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A straight tube with a smooth axisymmetric constriction is an idealized representation
of a stenosed artery. We examine the three-dimensional instabilities and transition to
turbulence of steady flow, steady flow plus an oscillatory component, and an idealized
vascular pulsatile flow in a tube with a smooth 75 % stenosis using both linear stability
analysis and direct numerical simulation. Steady flow undergoes a weak Coanda-type
wall attachment and turbulent transition through a subcritical bifurcation, leading
to hysteretic behaviour with respect to changes in Reynolds number. The pulsatile
flows become unstable through a subcritical period-doubling bifurcation involving
alternating tilting of the vortex rings that are ejected from the throat with each pulse.
These tilted vortex rings rapidly break down through a self-induction mechanism
within the confines of the tube. While the linear instability modes for pulsatile flow
have maximum energy well downstream of the stenosis, we have established using
direct numerical simulation that breakdown can gradually propagate upstream
until it occurs within a few tube diameters of the constriction, in agreement with
previous experimental observations. At the Reynolds numbers employed in the present
study, transition is localized, with relaminarization occurring further downstream. A
non-exhaustive investigation has also been undertaken into the receptivity of the
axisymmetric shear layer in the idealized physiological pulsatile flow, with the results
suggesting it has localized convective instability over part of the pulse cycle.

1. Introduction
The association of arterial disease with flow-related mechanisms has motivated the

study of steady and pulsatile flow within both model and anatomically correct arterial
model stenoses (Berger & Jou 2000). Atherosclerosis and thrombosis are extremely
important and closely linked diseases of the cardiovascular system: atherosclerosis
predisposes arteries to thrombosis, and the genesis of both is intimately related to wall
shear rates in the arterial flow. Atherosclerosis involves an accumulation of low-density
lipoprotein (e.g. cholesterol) in the walls of the large arteries, typically where the local
wall shear rate is low, and oscillatory (Caro, Fitz-Gerald & Schroter 1971; Wootton &
Ku 1999). The process can be considered as a long-period nonlinear instability of
the geometry of the arterial wall, wherein a local constriction can grow through
promotion of flow separation. The increased pressure losses associated with flow
separation can reduce the flow rate and produce ischemia (localized anoxia/absence
of oxygen) which is typically used as an indicator for surgical interventions such as
stenting, angioplasty and bypass operations. Over the past three to four decades there
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have been a number of published works on the topic of flow within stenotic pipes,
beginning with experimental studies of flows in idealized axisymmetric stenotic tubes
(Cassanova & Giddens 1978; Khalifa & Giddens 1981; Ahmed & Giddens 1983,
1984; Ojha et al. 1989; Ahmed 1998). More recently, computational fluid dynamics
has begun to have an impact, through numerical simulations in idealized stenoses, both
axisymmetric and non-axisymmetric (Long et al. 2001; Mallinger & Drikakis 2002),
and of stenotic flows with two-dimensional planar geometries derived from MRI
measurements of individual patient geometries (Stroud, Berger & Saloner 2002).†

Flow instability and transition to turbulence has been a common factor in these
studies. Under standard physiological flow conditions, arterial flows are usually consi-
dered to be laminar, although always unsteady and often with separation. However, in
the case of a stenotic pipe flow, the introduction of an inflection point into the velocity
profile downstream of the contraction can lead to transition. This typically occurs
in the present application for Reynolds numbers in the range of a few hundreds to
a few thousands (based on upstream conditions), coinciding with those particularly
relevant to physiological conditions.

The onset of turbulence has been observed in the laboratory studies, and has led to
description of the flows in statistical terms. While obviously important, the descriptions
have arguably not greatly aided physical understanding of the underlying fluid mech-
anics. This understanding could potentially be derived from numerical simulations;
however, the wide variation in length and time scales involved in transitional and
turbulent flows makes their numerical simulation quite demanding. This is especially
true when accompanied in the present case by geometrical complexity and the need
for description in terms of a number of dimensionless parameters. While the past
numerical works have aided our understanding of stenotic flows, nowhere in the
literature can be found a fundamental study that examines the stability of the flows,
even in the simplest case of axisymmetric flow through a smooth constriction, and the
nature of the subsequent transition. This is our current contribution. Having under-
standing of the simplest cases, we will then be in a position to provide perspective on
and explain the relevance of these mechanisms in more complex configurations.

In the present work, we turn our attention to the stability of steady and pulsatile
flows in an axisymmetric stenotic tube. The approach adopted is to analyse the global
linear stability of the axisymmetric flows, both steady and pulsatile, to arbitrary
three-dimensional perturbations. As the problem has rotational symmetry about the
cylindrical axis, it is natural to use Fourier decomposition in the azimuthal direction in
order to break the general three-dimensional linear stability problem into a set of two-
dimensional ones, dramatically reducing the size of each individual problem. Once we
have the most unstable mode for each flow, we then use full three-dimensional direct
numerical simulation (DNS) in order to examine the evolution of their instability
modes, onset of turbulence and nonlinear dynamics.

As is commonly justified in many works on blood flows in the major arteries,
Newtonian rheology has been assumed. While the effect of artery wall compliance
is potentially important, it is often taken to be of secondary significance, and has
been ignored in the present work. For discussion of these assumptions and reviews of
recent work on blood flow in arteries, see Ku (1997), Wootton & Ku (1999), Berger &
Jou (2000) and Taylor & Draney (2004).

† For purely oscillatory flows in unconstricted straight tubes, instability mechanisms different to
those reported in the current paper arise: these have been investigated by Yang & Yih (1977) and
Akhavan, Kamm & Shapiro (1991).
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Figure 1. Geometrical parameters that define the axisymmetric sinusoidal stenosis.

The kinematic and dynamical parameters of the problem are introduced in § 2. In
order to keep the study to a reasonable size, our focus is restricted to a single smooth
stenosis with 75 % occlusion and to three simple flows: one steady, two pulsatile.
In § 3, we then discuss the governing equations and concepts of stability analysis
adopted within this paper. In § 4, we detail the numerical techniques and resolution
studies undertaken to validate the results. In § 5, we consider instability of steady flow,
prior to introducing flow pulsatility. Section 6 covers the central topic, instability and
transition in our two selected types of pulsatile flow. In that section, we also briefly
examine the susceptibility of one of the pulsatile flows to axisymmetric convective
shear-layer instability, using two-dimensional DNS.

2. Problem definition: dimensionless groups
We consider the steady and pulsatile Newtonian flow through a rigid axisymmetric

stenosis described by a sinusoidal axial variation where the radius at the minimum
constriction is half that of the maximum radius. For the axisymmetric geometry a
50 % reduction in radius necessarily corresponds to a 75 % reduction in area. This
reduction has been chosen for our study based upon medical practice, where a 50 %
reduction in radius is typically given as the level at which a constriction can be
confidently identified using medical imaging techniques such as ultrasound. Further, a
75 % occlusion has also been used in many of the previous laboratory and numerical
investigations.

2.1. Geometrical parameters

As shown in figure 1, we consider a pipe of internal diameter D with an axisymmetric
stenotic region with a radius r(z) that varies over an axial length L, according to the
form

r(z) = 0.5Dmin + 0.5(D − Dmin) sin2(πz/L) (−0.5 � (z/L) � 0.5),

where z is centred on the middle of the stenosis. Given this geometry, there are
two independent dimensionless geometric parameters we can define which are the
diameter ratio Dmin/D and the stenosis length λ=L/D. In the clinical environment
the stenosis degree, S, is more commonly used than the diameter ratio and is defined
as the ratio of the reduction in cross-sectional area to the original area, i.e.

S = 1 − (Dmin/D)2 ,

In the following, we have considered a single geometry defined by S = 0.75 and λ=2.

2.2. Flow parameters

To complement the geometric factors we must also consider the physiological flow
parameters which describe our problem. We start by defining an axisymmetric inflow
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Figure 2. Waveforms of ū(t) in the two pulsatile flow cases considered, cf. (2.2).

profile u(r, t) with temporal period T which has a sectional average

ū(t) = (8/D2)

∫ D/2

0

u(r, t) r dr,

and temporal average

ūm =
1

T

∫ T

0

ū(t) dt.

For given ū(t), we can define at least three independent dimensionless groups: the
reduced velocity Ured, the peak-to-mean flow ratio, and the Reynolds number Re,
respectively given by

Ured = ūmT /D, Upm = max
0�t � T

ū(t)/ūm = ūpeak/ūm, Re = ūmD/ν,

where ν is the kinematic viscosity of the fluid.
Any periodic ū(t) can be represented as a Fourier series. For fully developed laminar

periodic flow in a circular tube, the velocity profile components at each temporal
harmonic can be obtained in an analytic closed form provided by Womersley (1955).
Each harmonic n has an associated circular frequency ωn = 2nπ/T , with the velocity
distribution given through Womersley’s solution in terms of a complex Bessel function
as

un(r, t) = Re

[
Ani

ρωn

(
J0

(
i3/2α 2r/D

)
J0

(
i3/2α

) − 1

)
exp iωnt

]
, (2.1)

where i = (−1)1/2, ρ is the fluid density and α = (ωn/ν)1/2D/2 is the Womersley number.
A further input in the above expression is the value of An which is a complex number
representing the driving pressure gradient ∂zp =An exp iωnt and can be determined
from a specified sectional-average velocity ū(t) at a given harmonic. When n= 0, (2.1)
reduces to the standard parabolic Hagen–Poiseuille profile for steady flow.

A wide variety of pulsatile flow waveforms are observed in arteries (see e.g. Mills
et al. 1970; McDonald 1974); these vary with position in the arterial system, in
response to exertion, and from individual to individual. We assume that ū(t) is
described by the mean and two harmonic terms in the form

ū(t) = ūm[1 + a1 sin(2πt/T ) + a2 cos(4πt/T )], (2.2)

and for two cases of non-reversing flow: (a1 = 0.75, a2 = 0) and (a1 = 0.75, a2 = −0.75),
as shown in figure 2. The first is a simple pulsatile waveform of the type considered in
many laboratory experiments (Cassanova & Giddens 1978; Ahmed & Giddens 1984;
Ojha et al. 1989), and has Upm = 1.75. The second, a more realistic approximation
of physiologic waveforms since it has a higher peak-to-mean ratio, is obtained using
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two harmonics and with a1 = −a2 = 0.75. We note that if the magnitude of the two
harmonics is fixed at 0.75, the phase relationship between them, as defined by (2.2),
leads to the highest possible peak-to-mean flow ratio, Upm = 2.5.

The Womersley number, α, can be interpreted as the ratio of the diameter (or
radius) to the viscous laminar boundary-layer growth (νT )1/2 in time period T . It is
therefore the ratio of two sectional length scales and is a commonly used parameter
in pulsatile flows of biomedical interest. We note, however, that for our problem
there is also an axial length scale, associated with the stenosis shape, in the flow
direction. The reduced velocity Ured = ūmT /D can be interpreted as the convective
length in diameters that the mean flow moves in time T and therefore introduces an
axial scale into the parameter. In the following work, we will typically adopt reduced
velocity, Ured, in preference to Womersley number, α, but note that Ured and α are
dependent parameters related by the Reynolds number according to the relation
Ured = πRe/(2α2).

Within this paper, we consider steady flow (i.e. a1 = a2 = 0) in the Reynolds-
number regime 400 � Re � 800. The pulsatile flow given the most attention is the case
(a1 = 0.75, a2 = 0) for which we have considered the parametric region 2.5 � Ured � 7.5
and 250 � Re � 550. For the case (a1 = 0.75, a2 = −0.75) we have examined a single
reduced velocity, Ured = 5, over the range 500 � Re � 550.

The Reynolds-number regime was dictated by the onset of linear instability of
the steady and pulsatile flows. In terms of physiological conditions, we note that the
Reynolds-number regime considered for steady flow is relatively high. For pulsatile
flow, the Reynolds numbers considered are slightly high, although plausible. The
Womersley numbers for the pulsatile waveforms range from α = 7.2 to 18.6, which is
also physiologically reasonable; however, the peak-to-mean flow ratios are somewhat
low since physiological waveforms can achieve a value of Upm ≈ 4 (McDonald 1974).

3. Equations, stability and symmetry
Assuming the fluid to be Newtonian and the flow incompressible, the relevant

equations of motion for the primitive (velocity, pressure) variables are the
incompressible Navier–Stokes equations

∂t u = −A(u) − ∇P + ν∇2u with ∇ · u = 0, (3.1)

where u = u(z, r, θ, t) = (u, v, w)(t) is the velocity field, A(u) represents nonlinear
advection terms, P = p/ρ is the modified pressure and ν is the fluid’s kinematic
viscosity. The variables z, r , θ and t are, respectively, the axial, radial, azimuthal
and time coordinates and u, v and w are the velocity components in the axial,
radial and azimuthal directions. We can consider the nonlinear terms either in
convective form A(u) = u · ∇u, conservative form A(u) = ∇ · uu, or skew-symmetric
form A(u) = (u · ∇u + ∇ · uu)/2, which are all equivalent in a continuum setting.
Taking the pressure to represent the solution of a Poisson equation that has the
divergence of the advection terms as forcing, we can consider the Navier–Stokes
equations in symbolic form as

∂t u = −(I − ∇∇−2∇·)A(u) + ν∇2u = N(u) + L(u), (3.2)

where the nonlinear operator N contains contributions from both pressure and
advection terms, while the linear operator L corresponds to viscous diffusion.

When analysing the linear stability of a flow in terms of its normal modes, we
decompose the velocity u into a base flow U and perturbation flow u′: u = U + u′,
and examine the stability of the perturbation linearized about the base flow. In
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this decomposition, the original nonlinear advection terms are replaced with their
linearized equivalent (here for the convective form) ∂U A(u′) = U · ∇u′ + u′·∇U and in
symbolic form we write

∂t u′ = ∂U N(u′) + L(u′) (3.3)

for the evolution of the linear perturbation.
If the base flow is steady in time, then so is the nonlinear operator ∂U N . Under the

assumption of normal modes, u′(t) ≡ ũ exp γ t , (3.3) becomes an eigenproblem

γ ũ = (∂U N + L)ũ, (3.4)

where γ is an eigenvalue and ũ an eigenfunction, both, in general, appearing in
complex-conjugate pairs. For a finite time increment τ we have

u′(t0 + τ ) = exp[(∂U N + L)τ ]u′(t0), (3.5)

and we usually try to extract the eigenpairs {Γ , ũ} of operator exp [(∂U N + L)τ ]. This
is because the numerical method to be used, extracts dominant eigenvalues, i.e. those
of largest modulus, whereas for the steady flow we are ultimately interested in values
of γ with the largest real part, i.e. the most unstable. There is a direct correspondence
between the dominant values of Γ and the most unstable values of γ through the
relation Γ = exp γ
t .

If, on the other hand, the base flow is time-periodic with period T , ∂U N is still
linear but now time-periodic, and

u′(t0 + T ) = exp

[∫ t0+T

t0

(∂U N + L) dt

]
u′(t0). (3.6)

The eigenpairs of this Floquet problem are {µ, ũ(t0)} where µ is a (constant) Floquet
multiplier and ũ(t0) is the T -periodic Floquet eigenfunction, evaluated at phase t0. The
equivalent to the eigenvalues γ of the time-invariant case are the Floquet exponents
σ , related to the multipliers by µ = exp σT . Floquet modes are unstable for |µ| > 1,
i.e. when Floquet multipliers leave the unit circle in the complex plane. Again, in
general, the Floquet multipliers/exponents and eigenfunctions occur in complex-
conjugate pairs. Three primary instability scenarios can be identified: (i ) the critical
Floquet multiplier µc = + 1, giving a synchronous instability with period T at onset;
(ii ) µc = −1, giving a period-doubling bifurcation; (iii ) µc = exp ±iφ, a Neimark–
Sacker bifurcation, which introduces a new secondary period and gives quasi-periodic
solutions.

It is readily apparent that the structure of (3.5) and (3.6) is the same, except that
in the former case the time-invariant operators have been taken outside the integral.
The conceptual difficulties of numerically constructing the exponential operators are
reduced once it is appreciated that the action of these operators can be evaluated
by standard time-integration techniques applied to the linearized evolution equa-
tion (3.3).

Since the geometry is axisymmetric, the velocity must be 2π-periodic in θ and can
be projected exactly onto a set of two-dimensional complex Fourier modes by

ûk(z, r, t) =
1

2π

∫ 2π

0

u(z, r, θ, t) exp(−ikθ) dθ, (3.7)
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where k is an integer wavenumber. This projection has the Fourier series recon-
struction

u(z, r, θ, t) =

∞∑
k=−∞

ûk(z, r, t) exp(ikθ). (3.8)

The Fourier-transformed equations of motion and axial boundary conditions for
the velocity and pressure (and their perturbations) in cylindrical coordinates are
described in detail by Blackburn (2002) and Blackburn & Sherwin (2004). Our base

flows are both axisymmetric/two-dimensional, i.e. Ûk = 0, k �= 0, and two-component,
i.e. U ≡ (U, V, 0). In the numerical stability analysis, we take advantage of linearity,
which decouples the stability problem for each û′

k .
The axisymmetric base flows have rotational symmetry about the z-coordinate axis,

i.e. the spatial symmetry group of the base flows is O(2), broken by any three-
dimensional instability. This has consequences for the possible forms of three-
dimensional instabilities. If the eigenvalues/Floquet multipliers of the instability
modes are real, then the bifurcations occur through a pitchfork of revolution,
i.e. the mode shapes are aligned at arbitrary, but fixed, azimuthal coordinate in
the tube; an azimuthal traverse corresponds to a revolution of the pitchfork. For
complex-conjugate pair eigenvalues there are two cases to consider: standing-wave
type solutions, which again bifurcate through a pitchfork of revolution, producing
mode shapes at arbitrary, but fixed, azimuthal coordinates, and travelling-wave (or,
in this system, rotating-wave) type solutions that bifurcate in θ-conjugate pairs, one
rotating in a +θ sense, the other in a −θ sense: only one of the pairs will be observed
in practice. In this case, the imaginary part of the eigenvalue/multiplier is associated
with the precession speed of the rotating wave. At linear onset, the eigenvalues for
the standing- and rotating-wave solutions are identical, and the mode shapes of the
standing waves are symmetric combinations of those for the rotating waves. Under
nonlinear evolution (i.e. DNS), however, the standing and rotating wave solution
branches are distinct, and at most one has stable solutions.

In order to account for the various possibilities, we initially use perturbation
velocities with restricted symmetry, and also arbitrarily align the mode shape at
θ =0:

(u′, v′, w′)(z, r, θ, t) = (u′ cos kθ, v′ cos kθ, w′ sin kθ)(z, r, t), (3.9)

which corresponds to taking û′
k , v̂′

k purely real and ŵ′
k purely imaginary. This

combination passes unaltered through the linearized Navier–Stokes equation when the
base flow is two-component, and is sufficient except when the eigenvalues are complex-
conjugate pairs, in which case full-complex perturbations must also be introduced, in
order to capture the shape of the travelling-wave modes (see e.g. Blackburn & Lopez
2003a, b). In fact, for the present problem, we have so far only observed instability
modes with real eigenvalues, so the above form is adequate. When carrying out
DNS studies, the full complex structure of all modes is used, removing the symmetry
constraint implicit in (3.9).

4. Numerical techniques
The same underlying spatial and temporal discretizations were applied both to

integrate the Navier–Stokes equations (3.1) in direct numerical simulation (DNS),
and their linearized equivalents used to evolve perturbation velocities (3.3). These
numerical methods are outlined in § 4.1 and this is followed in § 4.3 by those relevant
to stability analysis techniques.
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Figure 3. Spectral element outlines of computational mesh, dimensions given in terms of
tube diameter D. (a) Elements for the first mesh with an outflow at 45D. (b) A close-up of
the throat, with curved element edges. (c) The extended mesh with an outflow at 70D and is
similar to the mesh in (a) up to z/D = 7.

4.1. Treatment of the evolution equations

For time evolution of both the full and linearized Navier–Stokes equations, we rely
on standard (nodal-Gauss–Lobatto–Legendre) spectral elements in (z, r) and Fourier
expansions if required in the azimuthal θ-direction. This spatial discretization was
coupled with a second-order-time velocity correction time-integration scheme. The
development of this numerical method for DNS has been described in detail by
Blackburn & Sherwin (2004), where full spectral convergence in both the meridional
semi-plane and in azimuth was demonstrated. The application of the method to
linearized Navier–Stokes evolution, including appropriate boundary conditions, has
also previously been described by Blackburn (2002). As a consequence, we refer
the interested reader to these other publications for more detail on the numerical
simulation techniques employed.

One aspect we highlight here concerns the discrete formulation of the advection
terms. We have found that for three-dimensional cylindrical-coordinate DNS, the
skew-symmetric form A(u) = (u · ∇u + ∇ · uu)/2 provides superior numerical stability
to the convective form A(u) = u · ∇u, and have used it exclusively in that application.
On the other hand, we use the convective form and its linearized equivalent
for computing two-dimensional/axisymmetric flows and evolution of linearized
perturbations for stability analysis. The use of convective form in the stability analysis
is consistent with the work of Wilhelm & Kleiser (2001) who found that this form
does not lead to numerical linear instability in spectral element type discretizations.

4.2. Mesh layout and resolution

The computational meshes used in the following numerical calculations are shown
in figure 3. The first domain used for the majority of calculations is shown in
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figure 3(a) and consists of 743 elemental regions. In each element two-dimensional
mapped tensor-product Lagrange-interpolant shape functions based on the Gauss–
Lobatto–Legendre nodes were applied. At polynomial order Np = 7, this elemental
discretization corresponds to approximately 38 000 local degrees of freedom in each
meridional semiplane. The domain extended 5D upstream and 45D downstream of
the throat. As shown in figure 3(b), a fine radial mesh spacing was adopted in
the region of the stenosis where two layers each of 5 % of the local radius were
applied. At z/D ≈ 7, the radial mesh spacing was coarsened to allow a uniform axial
spacing of 0.5D to be applied to the outflow. For the two harmonic waveforms
where a1 = 0.75, a2 = −0.75 in (2.2), we required a domain with a longer outflow as
shown in figure 3(c). This mesh contains 915 elemental regions and when Np =9
this corresponds to approximately 91 000 local degrees of freedom in each meridional
semiplane. The two meshes are similar up to z/D ≈ 7, the second mesh then has radial
transitions at z/D ≈ 11, 15 and 20.

The long outflow lengths of both meshes were found to be necessary primarily to
obtain satisfactory convergence of the pulsatile flow stability analyses. As will be seen
later, the linear instability modes for both steady and pulsatile flows are significantly
extensive in the axial direction. The need for this apparently extreme domain length
can be understood heuristically by considering a case where Ured =7.5 with a stenosis
of S = 0.75. For this problem there is a fourfold increase in the sectionally averaged
velocity at the throat of the stenosis and so in the absence of any resistive force
this flow could theoretically propagate through a length of order 4 × 7.5D = 30D in
one pulsatile cycle. A further significant feature of the mesh design was the need to
adequately resolve shear layers, both next to the wall of the stenosis, and as they
propagate in the elongated separation zone further downstream. The fine resolution
around the stenosis where the highest sectional flow rates are observed, results in
a reasonably restrictive time step dictated by CFL stability considerations. This
restriction arises owing to the explicit treatment of advection terms adopted in the
numerical integration of the Navier–Stokes equations (Blackburn & Sherwin 2004).

Ultimately the spectral element layout and polynomial order adopted in the
meridional semiplane was decided on the basis of satisfactory convergence of stability
analysis results. We have found in past work (e.g. Blackburn 2002; Blackburn & Lopez
2003 b) that mesh designs which deliver adequate convergence in stability analyses
also do so for DNS studies, consistent with points made by Zang (1991). Typical
resolution results will be provided in the following section. However, prior to carrying
out these studies, and all other stability analyses, it was always necessary to ascertain
that the base flows in question were either sufficiently close to an asymptotic state (for
steady flows) or a periodic one (for pulsatile flows). In all the base-flow calculations,
flow time series data were extracted at z/D = 0, 1, 22, 43 and r/D = 0.25. For steady
flows, the base flow was considered to be close enough to an asymptotic state when
the velocities converged to the local steady-state value within a relative error of order
1 × 10−4. In practice, this typically required a total run time of order t ūm/D =75
after any parameter change. For the pulsatile computations, the base flow was run
for a sufficient number of cycles so that the mean flow had time to convect through
the entire computational domain. For example at Ured =5.0, the flow was run for
10 cycles after any parameter change. Phase-plane plots of the z-component versus
r-component velocities at each extraction point were then checked for the final two
cycles to ensure time periodicity of the flow within visual limits, again to a typical
relative accuracy of order 1 × 10−4 or better. It should be noted that through these
methods of computing and checking the base flows, we have established that none
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Re = 800, steady Re = 400, Ured = 2.5
Np Ntot |γ | θ |µ| θ

4 12 673 382.73 × 10−3 ±2.0554 1.4463 ±2.5749
5 19 556 9.1686 × 10−3 0 1.1444 π
6 27 925 8.9666 × 10−3 0 1.0726 π
7 37 780 8.9624 × 10−3 0 1.0731 π
8 49 121 8.9571 × 10−3 0 1.0736 π

Table 1. Convergence of eigenvalue γ or Floquet multiplier µ of the leading k =1 azimuthal
Fourier mode as a function of polynomial order Np , for both steady and pulsatile flow. At
each Np , Ntot is the number of independent mesh points for the spectral element mesh of
figure 3(a).

possesses an axisymmetric absolute instability mode for clean inflow conditions. In
§ 6.4.3, it will be demonstrated that a convective shear-layer instability is possible
when high-frequency forcing is introduced into the inflow.

4.3. Stability analysis methodology

The numerical methods employed for stability analysis of both steady and pulsatile
flow follow those outlined in Tuckerman & Barkley (2000), and previously described
and used in other works (e.g. Barkley & Henderson 1996). The code used in the present
study has been validated against the circular cylinder wake secondary stability analysis
of Barkley & Henderson, see Blackburn & Lopez (2003a), and against experimental
and DNS results for oscillatory swirling flows (Blackburn 2002). For both steady and
time-periodic flows, the analysis is based on a Krylov-subspace iteration of successive
finite increments of (initially random) perturbations through the linearized equa-
tions (3.5) and (3.6) using an Arnoldi method to extract the dominant eigenpairs of the
exponential operators in the equations. For Floquet analysis, the data used to supply
the T -periodic base flow are approximated through Fourier-series reconstruction from
a limited number (typically 256) of time-slices obtained from two-dimensional DNS.
This number of time-slices is somewhat higher than employed in previous applications
(typically 32 or 64), as the dimensionless frequency content of the base flows here is
somewhat broader.

4.4. Resolution studies

An identical spectral element mesh to that adopted for computing base flows (see
figure 3a) was used for the steady and Floquet stability analysis with a single harmonic
waveform. The tolerance placed on the Arnoldi iteration residual (see e.g. Saad 1992)
as a stopping criterion was 1 × 10−6. To determine the appropriate polynomial order
for the base flow and also our stability analyses a series of convergence tests were
performed. In table 1, we show the results of a polynomial-order convergence test
for the three-dimensional instability in the k = 1 azimuthal Fourier modes. Two cases
are considered. The first involved the sensitivity of the leading eigenvalue in the
steady-flow stability analysis at Re = 800. The second demonstrates the sensitivity of
the Floquet multiplier for analysis at Ured =2.5 and Re = 400. Both these test cases
are quite close to the onset of instability for the relevant flows. From this table,
we observe that for a polynomial order of Np = 7, the variation of the eigenvalue
obtained by incrementing the polynomial degree by one is of order 1 × 10−4 and
the variation of the multiplier is of order 1 × 10−3. In the two-harmonic waveform
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Figure 4. (a) Streamlines, (b) vorticity contours and (c) velocity profiles for the steady base
flow at Re = 750. Reattachment occurs at z/D = 16.2.

case (not shown), the variation of the multiplier near criticality was also of order
1 × 10−3 when changing from Np = 9 to Np = 10.

Additional resolution checks were also performed at Ured = 7.5, Re = 500 where
similar spatial convergence was observed. As a result, Np = 7 was chosen for all sub-
sequent investigations, except for the two-harmonic case, where we have used Np = 9.
Finally, time-step independence checks were also performed at Ured = 2.5, Re = 400,
Np = 7 and k = 1, by considering values of 
tū/D = 1/7168, 1/9216 and 1/12 288;
changing the time step had no effect on the computed value of µ to four-figure
accuracy.

5. Steady inlet flow
5.1. Base flow characteristics

The main characteristics of the steady base flow are indicated in figure 4 where we
show streamlines, vorticity contours and representative velocity profiles for the flow
at Re = 750. From mass flow considerations in the 75 % stenosis, it is evident that
the sectionally averaged velocity at the throat of the stenosis reaches a values of 4 ūm.
The flow is unable to remain attached during the stenosis expansion and a constrained
laminar jet is formed in the centre of the pipe, as highlighted by the vorticity contours
in figure 4(b). The axisymmetric jet establishes a recirculation region immediately past
the stenosis, as indicated by the streamlines, which extends downstream to approx-
imately z/D = 16.2. Under the action of viscous diffusion, the central core of the jet
then decays back to the Hagen–Poiseuille solution. The velocity profiles of figure 4(c)
show the axial velocity distribution as a function of the radius at fixed axial locations
of z/D = 1, 7, 15, 23 and 39. From this plot we observe that even at z/D = 39 the
Poiseuille solution is not fully re-established, as the centreline velocity is 20 % higher
than its asymptotic value of 2ūm.

5.2. Stability analysis

Figure 5 shows the (real) leading eigenvalue, γ , as a function of azimuthal wavenumber
for Reynolds numbers 500, 600, 700 and 800. The first azimuthal Fourier mode (k = 1)
is the least stable. An inset shows the variation of γ with Re for k = 1; the critical
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Figure 5. Stability analysis of steady flow: the variation of the leading eigenvalue γ with
azimuthal wavenumber k for different Reynolds numbers. The critical Reynolds number,
Rec = 722, is established by interpolation (inset).

Reynolds number for growth of the linearized perturbation is found to be Rec = 722,
which is based on a cubic spline fit through the data.

5.3. Direct numerical simulation

In order to study the nonlinear behaviour of the instability, a small perturbation flow
component derived from the leading instability mode is added to an unstable base flow,
and the combination is evolved to saturation. Results for Re =750, approximately
4% greater than Rec, are shown in figure 6. The diagnostic used in this plot is the
dimensionless amount of flow kinetic energy contained in each azimuthal Fourier
mode k:

Ek =
1

2A ū2
m

∫
A

ûk·û∗
k r dA, (5.1)

where A is the area of the two-dimensional meridional semiplane and û∗
k denotes

the complex conjugate of the velocity data in the kth Fourier mode. The number of
azimuthal Fourier modes chosen for this calculation was Nk = 32 (64 planes of data
in azimuth), which is considered to be adequate on the basis that after saturation,
the energies in the non-axisymmetric modes span approximately three orders of
magnitude. The total number of mesh points for this simulation is approximately
2.4 million.

The dotted line in figure 6 indicates the exponential growth rate for k = 1, predicted
from the linear stability analysis and is in close agreement with the DNS results. Note
that while the initial growth in the three-dimensional perturbation is exponential, for
t ūm/D � 400 it becomes faster than exponential prior to saturation, indicating that
the bifurcation is of subcritical type. We will return to this point in § § 5.4.2 and 5.4.3.

5.4. Discussion

5.4.1. Characteristics of the linear instability mode

In figure 7, we see features of the most unstable eigenmode (at k =1) for Re = 750.
The eigenmode arises downstream of the throat of the stenosis, and is elongated in
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Figure 6. Growth to saturation and transition to turbulence of the steady inlet flow solution
at Re =750, approximately 4 % above Rec , represented by kinetic energies in azimuthal Fourier
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Figure 7. Most unstable eigenmode of the steady flow at Re = 750. (a) Contours of axial
velocity (white positive, black negative), (b) top and side views of positive and negative iso-
surfaces of streamwise vorticity, (c) velocity vectors of the in-plane flow superimposed on
contours of streamwise velocity for a slice at z/D = 5, (d ) isosurface of azimuthal vorticity for
a linear combination the base flow and the most unstable eigenmode.
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the axial direction. The perturbation axial velocity (figure 7a) is positive at the top of
the tube and negative at the bottom, which is accompanied by much weaker cross-
flow perturbation velocities, shown at z/D = 5 (figure 7c). Isosurfaces of streamwise
perturbation vorticity (figure 7b) reveal a quadrupole arrangement that reaches
upstream to the throat of the stenosis, where the base flow separates from the wall.
Finally, figure 7(d ) shows an isosurface of azimuthal vorticity of a linear combination
of the base flow and the most unstable eigenmode.

While the strongest perturbation pressures (not shown) produce a downward force
just past the separation line within the stenosis which mainly affects flow in the
recirculation region, further downstream, the axial perturbation velocities induce a
weak cross-flow pressure gradient and flow, as demonstrated in figure 7(c). Therefore
the perturbation flow tends to deflect the centreline of the enclosed jet away from the
tube’s axis of symmetry, promoting a mild Coanda-type attachment. Although the
first symmetry-breaking transition in a two-dimensional expansion or constriction is
also of a Coanda-type instability, see Sobey & Drazin (1986), in the two-dimensional
channel, the instability occurs at far lower Reynolds number (O(10)) and is far
stronger in its deflection.

We also recall that the azimuthal orientation of the mode is driven by the use of
a particular expansion basis (3.9), and that the mode shown is one instance of the
azimuthally symmetric pitchfork of bifurcating modes.

5.4.2. Nonlinear saturation

As observed in § 5.3, the growth to saturation in the three-dimensional modes (see
figure 6) is initially faster than exponential, which becomes increasingly apparent for
t ūm/D � 400. The implication is that the normal form for the bifurcation is (to fifth
order) of type

D

ūm

dψ

dt
= γψ + β1|ψ |2ψ − β2|ψ |4ψ, (5.2)

where ψ represents the amplitude of the instability mode, γ is the linear growth rate,
βi are positive constants, and that the bifurcation is subcritical. We can therefore
expect hysteretic behaviour with respect to changes in Reynolds number near the
critical value.

The non-axisymmetric modal energies in figure 6 are related to the squared
amplitude of the perturbation ψ . In figure 8, the growth in E

1/2
1 is plotted as

representing ψ , together with the exponential growth corresponding to the leading
eigenvalue derived from the linear stability analysis, and that of a nonlinear model
of form (5.2), with fitted values of β1 and β2. It is seen that up until the onset of
transition, the normal form for the bifurcation represents the perturbation growth
well. Using (5.2), the computed Re-dependence of γ (see inset, figure 5), and the
fitted values of β1 and β2 (taken to be Re-independent), an approximate bifurcation
diagram can be computed – this is shown as an inset to figure 8.

5.4.3. Turbulent flow

Following saturation, the flow becomes highly unsteady and undergoes local
transition to turbulence. This is indicated by the variation in the axisymmetric
component of kinetic energy (which on a linear scale has a variation of approximately
±5 % about the mean value), and also in the the non-axisymmetric components, which
have proportionately much larger fluctuations: all non-axisymmetric modes exhibit
large fluctuations on a time scale 
t ūm/D ∼ 35.
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ψ . The three-term model fit is for (5.2). Inset: approximate bifurcation diagram, with observed
Re-range of turbulent solutions indicated by hatching.

In order to illustrate the nature of the final state of the flow and the mechanics
of these long time-scale fluctuations, we show in figure 9 a set of visualizations
of instantaneous vorticity isosurfaces, computed at equal time intervals over

t ūm/D = 35, together with a plot indicating the time series of energy in azimuthal
modes k = 0 and k = 1. The elongated isosurfaces that reach upstream into the stenosis
are of azimuthal vorticity: these serve to indicate the location and structure of the
jet’s shear layer. At the initial time (figure 9a), the jet is deflected towards the top
of the tube. At approximately 5D downstream of the stenosis (i.e. at z/D ≈ 5), there
are signs of shear-layer oscillation; at z/D ≈ 10 there is a turbulent breakdown. From
the time series, it can be seen that the energy in the k =1 mode is about to reach
a maximum at this instant. In figure 9(b), the turbulent breakdown has progressed
upstream to lie at z/D ≈ 4, and the time series shows that the energy in the k = 1 mode
is falling. In figures 9(c)–9(f ), the turbulent patch washes downstream. At figure 9(g),
the energy in the k =1 mode is again near a maximum, the turbulent burst begins at
z/D ≈ 10, and shear-layer oscillations are evident. However, the jet’s deflection is now
towards the bottom of the tube. Thus the long time-scale oscillations are associated
with a flapping of the jet, accompanied by cyclic axial movements in the location of
its turbulent breakdown.

As we have mentioned above, the nature of growth to saturation in the non-
axisymmetric modes at Re = 750 indicates that the bifurcation to three-dimensional
behaviour is subcritical, and we can then expect there to be hysteretic behaviour with
respect to changes in Reynolds number near the critical value 722. Additional DNS
runs have been made, commencing with the asymptotic/turbulent state at Re = 750,
in which the Reynolds number is decremented in steps, followed at each level by
passage of sufficient simulation time for the flow state to be assessed. Following
this method, we have found that the flow remains three-dimensional and turbulent
down to Re ≈ 688, less than the linear critical value, confirming the presence of
hysteresis – the lower limit is indicated by the hatched region at the top of the inset
in figure 8. Prior to the return to axisymmetry, the turbulent behaviour becomes more
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Figure 9. Time series of energies in the first two azimuthal Fourier modes for steady inlet
flow at Re =750 during a long-period oscillation, and instantaneous isosurfaces of azimuthal
and streamwise vorticity at seven points in the cycle. At the start of the cycle, the orientation
of the jet is towards the top of the tube; at the end, it is towards the bottom.

burst-like, with greater (as much as a factor of ten) variation in the energy in the
non-axisymmetric modes during any one of the long time-scale fluctuations, with each
peak followed by a rapid fall in the k =1 and k = 2 modes. Eventually with reducing
Reynolds numbers, these decreases become terminal and the flow re-laminarizes.

5.4.4. Comparison to previous experimental studies

Our observations are consistent with the experimental results obtained for steady
flow by Cassanova & Giddens (1978) and Ahmed & Giddens (1983). Cassanova &
Giddens considered both ‘contoured’ and ‘sharp edged’ stenoses. Their inflow
condition was provided by a smoothly converging inlet which created a ‘velocity
profile entering the occlusion [which] was flat over 80 % of the tube diameter’ (i.e.
inconsistent with fully developed Poiseuille flow), and the contours of the stenoses were
composed of intersecting circular arcs. They report flow disturbances downstream
of a 75 %-occlusion smooth stenosis at Re = 635, although in their figure 3 the
‘disturbances’ shown in the first few diameters downstream of the stenosis appear to
be more consistent with shear-layer oscillations than with developed turbulence.

The experiments with steady flow in Ahmed & Giddens (1983) employed smooth
stenoses with fully developed Poiseuille inflow. When considering a 75 %-occlusion
cosine stenosis with a stenosis length of λ= 2 (i.e. the same as considered here),
narrowband discrete frequency oscillations were noted at Re = 500. At Re = 1000
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Figure 10. Streamwise velocity and azimuthal vorticity in the meridional plane of the
axisymmetric base flow at four stages of the single harmonic pulsatile cycle when Ured = 2.5,
Re = 400 (α = 15.9).

however, discrete oscillations were observed in the region z/D < 4 while for z/D > 4
turbulence occurred. As for Cassanova & Giddens (1978), critical Reynolds numbers
are not recorded.

A reasonable interpretation of these results, taken as a whole, is that for stenotic
geometries similar to or the same as those that we have employed, the onset of
turbulence occurred between Re =500 and Re =1000, and could propagate upstream
to z/D ≈ 4, consistent with our results. Examination of the visualization data suggests
that the ‘discrete frequencies’ are very likely associated with shear-layer oscillations,
which may have been triggered by upstream noise, and which of course is absent in
our simulations.

6. Pulsatile flow
Having dealt with instability of the steady flow, we now turn to consider single-

and two-harmonic pulsatile flows (see figure 2).

6.1. Base flow characteristics

6.1.1. Single harmonic waveform

For a single harmonic pulsatile waveform, within the Reynolds number and reduced
velocity range considered, the base flow characteristics were similar to those shown
in figure 10. In this figure we plot the streamwise velocity and azimuthal vorticity
contours over the same range at four instants in the sinusoidal cycle. The figure
includes the axial range −1 � z/D � 7.5 and is at a Reynolds number of Re = 400
and reduced velocity of Ured = 2.5 (α = 15.9). As indicated by the time trace on the
right-hand side of figure 10, the instants considered correspond to the maximum, mean
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Figure 11. Azimuthal vorticity in the meridional plane of the axisymmetric base flow at the
maximum point of the puslatile cycle for (a) Re =400, Ured = 2.5, (α =15.9) and (b) Re =415,
Ured = 5.0, (α = 11.4).

deceleration, minimum and mean acceleration instances of the sectionally averaged
pulsatile velocity waveform.

The primary feature of the base flow is a plug-like jet which develops at the stenosis
during the accelerating part of the cycle. At the front of this jet, a vorticity ring is
generated that initially propagates down the pipe at a relatively constant speed despite
the subsequent deceleration of the average flow.

In figure 10(a), we observe the early development of the plug-like jet, and the
vorticity ring associated with the strong gradient in the axial flow at the front of the jet.
At this point in the pulsatile cycle, the sectionally averaged velocity away from the
stenosis is ū/ūm = 1.75. This can be compared with the flow immediately downstream
of the emerging jet at z/D = 5 in figure 10(a), where there is a centreline velocity of
uc/ūm ≈ 3, while in the core of the jet at z/D = 1.5 the velocity is uc/ūm ≈ 7.8. These
values are consistent with the centreline velocities of the straight pipe solution which
from equation (2.1) is uc/ūm = 2.8 and the peak throat velocity which from mass
conservation considerations is 4 × 1.75ūm =7ūm. From divergence considerations, we
know that a high spatial gradient of the axial flow at the front of the jet is associated
with a strong radial flow. The maximum magnitude of the radial flow is approximately
twice ūm and occurs at z/D ≈ 5.

From the vorticity plot of figure 10(a) we observe that the strong secondary flow
due to the axial spatial gradient in velocity is associated with role up of the jet shear
layer into a vortex ring. As the sectionally averaged flow decelerates and reaches
its minimum (figures 10c and d ) the jet at the stenosis dies away, but the vortex
ring continues to propagate down the pipe. An indication of the vortex ring strength
can be implied by the centreline axial velocity at the location of the ring. The peak
centreline axial velocity relative to the mean flow, ūm, in the vicinity of the vortex
ring is approximately 7.8, 8.3, 7.3 and 7.4 in figures 10(a) to 10(d), respectively. Note
that the mean sectional velocity ranges over 0.25 � ūm � 1.75.

The subsequent cycles generate similar vortex rings which continue to advect down
the tube. Figure 11 shows the azimuthal vorticity at the maximum time instance
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Figure 12. Streamwise velocity and azimuthal vorticity in the meridional plane of the
axisymmetric base flow at four phases of the two-harmonic pulsatile cycle when Re = 425,
Ured =5, (α = 11.5).

of the pulsatile cycle along a larger section of the pipe from −1 � z/D � 31 at
Re =400, Ured =2.5 (α =15.9). From this figure we observe that the intial separation
between two sequential vortex rings is approximately 7D. In figure 11(b), we show
the azimuthal vorticity at Re =415, Ured = 5, (α = 11.4) using the same contour levels.
For these parameters we observe that the separation between two sequential vortex
rings has increased to approximately 14D, which is consistent with the doubling
of the period of the base flow cycle at this reduced velocity (all other parameters
being held constant). Analogously, the separation at Re = 500, Ured = 7.5 (α = 10.2)
was observed to be approximately z/D = 20. Although the separation of the vortices
seems to approximately scale with reduced velocity, the strength of the first vortex ring
is notably higher when Ured = 2.5. At Ured = 2.5, the local peak vorticity in the vortex
ring shown in figure 11(a) is approximately 60ūm/D as compared to approximately
45ūm/D when Ured = 7.5 at the same point in the pulsatile cycle.

6.1.2. Two-harmonic waveform

For the two-harmonic waveform with α1 = 0.75, α2 = −0.75 in equation (2.2) the
base flow axial velocity and vorticity is shown in figure 12 at Re = 425, Ured =5
(α =11.5). In this figure we have plotted the same time instances as a function of the
time period previously considered in figure 10. As indicated on the right-hand side of
this figure, the two-harmonic waveform could as an approximation be considered as
two single-harmonic waveforms, the first having a peak magnitude of ū/ūm = 2.5 and
the second having a peak of ū/ūm =1.

The reduced velocity considered in figure 12 is double that of the case in figure 10.
All other constants being held fixed, a doubling of the reduced velocity can be
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Figure 13. Contours of azimuthal vorticity in the meridional plane of the axisymmetric base
flow at four phases of the puslatile cycle of the two-harmonic waveform with Re = 425, Ured = 5,
(α = 11.5). (a–d ) correspond to the instants shown in figure 12 (a–d ), respectively.

considered as a doubling of the time period T between figure 10 and figure 12. It
is therefore possible to draw an analogy between each half-period of the waveform
in figure 12 and the single harmonic waveform considered in figure 10. Under this
analogy, it is appropriate to compare figure 12(a and b) with figure 10(a and c)
since they represent the maximum and minimum time instances of the sectionally
averaged velocity waveforms. However, in the two-harmonic waveform, the strength
of the peak is now ūmax = 2.5 as opposed to 1.75, and the peak centreline velocity
at z/D = 2.5 for the flow in figure 12(a) is uc/ūm = 10.6. This increase in velocity
naturally increases the strength of the vortex ring generated at the front of the jet.
Further, this is consistent with the peak sectional velocity at the throat of the stenosis
of 4 × 2.5 × ūm = 10ūm. As shown in figure 12(c and d ) the smaller peak in the second
half of the two-harmonic pulsatile cycle produces a second weaker vortex ring. The
centreline velocity at z/D = 0.75 at the instant of figure 12(c) is 4.5ūm. Consistent
with our previous comments, we observe that the reduced strength of the second
vortex leads to a slower propagation down the pipe compared to the first vortex ring
generated by the primary peak in the flow waveform.

Figure 13 shows the azimuthal vorticity in the meridional plane at the same phases
as for figure 12, but over the extended region −1 � z/D � 15. In figure 13(a) at z/D = 2
and figure 13(b) at z/D = 6.5 we observe the primary vortex ring corresponding to the
dominant peak in the velocity waveform, propagating down the pipe. Also evident in
these figures is the secondary vortex (z/D = 6.5 in figure 13a) generated by the second
peak in the waveform from the previous cycle. In figure 13(c), we subsequently see
the generation of a new secondary vortex ring at the stenosis throat associated with
the second peak in the velocity waveform. However, at z/D = 11, we also observe the
amalgamation of the primary vortex ring from the current cycle with the secondary
vortex ring from the previous cycle. The amalgamation leads to a weaker combined
vortex ring in figure 13(d ) where the maximum centreline velocity has decreased from
9.4 at z/D = 11 in figure 13(c) to 7.7 at z/D = 13.5 in figure 13(d ).

6.2. Floquet analysis

In figure 14, we present summary results of Floquet stability analyses for a range of
different pulsatile flows. This figure shows the largest Floquet multiplier |µ|max as a
function of Reynolds number, Re, and lists the critical Reynolds number for each
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Figure 14. Plot of largest absolute Floquet multiplier, |µ|max as functions of Reynolds number
for single-harmonic pulsatile flows with reduced velocities of Ured = 2.5, 5 and 7.5 (α = 15.6,
11.4 and 10.2, respectively) as well as for a two-harmonic waveform with Ured = 5. In all cases,
the leading Floquet multipliers are real and negative.

case. Also indicated by the inset plots within this figure are the corresponding pulsatile
waveforms. It should be noted that for all the cases we have considered, the largest
multipliers are real and negative: the leading modes all arise through period-doubling
bifurcations with µc = −1. Also, as was the case for the instability of the steady flow,
the most unstable eigenmode always corresponds to the first azimuthal Fourier mode,
k = 1.

6.3. Direct numerical simulation

Following the Floquet analysis, we initiated DNS at Re = 400, Ured =2.5 with a linear
combination of the base flow and the most unstable eigenmode, projected to Nk =16
(32 planes of data in azimuth); figure 15 shows the evolution of kinetic energies in
the azimuthal Fourier modes, analogous to figure 6 for the steady flow. Following
an equilibration of energies at early times, there is an initial exponential growth
phase (indicated by the dotted line based upon the Floquet analysis in the figure)
that lasts until t/T ≈ 30, after which the energy grows faster than exponentially
until an initial nonlinear saturation takes place at t/T ≈ 40. As was the case for
the steady flow at Re =750, this faster-than-exponential growth indicates that the
bifurcation is subcritical, although we have not followed this matter up in detail
here. Succeeding this initial saturation, there follows a much longer transition to the
asymptotic state at t/T ∼ 280. In this state, the energies in the non-axisymmetric
modes span approximately three orders of magnitude, as was the case for the steady
flow DNS, but here the number of gridpoints is half, approximately 1.2 million.

6.4. Discussion

6.4.1. Characteristics of linear instability modes

In figure 16 we illustrate the characteristics of the base flow and leading eigenmode
for the single-harmonic flow at Re = 400, Ured = 2.5, at a single phase (t0 = 0) in the
pulse cycle. Figures 16(a) to 16(d ) show contours of axial velocity component for the
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Figure 15. Growth to saturation of the pulsatile inlet flow solution at Ured = 2.5, Re =400,
approximately 3 % above Rec , represented by kinetic energies in azimuthal Fourier modes,
with Nk =16. An initial exponential growth phase (indicated by the dotted line) is followed by
faster than exponential growth near t/T ∼ 35, an initial nonlinear saturation at t/T ≈ 40, then
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Figure 16. The base flow and the leading eigenmode for one phase in the flow cycle for the
unstable pulsatile flow at Re =400, Ured = 2.5, on a vertical centreplane. (a, c) Contours of
axial velocity of the base flow. (b, d ) Contours of axial velocity of the eigenmode. (e) The
velocity vectors of the eigenmode near its strongest streamwise location, superimposed on
contours of axial velocity of the base flow.
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base flow, and the eigenmode, on a vertical plane bisecting the tube (i.e. the plane
aligned with θ = 0). Within the length of tube represented, five base flow pulses can
be discerned (the peak of the first pulse occurs at z/D ≈ 6.5, while the last pulse is
very weak).

As seen previously, the magnitude of the velocity pulse in the base flow falls with
distance down the tube, as the flow re-adjusts to the Womersley flow conditions
that would be found without the stenosis. For the first three base flow pulses, the
separation remains relatively constant; however, after this point (z/D ≈ 20), the speed
of propagation falls and the pulses become closer together. The strength of the
Floquet mode initially increases with distance downstream, reaching a maximum at
z/D ≈ 20, before falling back as the strength of the pulses in the base flow decays.
It can be seen that the sign of the perturbation velocity alternates on any axial
traverse at a fixed radius: this is directly related to the period-doubling nature of the
instability.

As highlighted in figure 16(e), the perturbation acts to provide an overturning
moment on each velocity pulse of the base flow – and the sign of this moment
alternates on successive pulses. The overturning flow can be seen in the perturbation
velocity vectors. In terms of vorticity, the perturbation tends to alternately tilt the
vortex rings that are ejected from the stenosis during each successive pulse: the down-
wash from the tail of the instability that grows on any one ring induces the opposite
tilt in its successor. The influence of this alternating tilting will also be seen in the
DNS results to be presented in figure 17, as will be discussed in § 6.4.2. We note
that this type of instability is distinct from those relevant to flows in constricted
two-dimensional channels, where ‘vorticity waves’ and shear-layer instabilities are
observed (Sobey 1985; Pedley 2000). However, the nature of the instability does bear
some similarity to the bifurcation of free jets observed by Glezer (see Saffman 1981)
and Reynolds et al. (2003).

As the reduced velocity for the single-harmonic waveform is increased from
Ured =2.5 to 5 and then 7.5, we recall that the pulse separations in the base flows
also increase. However, in the latter two cases the peak eigenmode magnitude is
associated with the second rather than the third pulse, as occurs when Ured =2.5.
We recall that the initial strength of the first vortex ring grows weaker as Ured

is increased. In contrast, for the two-harmonic waveform where Ured = 5 the peak
eigenmode levels are associated with the third pulse from the stenosis. Although
the pulse separations for the single- and double-harmonic waveforms are similar
when Ured = 5 (see figures 11 and 13), the initial vortex is much stronger, having
approximately double the peak vorticity in the two-harmonic waveform case. We
therefore observe that the initial strength of the vortex ring may dictate how far the
vortex ring must propagate while decaying in strength before the period doubling
instability dominates. The alignment of the peak eigenmode energy with the third
rather than the second pulse-front in the case of the two-harmonic inflow waveform
also explains the need for the longer-outflow domain (figure 3c) for this investigation.

Finally we note that, with all other parameters fixed, the shorter the time period
of the oscillation, the smaller the reduced velocity. Equivalently, the higher the
Womersley number, then the lower will be the critical Reynolds number, as is
indicated by the values presented in figure 14. If the instability is promoted by an
interaction between subsequent pulses, then the increased separation at higher Ured

may require higher Reynolds numbers in order to overcome viscous damping on the
velocity induced by one vortex ring at the location of another, and allow unstable
growth to occur. The trend of higher reduced velocity leading to a lower critical
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Figure 17. Visualizations for the DNS of pulsatile flow at Ured =2.5, Re = 400. Isosurfaces
are extracted using the λ2 criterion of Jeong & Hussain (1995). (a) A sequence of visualizations
over one pulse cycle, commencing just after the initial saturation seen at t/T = 40 in figure 15.
Note that the images at t = 40T and t = 41T have almost exact reflection symmetry about
the tube centre-plane, consequent on the period-doubling bifurcation of the instability mode.
(b) Two visualizations at later times in the progression to the asypmtotic state. Note the
upstream movement of breakdown. (c) A detailed perspective view of the breakdown of vortex
rings in the cycle following t = 300T . Downstream of the stenosis, the first group of structures
shows a ring deforming during the final stages of the tilting process, while the second group
shows the decaying breakdown of the previous ring.

Reynolds number is contrary to the experimental observation of Nerem, Seed &
Wood (1972) who studied the transition to turbulence in the aorta of a dog, in the
absence of a stenosis. Significant differences between the two studies occur in the
geometric and inflow conditions which could reasonably lead to the alternative trends
in critical Reynolds number with reduced velocity.

6.4.2. Nonlinear saturation and transition

Figure 17 illustrates the flow at various stages of the growth indicated in figure 15.
The instantaneous isosurfaces show a negative contour of λ2, the intermediate
eigenvalue of the symmetric tensor S2 + Ω2, with S and Ω being, respectively, the



Three-dimensional instability and transition of stenotic flow 321

symmetric and anti-symmetric parts of the velocity gradient tensor ∇u – this measure
was introduced by Jeong & Hussain (1995) for identification of vortical structures in
three-dimensional flows.

The two initial panels of figure 17(a) show top and side views of the isosurface at
time instant t = 40T (see figure 15 for the time base). We find a number of groups of
structures (each of which, near to the stenosis, can be thought of as being associated
with a vortex ring) that correspond to the evolution of individual velocity pulses. The
following eight panels show snap-shots at T/8 phases up to t = 41T : taken together,
these panels represent the evolution over time interval T of the flow following the
initial saturation in figure 15. The relative coherence of the structures shows that
at this time, the flow is still quite well-organized, and (as evidenced by comparison
of the top and side views) retains the symmetry of the initial condition. Looking
at the side views in this sequence, we can observe how, travelling downstream, a
vortex-ring structure first acquires a small tilt (corresponding to perturbation by the
Floquet eigenmode), then, presumably through a process of self-induction and wall
interaction, is rapidly torn apart until it appears as a packet of lambda-vortices. Note
that at t =41T , we see almost exactly a vertical reflection of the structures seen in side
view at t = 40T ; this is a consequence of the fact that the instability arises through a
period-doubling bifurcation.

The two panels of figure 17(b) show the flow at t = 132T and t =280T , respectively,
in the midst of and at the end of the slow final growth in energies of the non-
axisymmetric modes observed in figure 15. We find that this slow transition has come
about as the vortex-ring breakdown, seen near the end of the field of view in the initial
panels, moves progressively further upstream. In the asymptotic state, this breakdown
takes place almost immediately after ring formation, and is highly turbulent.

At t =280T , the flow still has the symmetry of the initial conditions, as expressed in
(3.9). Before proceeding with further evolution, the real and imaginary parts of the first
azimuthal mode were perturbed with Gaussian-distributed noise, at O(10−4), which,
during further evolution to t = 300T , led to the redistribution of energy between the
real and imaginary components of the modes, and destruction of symmetry. However,
this redistribution scarcely affected the asymptotic distribution of energies between
the modes observed near t = 280T in figure 15. Also, when the nature of the flow
is considered at the largest length scales and over a moderate number of cycles, it
does not substantially perturb the period-doubling mechanism, indicating that it is
comparatively robust.

Figure 17(c) shows a perspective view of structures near the stenosis, part-way
through the cycle following t = 300T , again visualized using an isosurface of λ2. In
the parallel section of the tube downstream of the stenosis, there are two groups of
structures. The upstream group shows a single vortex ring in the late stages of its
tilting deformation; it is evident that this is a complex three-dimensional event. The
second group of structures represents the decaying breakdown of the previous vortex
ring. Note that the streamwise spacing of successive breakdowns is much reduced
compared to those seen at earlier times t/T = 41, 132, in figure 17.

The process of ring breakdown is highly dissipative, and will lead to high levels
of wall shear stress, as well as of its temporal and spatial gradients, all of which are
now thought to be relevant to development of atheroma and thrombi. It is interesting
that, even though the linear stability analysis and the initial nonlinear saturation
condition (t ≈ 40T ) shows the breakdown to occur far downstream of the stenosis
in our idealized geometry, it subsequently progresses upstream to occur only a few
diameters downstream of the stenosis. It should also be pointed out, however, that the
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highest wall shear stresses (while perhaps not their highest spatio-temporal gradients)
will almost certainly occur in the throat of the stenosis itself.

6.4.3. Shear-layer instability

In experimental investigations of stenotic flow with geometries similar to those
considered in this paper (Cassanova & Giddens 1978; Ahmed & Giddens 1983), the
breakdown in the post-stenotic region has been accompanied by finer-scale shear-
layer-type instabilities, as was discussed in relation to steady inlet flows in § 5.4.4.
In the saturated nonlinear state with a steady inflow, we have observed shear-layer
instabilities as shown in figure 9. During our DNS study of the single-harmonic
pulsatile flow, on the other hand, we did not observe signs of shear-layer instabilities.

Nevertheless, during our resolution studies for computing pulsatile base flows to
be used in Floquet analysis, shear-layer oscillations were often noted when the flows
were under-resolved. Localized oscillations produced high-frequency signals, readily
observed in pressure time series at sampling points remote from the instability site.
These instabilities were usually found to be triggered at times when a pulsatile
velocity front propagated through a region of low resolution. The oscillations always
disappeared when mesh resolution was sufficient – in fact, oscillations became one of
our key diagnostics, indicative of poor mesh design or under-resolution.

The physical experiments, our experience in computing base flows, and some of
the DNS results described here all suggest that in this problem, jet shear layers may
be subject to convective instability (Huerre & Monkewitz 1985, 1990). While this
is not our main theme, and difficulties of analysis (particularly considering that we
are confronted with pulsatile flows) preclude a rigorous examination, we describe in
this section a brief heuristic study of shear-layer oscillations for the axisymmetric
two-harmonic base flow at Ured =5, Re =550. Of all the cases dealt with, this was
the most susceptible to oscillation, probably because of its elevated Reynolds number
and peak-to-mean ratio, the combination of which results in thin shear layers.

The investigation was computed at Np = 9 on the mesh shown in figure 3(c); at
this resolution, and with inlet flows of the form (2.2), oscillations in the flow are not
observed. We then added a small high-frequency component to the inlet flow, now
described by

ū(t) = 1 + 0.75 sin(2π t/T ) − 0.75 cos(4π t/T ) + Amp sin(nf 2π t/T ), (6.1)

and where we have taken Amp = 0.001, i.e. a maximum perturbation amplitude which
is 1/1000 of the mean base flow velocity, and nf is an adjustable integer harmonic.

Figure 18(a) illustrates the periodic time series of perturbation axial velocity, 
u,
downstream of the stenosis (z/D = 1, r/D = 0.25) for different values of the harmonic
nf . The perturbation velocity, 
u, was evaluated by subtracting the time history of the
unforced inflow solution (Amp = 0) from the forced inflow (Amp = 0.001). Figure 18(b)
shows the amplification of inflow forcing, evaluated by the maximum perturbation
velocity, |
u|max at a fixed point defined as

|
u|max(z, r) = max
0�t < T

|
u(z, r, t)|,

normalized by the forcing amplitude Amp . Here we observe that the maximum
amplification of the inflow forcing occurs at a frequency corresponding to nf = 65,
where we have an amplification of |
u|max = 272Amp . In figure 18(c), we show contours
of vorticity in the base flow at t/T ≈ 43/128, which corresponds to the phase at which
the perturbation velocities are greatest. Figure 18(d ) shows vorticity at the same phase
in the perturbed case for nf = 65. The shear layers immediately trailing the primary
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Figure 18. Magnitude of shear-layer oscillations in the base flow for the two-harmonic case at
Re = 550, with an additional high-frequency perturbation, Amp = 0.001, imposed at the domain
inlet. The data are for the axial component of perturbation velocity at a single sampling
point, location (z/D =1, r/D = 0.25). The dependence on the perturbation frequency nf of the
perturbation time-histories and the maximum normalized perturbations are shown in (a) and
(b), respectively. (c, d ) Vorticity at t/T ≈ 43/128 for the unforced base flow and the case when
nf = 65. (The last panel uses a different isocontour scaling to the previous two.)

vortex ring clearly display a Kelvin–Helmholtz-type instability which also, at this level
of Amp , appears to disrupt the primary vortex. However, further downstream at z/D =
20, where the Floquet mode is at its most energetic, we observe that the shear-layer
oscillations have decayed, leaving a vorticity pattern similar to the unforced case.

The oscillations bear the classic hallmarks of convective instability: they are highly
receptive in a well-defined frequency band, and do not develop in the absence of
forcing. In animations, they are clearly seen to grow as they propagate downstream.
On the other hand, here at least, the instability exists only over part of the base flow
cycle, and does not survive into the region where the three-dimensional instabilities
develop. The question of how much influence convective instability might ultimately
have on large-scale flow structures produced by the primary absolute instability in
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these flows remains an open one. This point also depends on the size and nature of
any perturbation. However, we have calculated the Floquet multiplier at a Reynolds
number of Re = 550 and a polynomial order of Np = 9 for a base flow with inflow
forcing at a frequency of nf =65 and amplitude Amp = 0.001 (as for the base flow
illustrated in figure 18). For this case, we again obtained period doubling, with
a multiplier of µ = −1.180 as opposed to µ = −1.174 for the case with no high-
frequency forcing.

6.4.4. Comparison to previous studies

The most relevant works for comparison purposes are the flow visualization and
laser Doppler measurements of Ahmed & Giddens (1983, 1984) and Ahmed (1998),
and the flow visualization results of Ojha et al. (1989). Ahmed & Giddens have
Re = 600, Upm ≈ 1.7 and α =7.5, and the parameters of Ojha et al. are similar, with
Re = 575, Upm ≈ 1.6 and α =7.5. Both sets of experiments used an approximation
to a single-harmonic pulsatile waveform. Both works employ (at least in part) a
convergent/divergent axisymmetric stenosis with 75 % occlusion, but that of Ojha
et al. is sharp-edged while Ahmed & Giddens’s is smooth. For 75 % stenosis,
highly unsteady but transient fluctuations were observed downstream of the tube
constrictions in both experiments.

The lowest Womersley number investigated for the onset of linear instability in the
present work is α =10.2 (Ured = 7.5) where Rec = 500, and we would expect that the
lower value of α =7.5 used by the other workers would result in a higher critical
Reynolds number, probably of order 600 or above. On the other hand, it appears
quite possible (on the basis of the DNS investigations for the steady flow and for the
Ured = 2.5 pulsatile flow) that the bifurcation would be subcritical in all cases, so we
might also expect that three-dimensional unsteadiness could be sustained down to
the Reynolds numbers found in the above experiments.

In Ahmed & Giddens (1984) it is stated that ‘turbulence was found only for the 75 %
stenosis and was created only during part of the cycle’, whereas in Ahmed (1998) these
fluctuations, which are strongest for 2.5 <z/D � 6, are characterized as non-turbulent
owing to the presence in the conditional velocity spectra of a band of dominant
frequencies associated with ‘vortex shedding and a turbulent front’. These findings
are in quite good agreement with the dye-front flow visualization and interpretation
provided by Ojha et al. (1989). For the 75 % stenosis, they found four post-stenotic
zones: Zone I, reaching to z/D = 3, is called the ‘stable jet region’, although some
indication of (apparently axisymmetric) wavy structure can be observed on the jet
front in this region; Zone II, 3 <z/D � 4.5 is called the ‘transition region’, where the
waves become larger; in Zone III, the ‘turbulent region’, 4.5 <z/D � 7.5, the front
rapidly distorts; Zone IV, z/D > 7.5 is labelled ‘relaminarization’.

These experimental results are thus in reasonable agreement with the kind of
asymptotic behaviour we have observed in DNS, for Re = 400 and α = 15.9, as can
be seen in figure 17(b, c): a rapid distortion of a vortex ring becoming evident a
few diameters downstream of the stenosis, leading to a highly unsteady/transitional
breakdown at z/D ∼ 6, following which, relaminarization takes place further
downstream.

7. Conclusions
We have studied steady and pulsatile flow in a smooth axisymmetric 75 % stenotic

tube, using a combination of three-dimensional stability analysis and direct numerical
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simulation. Our objective here has been to establish stability characteristics and overall
flow behaviour, rather than to provide detailed statistics.

For steady inflow, we have observed a linear instability at Rec = 722, where the
Reynolds number is based upon the sectionally and time-averaged flow, ūm and the
full pipe diameter, D. The instability arises in the k = 1 azimuthal Fourier mode and
has the character of a Coanda-type wall attachment, where the axisymmetric shear
layer of the base flow generated in the post-stenotic region is perturbed towards the
pipe wall. The nature of the initial nonlinear saturation observed in DNS Re = 750
indicates that the instability is subcritical and therefore hysteretic in nature. On further
evolution, the flow becomes turbulent downstream of the stenosis. Taking this state as
an initial condition and reducing the Reynolds number, we have observed turbulent
flow down to Re = 688, confirming the presence of hysteresis. The asymptotic state
of the flow at Re = 750 contains long-period fluctuations on a time scale of 35D/ūm.
These fluctuations are associated with a slow flapping of the jet, and coupled axial
movement of a region of localized turbulent breakdown, the spatial onset of which
oscillates between approximately 4D and 10D from the throat of the stenosis. The cri-
tical Reynolds numbers observed through this numerical analysis are consistent with
the experimental work of Cassanova & Giddens (1978) and Ahmed & Giddens (1983).

For pulsatile inflows, we have considered two types of non-reversing pulsatile
waveforms which satisfy the Womersley solution for straight tubes. The first waveform
contained a mean and single harmonic with a peak to mean ratio of Upm = 1.75 and
where we have used three different pulse periods T , as expressed by reduced velocities
of Ured = ūmT /D = 2.5, 5 and 7.5. A further waveform of a mean and two harmonics
was also considered, with a peak-to-mean ratio of Upm = 2.5 and at a reduced
velocity of Ured = 5. Floquet stability analysis was undertaken for these four inlet-flow
waveforms. For the single-harmonic inflows with Ured =2.5, 5 and 7.5, Rec =389, 417
and 500 (giving critical Womersley numbers of 15.6, 11.4 and 10.2), respectively. The
critical Reynolds number for the two-harmonic waveform at Ured = 5 was found to
be Rec = 535. Waveforms with a shorter time period (and reduced velocity) are more
unstable. Somewhat unexpectedly, the two-harmonic waveform, which had a higher
peak-to-mean ratio, was found to be more stable than the single-harmonic waveform
at the same reduced velocity. An interesting feature of the two-harmonic flow is
amalgamation of the two vortex rings of different initial strength that are generated
in one pulse cycle. For all the pulsatile cases considered, instability occurred through
a period-doubling bifurcation, and the nature of the instability was identified as
alternating tilting of vortex rings generated during sequential pulsatile cyclic ejections
from the stenotic constriction. This behaviour appears to bear some similarity to the
bifurcations of free jets observed by Glezer (see Saffman 1981) and Reynolds et al.
(2003), although here constrained by the presence of tube walls.

Direct numerical simulation was also performed for the single harmonic waveform
at Ured = 2.5 and Re = 400. This simulation demonstrated that the instability was
again subcritical and that after a linear instability phase which tilts the vortex ring
ejected from the stenosis, it rapidly breaks down into finer-scale components. After a
relatively long period (O(200T )) the nonlinear saturated state develops to produce a
localized turbulent breakdown which occurs at approximately 4D downstream of the
stenosis. Although this characteristic is similar to the final state of the steady flow,
we note that the instability and transition mechanisms are very different and occur
at a lower average Reynolds number in the pulsatile flows.

While computing axisymmetric base flow for the two-harmonic waveform, shear-
layer instabilities were observed when the simulations were under-resolved. Motivated
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by this observation and evidence of shear-layer oscillations in some of the available
experiments, we have also performed a non-exhaustive investigation of shear-layer
instability by perturbing the fully resolved axisymmetric base flow on the inflow
boundary with high-frequency components of amplitude 1/1000 that of the mean
flow speed. A maximum amplification of approximately 275 was observed at a fixed
point in the shear layer just downstream of the stenosis when the forcing frequency
was on the 65th harmonic of the base flow fundamental frequency. However, at
this level of perturbation the shear-layer oscillations, while of moderate magnitude,
remain spatially localized enough to not greatly influence Floquet instability.

The motivation for this study derives from interest in the flows of the human
arterial system. For this idealized geometry, the steady and puslatile flow critical
Reynolds numbers predicted here are relatively high for physiological conditions in
the systemic or coronary arteries, although the reduced velocities of the pulsatile flows
are reasonable. However, in an axisymmetric stenosis, the sectional Reynolds number
increases as the inverse of the local diameter. We might therefore expect that higher
degrees of stenosis (i.e. greater reduction of diameter) would lead to a reduction of the
critical Reynolds number. Further, the subcritical nature of the instabilities implies
that they are hysteretic and so turbulent flow can persist at lower Reynolds numbers
than the critical value as demonstrated by the direct numerical simulations. The final
saturated states of the nonlinear breakdown of both the steady and pulsatile flows
studies also indicate regions of strong localized turbulence which are associated with
strong temporal and spatial shear stress gradients that have been implicated in the
onset of arterial disease such as atherosclerosis.

This work was supported through the Merit Allocation Scheme of the Australian
Partnership for Advanced Computing. S. J. S. would like to acknowledge financial
support from the Royal Academy of Engineering in the form of a Global Research
Award. H. M.B. wishes to acknowledge EPSRC grant GR/T02553/01 in financial
support of a Visiting Fellowship.

REFERENCES

Ahmed, S. A. 1998 An experimental investigation of pulsatile flow through a smooth constriction.
Exptl Thermal Fluid Sci. 17, 309–318.

Ahmed, S. A. & Giddens, D. P. 1983 Velocity measurements in steady flow through axisymmetric
stenoses at moderate Reynolds numbers. J. Biomech. 16, 505–516.

Ahmed, S. A. & Giddens, D. P. 1984 Pulsatile poststenotic flow studies with laser Doppler
anemometry. J. Biomech. 17, 695–705.

Akhavan, R., Kamm, R. D. & Shapiro, A. H. 1991 An investigation of transition to turbulence in
bounded oscillatory Stokes flows. Part 1. Experiments. J. Fluid Mech. 225, 395–422.

Barkley, D. & Henderson, R. D. 1996 Three-dimensional Floquet stability analysis of the wake
of a circular cylinder. J. Fluid Mech. 322, 215–241.

Berger, S. A. & Jou, L.-D. 2000 Flows in stenotic vessels. Annu. Rev. Fluid Mech. 32, 347–384.

Blackburn, H. M. 2002 Three-dimensional instability and state selection in an oscillatory
axisymmetric swirling flow. Phys. Fluids 14, 3983–3996.

Blackburn, H. M. & Lopez, J. M. 2003a On three-dimensional quasi-periodic Floquet instabilities
of two-dimensional bluff body wakes. Phys. Fluids 15, L57–60.

Blackburn, H. M. & Lopez, J. M. 2003b The onset of three-dimensional standing and modulated
travelling waves in a periodically driven cavity flow. J. Fluid Mech. 497, 289–317.

Blackburn, H. M. & Sherwin, S. J. 2004 Formulation of a Galerkin spectral element–Fourier
method for three-dimensional incompressible flows in cylindrical geometries. J. Comput. Phys.
197, 759–778.



Three-dimensional instability and transition of stenotic flow 327

Caro, C. G., Fitz-Gerald, J. M. & Schroter, R. C. 1971 Atheroma and arterial wall shear:
observation, correlation and proposal of a shear dependent mass transfer mechanism for
atherogenesis. Proc. R. Soc. Lond. B 177, 109–159.

Cassanova, R. A. & Giddens, D. P. 1978 Disorder distal to modified stenoses in steady and pulsatile
flow. J. Biomech. 11, 441–453.

Huerre, P. & Monkewitz, P. A. 1985 Absolute and convective instabilities in shear layers. J. Fluid
Mech. 159, 151–168.

Huerre, P. & Monkewitz, P. A. 1990 Local and global instabilities in spatially developing flows.
Annu. Rev. Fluid Mech. 22, 473–537.

Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 69–94.

Khalifa, A. M. A. & Giddens, D. P. 1981 Characterization and evolution of poststenotic
disturbances. J. Biomech. 14, 279–296.

Ku, D. N. 1997 Blood flow in arteries. Annu. Rev. Fluid Mech. 29, 399–434.

Long, Q., Xu, X. Y., Ramnarine, K. V. & Hoskins, P. 2001 Numerical investigation of
physiologically realistic pulsatile flow through arterial stenosis. J. Biomech. 34, 1229–1242.

McDonald, D. A. 1974 Blood Flow in Arteries, 2nd edn. Edward Arnold.

Mallinger, F. & Drikakis, D. 2002 Instability in three-dimensional, unsteady, stenotic flows. Intl
J. Heat Fluid Flow 23, 657–663.

Mills, C. J., Gabe, I. T., Gault, J. H., Mason, D. T., Ross Jr, J., Braunwald, E. & Shillingford,

J. P. 1970 Pressure–flow relationships and vascular impedance in man. Cardiovasc. Res. 4,
405–417.

Nerem, R. M., Seed, W. A. & Wood, N. B. 1972 An experimental study of the velocity distribution
and transition to turbulence in the aorta. J. Fluid Mech. 52, 137–160.

Ojha, M., Cobbold, R. S. C., Johnston, K. W. & Hummel, R. L. 1989 Pulsatile flow through
constricted tubes: an experimental investigation using photochromic tracer methods. J. Fluid
Mech. 203, 173–197.

Pedley, T. J. 2000 Blood flow in arteries and veins. In Perspectives in Fluid Dynamics: A Collective
Introduction to Current Research (ed. G. K. Batchelor, H. K. Moffatt & M. G. Worster),
chap. 3, pp. 105–158. Cambridge University Press.

Reynolds, W. C., Parekh, D. E., Juvet, P. J. D. & Lee, M. J. D. 2003 Bifurcating and blooming
jets. Annu. Rev. Fluid Mech. 35, 295–315.

Saad, Y. 1992 Numerical Methods for Large Eigenvalue Problems. Wiley.

Saffman, P. G. 1981 Dynamics of vorticity. J. Fluid Mech. 106, 49–58.

Sobey, I. J. 1985 Observation of waves during oscillatory channel flow. J. Fluid Mech. 151, 395–426.

Sobey, I. J. & Drazin, P. 1986 Bifurcations of two-dimensional channel flows. J. Fluid Mech. 171,
263–287.

Stroud, J. S., Berger, S. A. & Saloner, D. 2002 Numerical analysis of flow through a severely
stenotic carotid artery bifurcation. Trans. ASME K: J. Biomech. Engng 124, 9–20.

Taylor, C. A. & Draney, M. L. 2004 Experimental and computational methods in cardiovascular
fluid mechanics. Annu. Rev. Fluid Mech. 36, 197–231.

Tuckerman, L. S. & Barkley, D. 2000 Bifurcation analysis for timesteppers. In Numerical
Methods for Bifurcation Problems and Large-Scale Dynamical Systems (ed. E. Doedel & L. S.
Tuckerman), pp. 453–566. Springer.

Wilhelm, D. & Kleiser, L. 2001 Stability analysis for different formulations of the nonlinear term
in PN–PN−2 spectral element discretizations of the Navier–Stokes equations. J. Comput. Phys.
174, 306–326.

Womersley, J. R. 1955 Method for the calculation of velocity, rate of flow and viscous drag in
arteries when the pressure gradient is known. J. Physiol. 127, 553–563.

Wootton, D. M. & Ku, D. N. 1999 Fluid mechanics of vascular systems, diseases, and thrombosis.
Annu. Rev. Biomed. Engng 1, 299–329.

Yang, W. H. & Yih, C.-S. 1977 Stability of time-periodic flows in a circular pipe. J. Fluid Mech. 82,
497–505.

Zang, T. A. 1991 Numerical simulation of the dynamics of turbulent boundary layers: perspectives
of a transition simulator. Phil. Trans. R. Soc. Lond. A 336, 95–102.




