3.5

4.0

4.5

5.0

F
(Θ

′ )

      (b)
Pr = 0.025

r+
0 25 50 75 100

-0.8

-0.4

0.0

0.4

0.8

1.2

    (e)
Pr = 2.0

2.0

2.5

3.0

3.5

4.0

4.5

5.0
     (d)

Pr = 0.71

-0.8

-0.4

0.0

0.4

0.8

1.2

L/δ = π
L/δ = 2π
L/δ = 4π
L/δ = 8π
L/δ = 12π

       (a)
Pr = 0.025

-0.8

-0.4

0.0

0.4

0.8

1.2

S
(Θ

′ )

     (c)
Pr = 0.71

S
(Θ

′ )

F
(Θ

′ )
F

(Θ
′ )

S
(Θ

′ )

r+

Fig. 8. (a), (c) and (e) Skewness factors and (b), (d) and (f) Flatness factors of the fluctuating temperature for Pr = 0.025, 0.71 and 2.0 respectively. Lines used are as in Fig. 3.

1092 S. Saha et al. / International Journal of Heat and Fluid Flow 32 (2011) 1083–1097



Author's personal copy

Gaussian behavior which confirms similar predictions obtained by
Redjem-Saad et al. (2007). Although following the same trend of
the converged S(H0) and F(H0) profiles, there is a definite discrep-
ancy observed in the profiles of 8pd for Pr = 2.0. The analogous re-
sults of convergence of skewness and flatness factors for both
Pr = 0.71 and 2.0 also refer to the behavior of similar length scales
as mentioned in Section 2.5.

3.5. Turbulent heat fluxes

The turbulent heat flux arises in combination with the temper-
ature and velocity fields. Thus it is also important to realize the
convergence nature of velocity fields which in turns affects the
convergence of turbulent heat fluxes. Fig. 9a, c and e shows the dis-
tribution of streamwise or axial turbulent heat flux normalized by
the friction velocity and temperature for three different Prandtl
numbers. The nature of the streamwise heat flux is analogous to
the rms profile of fluctuating temperature for each Prandtl number.
Comparing these figures, it is clear that the peak of the turbulent
heat flux increases with the increase of Pr and moves towards
the wall as the conductive sublayer becomes thinner. Moreover,
the location of the maximum heat flux is found between the max-
imum of rms streamwise velocity fluctuations and the maximum
of rms temperature fluctuation. Since both the streamwise velocity
component and the temperature profile are strongly influenced by
the pipe length, streamwise heat flux is also affected by the com-
bined effect of these two components. Similar to rms profiles of
both streamwise velocity and temperature, it is found that conver-
gence of turbulent heat flux can be achieved for all Pr for pipe
length of 4pd. However, a marginal difference in the peak value
at Pr = 0.025 and 0.71 is observed even for longer pipe length of
8pd. Furthermore, due to similar length scales, the profiles for both
Pr = 0.71 and 2.0 show identical trends (see Fig. 9c and e), although
higher Prandtl number always ensures convergence with shorter
pipe lengths near the center of the pipe. Since both the streamwise
fluctuating velocity and the fluctuating temperature for all Pr re-
quire a pipe length of 4pd to converge, streamwise heat flux which
is their combined effect must require a pipe length of at least 4pd
for convergence.

The normalized wall-normal or radial turbulent heat flux is
shown in Fig. 9b, d and f. It is noted that strong decrease of radial
heat flux is observed at low Prandtl number. This is because the
friction temperature (or qw) used to make u0

rH
0 dimensionless in-

creases with the decrease of Pr. When PrP 0.71, the wall-normal
heat flux is considerably smaller than the streamwise one over
the pipe cross-section. Their difference, however, decreases as Pr
is decreased and the anisotropy of turbulent heat fluxes is weak-
ened. Furthermore, when the Prandtl number is small, the maxi-
mum value of the wall-normal heat flux is observed farther away
from the wall than the maximum streamwise heat flux, as the fluc-
tuating radial velocity is damped strongly by the wall. The depen-
dence of the peak value on the pipe length is almost negligible for
Pr = 0.71 but is still appreciable for Pr = 0.025 and 2.0. It is interest-
ing to note that in the central region of the pipe, the radial heat flux
does not depend on the pipe length as observed in the case of
streamwise heat flux for Pr = 0.025. Since the radial velocity com-
ponent is less affected by the pipe lengths than the streamwise
one, the convergence of wall normal heat flux is achieved with
shorter pipe length. Moreover, the fluctuating radial velocity has
the tendency to decrease with the increase of domain length
(Abe et al., 2007) and thus lowers the peak value of the wall-nor-
mal heat flux at L = pd comparing with other pipe lengths from
Pr = 0.025 to Pr = 2.0. Due to this opposite behavior in comparison
of the fluctuating temperature, the difference of the peak value in
the radial heat flux profiles at Pr = 0.71 is considerably small for all
pipe lengths. Hence, a pipe length of 4pd for Pr = 0.025, pd for

Pr = 0.71 and 2pd for Pr = 2.0 is sufficient for the statistics to con-
verge, although the longer pipe of 8pd for Pr = 0.71 is showing
some marginal discrepancy at the peak value. The convergence
tendency for this type of statistics is common because Chin et al.
(2010a) also obtained converged Reynolds stress for a pipe length
of 2pd, shorter than the length required for the convergence of the
streamwise fluctuating velocity profile.

3.6. Cross-correlations

The correlation coefficients RuxH for different Prandtl numbers
are presented in Fig. 10. For Pr 6 0.71, pipe length of at least 2pd
leads to very identical results for these coefficients, except for
r+ > 125. In the inner layer for all Pr, the coefficients for LP 2pd
are almost coincident, while the coefficients for L = pd always pre-
dict higher value, since the flow configuration has a weak effect,
resulting in slightly larger correlation coefficients for shorter pipes.
The cross-correlation coefficient of the streamwise turbulent heat
flux for PrP 0.71 is larger than that for Pr = 0.025, throughout
the pipe section. These results mean that the temperature fluctua-
tions are better correlated with streamwise velocity fluctuations
for higher Prandtl numbers. When Pr = 0.025 and 0.71, the value
of RuxH near the wall is almost similar for any pipe length longer
than pd, but a closer observation indicates that the coefficient for
pipe length of 4pd tends to deviate from the converged value for
r+ > 125. On the other hand, due to analogous profile of streamwise
velocity and temperature fluctuation at higher Pr, the correlation
curves begin to show reasonable convergence for any pipe length
above 2pd. The minimum lengths therefore required to get the
converged cross-correlation coefficients are 8pd for Pr 6 0.71 and
4pd for Pr = 2.0.

The effect of streamwise periodicity can also be studied by
using two dimensional contour plots of cross-correlation function.
We have drawn the cross-correlation coefficients between radial
velocity component and temperature fluctuation in Fig. 11. The
contours of RurH are plotted as a function of r+ and normalized
streamwise separation distance (Dx+) for different pipe lengths. In-
side the outer layer, there are no significant differences in the ra-
dial correlation coefficients, but the different distributions of the
radial turbulent heat flux near the wall are mainly due to the dif-
ferent intensity of the temperature fluctuations. Although the tem-
perature fluctuations in the inner layer are strongly damped due to
the presence of the isothermal (H = 0) wall type boundary condi-
tion, the temperature field is characterized by lower wavenumber
velocity fluctuations leading to smaller RurH (Piller et al., 2002). The
results for shorter pipe length (pd) are omitted in these contour
plot as it has the tendency to show lack of convergence for most
of the thermal statistics computed in the previous sections. Be-
sides, even a slightly longer pipe length (2pd) as shown in Fig. 11
fails to accommodate the longest structures in the thermal field.
This is clearly evident when the contour lines ðRurH ¼ 0:02Þ for
L = 2pd do not close, resulting in ‘‘contamination’’ of structure in
the thermal field (in an average sense) due to the periodicity in
the streamwise direction. When PrP 0.71, insufficient pipe length
like 2pd always clearly shows incomplete structure through the
value of RurH at 0.05. This would definitely suggest that only pipe
length of 4pd enables us to provide complete thermal structure
for all Prandtl numbers.

3.7. Instantaneous thermal fields

Finally, the instantaneous temperature fields are visualized to
explore how the near wall structures are affected by the Prandtl
numbers. The volume visualized has the half-cut view of pipe of
having length, L = 8pd as shown in Fig. 12a–c for Pr = 0.025, 0.71
and 2.0 respectively. Here the instantaneous temperature
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fluctuations for each Pr are normalized by their own rms values at
each r+ in order to evaluate the outer-layer structure adequately.
Note that the fluid flows from the bottom left to the top right

and the contour surfaces of high (white) and low (black) tempera-
ture regions are only visualized. The high and low temperature re-
gions imply þH0=H0

rms and (H0=H0
rms where H0 represents the
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Fig. 9. (a), (c) and (e) Streamwise turbulent heat flux and (b), (d) and (f) Radial turbulent heat flux normalized by the friction velocity us and temperatureHs. Lines used are as
in Fig. 3.
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Fig. 10. Cross-correlation coefficient between streamwise velocity component and temperature fluctuations for (a) Pr = 0.025, (b) Pr = 0.71 and (c) Pr = 2.0. Lines used are as
in Fig. 3.
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fluctuating part of the temperature. Thermal streaky structures are
observed more frequently and are of small size for PrP 0.71, while
at Pr = 0.025, they show several typical ‘fatter’ shaped structures.
This feature has already been observed by Abe et al. (2004) and
Kawamura et al. (2004) in their study of thermal structure in a tur-
bulent channel flow. Moreover, there are no sharp temperature
gradients along the upstream edge of the large-scale structures
which are referred to as ‘‘temperature front’’ by Chen and Blackw-
elder (1978) in a turbulent thermal boundary layer flow. The differ-
ence between the positive and negative temperature fluctuating
regions near the wall for Pr = 0.025 reflects in the RHH profile in-
side the inner layer reported in Fig. 5a.

In case of a low Prandtl number of Pr = 0.025, the thermal
streaks are not elongated in the streamwise direction and their ra-
dial spacing seems to be larger compared with that of PrP 0.71.
The conduction layer becomes thicker leading to a reduction of
the turbulent heat flux (see Fig. 9a and b) and these trends are
more pronounced for lower Prandtl numbers. With the increase
of the Prandtl number, the structure of temperature fluctuation is
seen to become elongated in the streamwise direction and more
slender in the radial direction because the viscous effect becomes
less dominant in the thermal field. Moreover, the high and low
temperature regions are confined closer to the wall. For
Pr = 0.025, on the other hand, those regions exist away from the
wall and extend up to the central region and takes the complicated

lumped shape due to these strong thermal diffusion. This tendency
agrees well with the profiles of the temperature variance, which
exhibits the peak position at r+ " 72 (see Fig. 4a). Besides, this is
in accordance with the low correlation coefficient RuxH in the wall
vicinity found in Fig. 10a. A comparison of Fig. 12b and c indicated
that positive and negative large-scale structures for Pr = 0.71 show
a strong similarity to those for Pr = 2.0 and they do not appear at
approximately same locations, although the shape of these
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Fig. 11. Contours of cross-correlation coefficient between radial velocity component and temperature fluctuations for (a) Pr = 0.025, (b) Pr = 0.71 and (c) Pr = 2.0. Lines used
are as in Fig. 3.

Fig. 12. Iso-surfaces of large-scale structures of the instantaneous temperature fluctuations normalized by their own rms value at each r+ for L/d = 8p; (a) Pr = 0.025, (b)
Pr = 0.71 and (c) Pr = 2.0 (White, H0=H0

rms ¼ 2:0 and black, H0=H0
rms ¼ (2:0). The direction of the flow is from bottom-left to top-right.

Table 4
List for required computational pipe length for convergence of various thermal
turbulence statistics at Res " 170 for three different Prandtl numbers. The minimum
lengths are expressed in terms of pipe radius (d) and within the brackets (), it is given
in terms of viscous wall unit (l+).

Thermal statistics Min length, d(l+)

Pr = 0.025 Pr = 0.71 Pr = 2.0

Mean temperature profile 2p(1000) 2p(1000) 4p(2100)
RMS temperature profile 4p(2100) 4p(2100) 4p(2100)
Two-point correlation 8p(4300) 8p(4300) 8p(4300)
Skewness, r+ < 100 2p(1000) 4p(2100) 4p(2100)
Flatness, r+ < 100 8p(4300) 4p(2100) 4p(2100)
Streamwise heat flux 4p(2100) 4p(2100) 4p(2100)
Radial heat flux 4p(2100) p(500) 2p(1000)
Cross-correlation (streamwise heat flux) 8p(4300) 8p(4300) 4p(2100)
Cross-correlation (radial heat flux) 4p(2100) 4p(2100) 4p(2100)
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structures for Pr = 2.0 becomes more obscure than those of the
structures for Pr = 0.71 due to the enhanced convective effect.

4. Conclusions

Effects of various computational pipe lengths on lower and
higher order thermal statistics have been comprehensively investi-
gated in the present study. Turbulent statistics of the velocity and
thermal field were computed for five different pipe lengths (pd to
12pd) at three different Prandtl numbers (0.025, 0.71 and 2.0). It is
found that convergence of statistical information is largely depen-
dent on the type of statistics and Prandtl number. Due to the sim-
ilarity in the thermal length scales, the convergence of thermal
statistics is very similar for Pr = 0.71 and 2.0. In general, the ther-
mal length scales for Pr = 0.025 is longer than for Pr = 0.71 and
2.0, hence it is more difficult to obtain convergence for lower
Pr = 0.025. This data is summarized in Table 4.

It is clear from Table 4 that using a pipe length that is too short
will result in the convergence of the lower order statistics only. In
contrast, computing the solution with a longer pipe length than is
required will make the simulation costly and time consuming. Our
data shows that there is no convergence for any statistics for sim-
ulations carried out at the shortest pipe length of pd. Even when
the pipe length is 2pd, convergence of the mean temperature pro-
file can only be obtained at low Pr. On the other hand, a pipe length
of 8pd or longer is only required if one needs to compute con-
verged statistics for two-point autocorrelation and streamwise
cross-correlation. Most of the higher order statistics for Pr = 0.71
tend to converge with computations carried out with pipe length
of 4pd. In order to obtain converged statistics for the radial heat
flux, which is mainly dependent on the convergence of statistics
for the fluctuating radial velocity as described in Section 3.5, the
choice of pipe length is quite sensitive to variations in the Prandtl
number. Our results show that convergence of the radial heat flux
profile can occur even for pipe length as short as pd. In order to ex-
plain this anomaly, we need to look at the profiles of the fluctuat-
ing radial velocity (see Fig. 1 in Abe et al. (2007)) and temperature
(see Fig. 4). It is clear from these figures that close to the pipe wall,
magnitude of the fluctuating radial velocity increases with
decreasing pipe length (similar results can be found in Abe et al.
(2007)). On the other hand, profiles of temperature fluctuations
show the opposite trend (i.e. magnitude of the fluctuating temper-
ature decreases with increasing pipe length). Since the radial heat
flux is computed from temperature and radial velocity fluctuations,
these two opposing effects seem to make the profiles of radial heat
flux less sensitive to variations in the pipe length and give the per-
ception this statistic converges with a short domain length L = pd
for Pr = 0.71 (see Fig. 9d).

The convergence of most statistical quantities can be achieved if
the computations were carried out with a pipe length of 4pd for
0.025 6 Pr 6 2.0. However, to ensure the convergence of all statis-
tical information for the range of Pr mentioned above, data in Ta-
ble 4 shows that simulations need to be carried out with a pipe
length of 8pd. The present findings also point out an important
shortcoming of recent DNS simulations carried out for turbulent
heat transfer in channel flow. From the results in this paper, it is
very likely that some of recent statistical profiles published in
the open literature may not be correct as the domain size used in
the calculations might not be big enough for some of the statistics
to converge.
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