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A new time-stepping shift-invert algorithm for linear stability analysis of large-scale
laminar flows in complex geometries is presented. This method, based on a Krylov subspace
iteration, enables the solution of complex non-symmetric eigenvalue problems in a matrix-
free framework. Compared with the classical exponential method, the new approach has
the advantage of converging to specific parts of the full global spectrum. Validations and
comparisons to the exponential power method have been performed in three different cases:
(i) the stenotic flow, (ii) the backward-facing step and (iii) the two-dimensional swirl flow.
It is shown that, although the exponential method remains the method of choice if leading
eigenvalues are sought, the present method can be competitive when access to specific
parts of the full global spectrum is required. In addition, as opposed to other methods,
this strategy can be directly applied to any time-stepper, regardless of the temporal or
spatial discretization of the latter.

I. Introduction

Modal linear stability analysis of a flow, either focusing on the eigenspectrum of the flow, or examining
the short-time perturbation development, can provide insight into the underlying physical mechanisms of
the transition process from a stable steady or time-periodic laminar state to a transitional and turbulent
flow state. In order to study this problem, numerical methods based on either matrix-forming or matrix-free
methods1 for flow stability analysis are used. The latter method present clear advantages against approaches
in which the matrix is formed, especially in terms of computational memory required when the objective is
to study a small number of eigenvalues.2

A time-stepping matrix-free methodology for flow stability analysis was first introduced by Erikson &
Rizzi,3 who introduced the concept of numerical differentiation of a direct numerical simulation code, along
with a temporal polynomial approximation. In that work, finite differences were used in order to study an
inviscid incompressible flow over a NACA airfoil. Later on, this class of time-stepping methods was improved
by Chiba,4 who extended the original approach in order to use the full non-linear Navier-Stokes equations.
Following this approach, Tezuka and Suzuki5,6 successfully solved the first TriGlobal (three-dimensional
partial-differential-equation-based) eigenvalue problem by applying Chiba’s method to the flow around a
spheroid. Meanwhile, Edwards et al.7 developed an analogous time-stepping methodology in conjunction
with the linearized Navier-Stokes equations, which has been successfully used by several investigators since,
e.g. in the classic analyses of instability in the cylinder wake by Barkley and Henderson;8 the latter method
is reviewed in the recent work of Barkley, Blackburn and Sherwin.9
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However, these classical time-stepping matrix-free1,3 procedures can be slow and computationally expen-
sive in terms of CPU time2,10 when eigenvalues close to the imaginary axis need to be studied, which is the
case of the Hopf bifurcation. In order to accelerate the procedure to obtain such eigenvalues, an analogous
technique to the shift-and-invert strategy used in the approach in which the matrix is formed can be applied
to the time-stepping methods; this idea was first proposed by Goldhirsch et al.

11 in a local instability anal-
ysis context and more recently by Tuckerman10 for the case of bifurcation analysis using inverse matrix-free
strategies.

In particular, Tuckerman10 proposed using the inverse of the Jacobian in order to obtain the eigenvalues
close to the imaginary axis without spectrum transformation. The effect of the inverse Jacobian operator
can be applied by means of an iterative procedure, such as the Bi-Conjugate Gradient Stabilized algorithm12

(Bi-CGSTAB). However, the latter algorithm can also be slow,13 but a preconditioner based on the Stokes
operator can be used to accelerate this iterative procedure. Such a preconditioner cannot be directly applied
to the time-stepping, as shown by Mack & Schmidt14 who successfully resolved this issue for compressible
flows by using a Caley transformation, applying a low-order inverse Jacobian as an explicit preconditioner
matrix. Despite this method can be considered as a general strategy to extract a particular eigenvalue, the
choice of appropriated parameters in the numerical method is not clear and depends on the physics of the
flow.

This paper describes a new methodology that allows access to specific part of the linear global eigenspec-
trum. This methodology is based on a shift transformation plus the application of the exponential of the
inverse Jacobian matrix by means of the time-stepper and, unlike previous approaches, it can be directly
applied to any time-stepper, regardless of its temporal or spatial discretization.

After discussion of the theory in section § II, the shift-invert algorithm for real and complex shifts is
presented in section § III. Results obtained by exponential and shift-invert strategy are presented in section
§ IV for three different problems; (i) stenotic flow, (ii) backward-facing and (iii) two-dimensional swirl flow
step. Finally, conclusions are presented in section § V.

II. Theory

A. General equations

A time stepping scheme is used in this work in order to perform the stability study. This method is based
on the integration of the incompressible Navier-Stokes equations,

∇ · u = 0 ,

∂tu = Au−∇p+ ν∇2u ,
(1)

where A = −
1

2
[u · ∇u+∇ · uu] are the nonlinear advection terms, p is the kinematic pressure and ν is the

kinematic viscosity. The numerical techniques used to integrate this system were described by Blackburn.15

In this way, the Navier-Stokes equations can be written in a more compact form,

∂tu = Nu+ Lu , (2)

where the pressure term is solved by a Poisson problem in which the condition of divergence-free velocity
field is considered, and N = −

(

I−∇∇−2∇·
)

A. The numerical solution of the previous system can be
expressed symbolically as follows,

u (t+∆t) = NS∆t [u (t)] . (3)

The specific form of the non-linear operator NS∆t depends on the temporal scheme used to solve the
system. For the explicit-implicit Euler time-stepping this operator can be written as follows, NS∆t ≈

(I−∆tL)
−1

(I+∆tN). For simplicity this numerical scheme will be considered throughout this paper,
although the procedure described can be extended to other temporal-integration scheme.

B. Stability Analysis

The stability analysis studies the evolution of a small perturbation u′ superposed at small amplitude, ǫ≪ 1,
upon an O(1) basic flow, U. Substituting the total velocity field, u = U+ǫu′ in equations (2), assuming that
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U is a solution of these equations and linearizing the resulting system we obtain the following Linearized
Navier-Stokes Equations (LNSE),

∂tu
′ = ∂UNu′ + Lu′ := LNS∆tu

′ , (4)

where ∂UN is the Jacobian of N around the base flow. Since this operator is linear, it can be expressed as

LNS∆t = exp [∆t (∂UN+ L)] (5)

Assuming a exponential time evolution of the perturbation (modal analysis), the system (4) can be
converted into a eigenvalue problem defined as follows,

(∂UN+ L)u′ = γu′ , (6)

where γ = χ + iψ is a complex eigenvalue. The real part represents the growth or damping rate of the
perturbation and the complex part is its frequency.

This problem can be re-written in a more convenient way in order for most unstable eigenvalues to be
obtained. To this end, the following (exponential) transformation is used

exp [∆t (∂UN+ L)]u′ = Γu′ , (7)

where the eigenvalues Γ are equal to exp (∆tγ) and the eigenvectors remain unchanged with respect to those
of (4). Note that the LHS of the previous equations is equal to LNS∆tu

′.

C. Shift-invert strategy

The exponential transformation, (7), shifts large negative eigenvalues to zero and leading eigenvalues to
infinity. However, an issue arises when it is required to access specific parts of the spectrum, for example
those eigenvalues with small real and large imaginary parts responsible of Hopf type bifurcations, which
do not shift to infinity with this transformation. Therefore, an alternative strategy must be considered in
order to obtain these eigenvalues. In designing such an alternative, any function that transforms the original
eigenvalue problem (4), must meet three requirements: first, the eigenvectors must remain unchanged, second,
the leading eigenvalues of (4) should be dominant eigenvalues of the new eigenvalue problem and third, the
conjugate complex pair of eigenvalues defined near the imaginary axis must be separated from the rest of
eigenvalues shifting to zero. The shift-invert transformation, defined by

(exp [∆t (∂UN+ L)]− σI)
−1

u′ = Γu′ , (8)

meets these objectives, where now

Γ =
1

e∆tγ − σ
(9)

and σ ∈ R. Then, taking σ = 1, eigenvalues of (6) close to zero are mapped to unity by the exponential
application, to zero by subtracting I, and to ∞ by the inversion. In the general case, eigenvalues of (6)
closed to log (σ) are separated from the rest being the dominant eigenvalues. This shift is valid only for real
σ since the exponential is a real operator. For complex shifts, the following expressiona can be considered
during each Arnoldi iteration,

(

exp [∆t (∂UN+ L)]− σrI σiI

−σiI exp [∆t (∂UN+ L)]− σrI

)

·

(

ur

ui

)

k+1

=

(

ur

ui

)

k

(10)

where σr = ℜ{σ} and σi = ℑ{σ}. In this case the leading dimension of the matrix is twice that of the real
case, leading to a proportional increase in computational effort when time-stepping is used.

An example of this approach is schematically shown in Figure 1. The original spectrum is defined in
the upper left of Figure 1, where the unit circle is also shown. In this figure, the most unstable eigenvalue,
which corresponds to a pair of complex eigenvalues that wants to be recovered, is represented by a diamond
and the dominant eigenvalue is represented by a square. A solid circle represents the second least stable
eigenvalue. The exponential transformation of the spectrum is shown in the upper right of Figure 1. In this

asee Tuckerman et al.
16 for the direct method
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transformation, the eigenvalue represented by the circle becomes the dominant eigenvalue and the sought
diamond eigenvalue is moved far away from it, therefore it can be hardly recovered with the Arnoldi method.
It has to be noticed that the dominat eigenvalue in the original spectrum (squared) is moved to the origin.
Next, a complex shift is applied in the spectrum shown in the lower right of Figure 1, moving the sought
eigenvalue to the origin. Finally, an inversion is applied in the spectrum shown in the lower left of Figure
1, and the eigenvalue represented by the diamond becomes the dominant. Therefore, this eigenvalue can be
now easily recovered by applying the Arnoldi algorithm.

III. Numerical Method

A. The shift-invert algorithm

The Arnoldi iteration scheme can be used with a real shift in order to obtain the dominant eigenvalues of
(8), which are the leading eigenvalues of (6). Then, a sequence of k vectors, u′0, u

′

1, u
′

2,... u′k−1 must be

generated in the Arnoldi process from a initial perturbation, u′0, for which u′l = (LNS∆t − σI)
−1

u′l−1 must
be provided in the iterative process. This implies inversion of the operator, which can be achieved iteratively
using a Bi-Conjugate Gradient Stabilized algorithm (Bi-CGSTAG),13 developed for linear systems that are
not symmetric definite. In this case, the following operation must be performed in the internal Arnoldi loop,
(LNS∆t − σI) r, where r is the residual of the method. Therefore, the problem is reduced to solving equation
(4) by time-stepping a number of times. With respect to the complex shift, the action of the matrix operator
defined in (10) involves solving (LNS∆t − σI)u′jl−1 separately for the real and the imaginary components.
In this case, identical real and complex initial conditions are considered. In summary, the following scheme
is used in order to obtain the eigenvalues of largest magnitude for the real shift-invert problem:

Algorithm 1 The real shift-invert algorithm

S1: Set tolArnoldi and NArnoldi (maximum number of Arnoldi iterations)

S2: Set tolBi−CGSTAB and NBi−CGSTAB (maximum number iterations used in Bi-CGSTAG)

S3: Choose random initial condition for residual vector and u′l

S4: Perform outer loop (Arnoldi) until convergence, (l = 1, ..., NArnoldi),

A1: Initialize u′j=0
l = 0 and rj=0 = u′l−1 − (LNS∆t − σI)u′j=0

l , where r denotes the residual error

A2: Perform inner loop (Bi-CGSTAB) until convergence, (j = 1, ..., NBi−CGSTAB),

B1: Call DNS in order to compute A = LNS∆t − σI on an internal vector

B2: u
′j
l and rj are obtained

B3: Iterate until convergence, tolBi−CGSTAB , or maximum NBi−CGSTAB is reached

A3: Iterate until convergence, tolArnoldi, or maximum NArnoldi is reached

S5: Eigenvalues are recovered if convergence has been achieved,

S6: Leading eigenvalues of (6) are obtained from dominant eigenvalues; Γ =
1

e∆tγ
− σ

Reverse communication interfaces for Arnoldi iteration as implemented in ARPACK17 and the iterative
template routine Bi-CGSTAB, implemented by18 were used in the process described above. This algorithm
was implemented in the stability code based on Semtex.15 The latter is a well-validated DNS code that uses
GLL basis functions in two dimensions and Fourier expansion in the homogeneous spatial direction, which
has been used in a number of applications, see15,19–22 .

B. Improving the inversion convergence

Conjugate gradient iterative methods for non-symmetric definite systems may converge slowly, requiring
a large number of iterations when the condition number is high. This is what happens from the spatial
discretization of the Navier-Stokes equations, especially for three-dimensional problems where, in addition,
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the size of the matrices, LNS∆t, is large. In this case even a moderately large condition number of the
operator has an adverse influence on the overall rate of convergence of the iterative method. Preconditioning
techniques help improve the convergence of the stability problem, see Knoll and Keyes23 for a recent overview.
The origin of the large condition number is the wide range of eigenvalues of L and for this reason the
Stokes preconditioner P = ∆t (I −∆tL)

−1
is often used, see Tuckerman et al.16 This preconditioner has

the disadvantage that can not be applied directly to a real/complex shift-invert time-stepping and a new
preconditioner must be used for the problem at hand. Moreover, the process proposed by these authors16

is not formally a time-stepping integration because they use only the Stokes operator without pressure and
convective terms, and where the time step does not match the CFL condition. The present shift-invert
methodology does not make use of any preconditioner because the Jacobian matrix is not being inverted,
instead its matrix exponential is being inverted.

IV. Results

A. Real shift-invert

Three problems have been considered in this section in order to test the real shift-invert method described
above: (i) Stenosis flow, (ii) Backward-facing step flow and (iii) Two-dimensional swirl flow. In all cases, the
base solution was obtained using Newton iteration started from a known initial solution, see Blackburn15

for details.

1. The stenotic flow: real shift-invert

Linear stability around the steady stenosis flow at Re = 500 and Re = 700 is considered in this section,
mesh and x−component of the basic flow being presented in Figure 2(a). For these simulations a polynomial
order Np = 5 and Np = 7 were considered in order to expand flow variables within each element. A low
value of Np = 5 was sufficiently accurate for our study and at the same time permits fast simulations. The
Krylov subspace dimension, the maximum number of iterations and the tolerance were taken equal to 8, 200
and 10−5, respectively.

As seen in Table 1 and Figures 3, there is a very good agreement between the results obtained with
the exponential method (equation (7)) and the real shift invert method (equation (8)), The most unstable
modes obtained using the two strategies agree up to the third decimal place. Different tolerances considered
delivered converged solutions in all cases, see Table 2. As it can be seen, the maximum number of iterations
was not achieved in any case, which is a requisite for an accurate solution. It is also remarkable the number
of iterations carried out in the internal loop is independent of the Arnoldi tolerance at convergence. Likewise,
it can be seen that the number of Arnoldi iterations is drastically reduced from 76 to 8 when the shift-invert
method is used in place of the direct method. This however does not imply a reduction in the computational
cost, due to the high number of iterations required to invert the matrix on each Arnoldi iteration. These
numbers used in the Bi-CGSTAB loop are summarized in Table 2.

In order to evaluate the shifting capability of the method, a value of σ = 0.1 has been used to extract
non-leading eigenvalues from the spectrum. Results of these runs at different Arnoldi and Bi-CGSTAB
tolerance can be seen in Table 3. The recovery of this eigenvalue seems not possible with the exponential
method at the same resolution and tolerance for any number of iterations or Krylov subspace dimension.
In addition, it can be observed in Table 3 that increases in accuracy barely change the Arnoldi iterations
required, as it was noticed before. On the other hand, the total number of Bi-CGSTAB iterations increases
with the tolerance.

Regarding the effect of the integration time, Table 4 presents the effect of the increase in integration time
∆x on the total number of Bi-CGSTAB iterations. It can be appreciated that the total number of iterations
are reduced as the integration time increases.

2. Backward-facing step: real and complex shift-invert

With increasing Re steady two-dimensional laminar separated backward-facing step flow at longitudinal-to-
transversal aspect ratio of 2 first becomes unstable to a steady 3D bifurcation at critical Reynolds number
about 750, as discovered by Barkley et al,24 essentially following the same modal scenario predicted by
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Theofilis et al.25 in the adverse-pressure-gradient laminar separation bubble flow on a flat plate. The mesh
and the streamwise basic flow velocity components in the backstep are represented in Figure 2(b).

The most unstable eigenmodes for this configuration have been obtained using the exponential method
with Krylov dimension equal to 25, tolArnoldi = 10−6 and maximum number of iterations NArnoldi = 500;
results are summarized in Table 5. Both real and complex shift-invert methods have been used in order
to obtain these results using the same Arnoldi iteration parameters. Three validation tests are considered
in Table 5, the first corresponds to the solution of the problem when the direct method is used, case a,
the others are obtained by using the shift-invert method with different resolutions used in the Bi-CGSTAB
algorithm, cases b and c. As can be seen in case (b) of Table 5, the most unstable mode obtained using
the shift-invert method and the result obtained using the exponential method agree up to the sixth decimal
place. This agreement can also be seen in the eigenvectors obtained with either of the two methods, see
Figures 4.

A value of σ = 0 was considered in the third test case (c), in order to validate if the real shift-invert
method can converge to the leading eigenvalue when the shift parameter σ is taken far away from it, in the
absence of other eigenvalues in the real axis. This exercise also led to the same level of agreement between
results of the shift-invert and the exponential methods although, as expected, convergence is worse with
respect to the case (b).

3. Two-dimensional swirl flow: complex shift-invert

In the third application analyzed, the steady flow in a two-dimensional swirl flow has a number of axisym-
metric modes, as described by Lopez et al.26 At Re = 4000 a Hopf bifurcation to periodic axisymmetric flow
at intermediate aspects ratios (Λ ≈ 2.5) has been identified by these authors. Again, mesh and x−component
of the basic flow velocity are shown in Figure 2(c).

The most unstable modes using the exponential method, Krylov subspace dimension equal to 25, tolerance
used on Arnoldi iterations equal to 10−6 and maximum number of iterations equal to 500 are summarized
in Table 6; a component of the respective eigenvectors is shown in Figure 5.

In this application several values of the shift parameter σ have been considered. A value of σ close to the
most unstable mode obtained by the exponential method, −1.2+0.1i, was chosen in the first validation test
considered in Table 6. The result obtained by the complex shift-invert method is equal to that obtained using
the exponential method for the accuracy considered. On the other hand, a comparison of the eigenvectors
delivered by both methods, graphically presented in Figures 5(a) and 5(c), shows that the second most
unstable eigenvalue obtained by the shift-invert method, Figure 5(c), corresponds to that of the first mode
obtained by the exponential method, Figure 5(a), while the eigenvector of the most unstable mode obtained
by the shift-invert method corresponds to the second mode delivered by the exponential method. Finally, a
global change of phase was observed between both formulations. However, this effect cannot be seen in the
velocity modulus where the phase shift is removed.

Particular attention has been paid to the convergence of eigenvalues during this validation using several
combinations of the related parameters, since two iterative processes are involved, the external loop (Arnoldi
iteration) and the internal loop (Bi-CGSTAB iteration). The effect of tolerance used on the matrix inversion
is summarized in Table 7. The tolerance considered in the first case was too low for convergence of the
eigenvalues. However, comparing cases (b) and (c) we note that convergence is achieved.

V. Summary

A time-stepping solver has been successfully applied to study global instability analysis using a new
shift-invert strategy, aiming at the efficient capturing of any eigenvalue of the spectrum. The Arnoldi
iteration with an embedded Bi-CGSTAB iteration have been used and the resulting algorithm was shown
to dramatically improve the convergence properties of the Arnoldi iterations in all test cases examined, in
which real and complex-conjugate pair of eigenvalues where delivered. However, the inversion of the Jacobian
matrix required a significant number of Bi-CGSTAB iterations in order to converge, leaving the classical
exponential method as the method of choice for the recovery of leading eigenvalues.

On the other hand, the strength of this method consists of accessing to specific parts of the full global
spectrum. As it has been seen in results presented herein, this method is far more competitive than the
exponential method when recovery of specific eigenvalues is required. In particular, some eigenvalues are
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not possible to be recovered with the exponential method at a given resolution, while the newly proposed
iterative scheme can recover them in O(10) Arnoldi iterations.

Finally, as oppossed to other methods described in the introduction, this strategy can be directly applied
to any time-stepper, regardless of its temporal or spatial discretization.

Presently, this technique is being applied to more case studies, focusing on Hopf bifurcations and further
results will be presented elsewhere.
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Table 1. Convergence of most unstable eigenvalues for stenosis flow at Re = 700, where Np = 5 and N is the
number of Arnoldi iterations. Krylov dimension = 8, tolArnoldi = 10−5, NArnoldi = 200. Case a: Exponential
method, Case b: Real shift-invert method for σ = 0, tolBi−CGSTAB = 10−3 and NBi−CGSTAB = 300

Cases Magnitude Angle Growth Rate Frequency N

a 9.9723(-01) 0.0000 -3.7011(-03) 0.0000 76

b 9.9737(-01) 0.0000 -3.5113(-03) 0.0000 8

Table 2. Number of iterations carried out by the Bi-CGSTAB algoritm for the stenosis flow problem at
Re = 700. Real shift-invert method for σ = 0, Krylov dimension = 8, tolArnoldi = 10−5, NArnoldi = 100. Case

a: Magnitude = 9.9737(-01), Growth Rate = -3.5111(-03), tolBi−CGSTAB = 10−3 and NBi−CGSTAB = 300 Case

b: Magnitude = 9.9737(-01), Growth Rate = -3.5113(-03), tolBi−CGSTAB = 10−4 and NBi−CGSTAB = 300 a.b(c) =
a.b× 10c.

Arnoldi Iteration Case a Case b

1 62 73

2 43 50

3 44 51

4 53 53

5 66 67

6 69 95

7 78 101

8 80 109

Table 3. Number of iterations carried out by the shift-invert algorithm for the stenosis flow problem at
Re = 500 for different tolerances with tolArnoldi = tolBi−CGSTAB and τ = 6. Real shift-invert method for σ = 0.1,
Krylov dimension = 8.

tolBi−CGSTAB 10−3 10−4 10−5

NArnoldi 13 13 13

NBi−CGSTAB 216 277 312

Growth Rate -0.43269 -0.43269 -0.43270

Frequency 0.037742 0.037742 0.037748
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Table 4. Number of iterations carried out by the Bi-CGSTAB algoritm for the stenosis flow problem at
Re = 500 and at different integration times ∆t. Real shift-invert method for σ = 0, Krylov dimension = 8,
tolArnoldi = 10−3, NArnoldi = 100, tolBi−CGSTAB = 10−3 Magnitude = 9.7378(-01), Growth Rate = -5.3146(-02)

Arnoldi Iteration ∆t = 1 ∆t = 2 ∆t = 4

1 20 11 5

2 22 9 4

3 16 8 3

4 15 7 4

5 18 9 4

6 26 10 5

7 21 10 4

8 28 10 4

NBi−CGSTAB ·∆t 166 148 132

Table 5. Convergence of most unstable eigenvalues for the backward-facing step flow, where N is the number
of Arnoldi iterations. Krylov dimension = 25, tolArnoldi = 10−6, NArnoldi = 500. Case a: Exponential method.
Case b: Real shift-invert method for σ = 1.0, tolBi−CGSTAB = 10−3 and NBi−CGSTAB = 200. Case c: Real
shift-invert method for σ = 0.0, tolBi−CGSTAB = 10−4 and NBi−CGSTAB = 300. a.b(c) = a.b× 10c.

Cases Magnitude Angle Growth Rate Frequency N

a 1.0009 0.0000 4.2583(-04) 0.0000 330

b 1.0009 0.0000 4.2579(-04) 0.0000 25

c 1.0008 0.0000 4.0127(-04) 0.0000 25

Table 6. Convergence of the leading eigenvalues for the 2D swirl problem where N is the number of Arnoldi
iterations. Case a: Exponential method, Krylov dimension = 10, NArnoldi = 200 and tolArnoldi = default. Case

b: Complex shift-invert method, σ = −1.2 + 0.1i, Krylov dimension = 10, NArnoldi = 200 and tolArnoldi = default
tolBi−CGSTAB = 10−4 and NBi−CGSTAB = 300 a.b(c) = a.b× 10c.

Cases Eigenvalues Magnitude Angle Growth Rate Frequency N

a 0 1.1831 3.0637 1.2178(-02) 2.2185(-01) 124

1 1.1831 -3.0637 1.2178(-02) -2.2185(-01)

b 0 1.1831 3.0637 1.2178(-02) 2.2185(-01) 10

1 1.1831 -3.0637 1.2178(-02) -2.2185(-01)

Table 7. Sensitivity of the two leading converged eigenvalues to the tolerance used on matrix inversion.
σ = −1.2 + 0.1i and Krylov dimension = 10. The number of Arnoldi iterations was 10 in both cases. Case a:

NBi−CGSTAB = 100 and tolBi−CGSTAB = 10−3. Case b: NBi−CGSTAB = 300 and tolBi−CGSTAB = 10−4. Case c:

NBi−CGSTAB = 600 and tolBi−CGSTAB = 10−5. a.b(c) = a.b× 10c.

Case Eigenvalue Magnitude Angle Growth Rate Frequency

a 0 1.2110 3.0735 1.3862(-02) 2.2257(-01)

1 1.0995 3.1183 6.8720(-03) 2.2581(-01)

b 0 1.1831 3.0637 1.2178(-02) 2.2185(-01)

1 1.1831 -3.0637 1.2178(-02) -2.2185(-01)

c 0 1.1831 3.0637 1.2178(-02) 2.2185(-01)

1 1.1831 -3.0637 1.2178(-02) -2.2185(-01)
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Figure 1. Dominant eigenvalues as function of the eigenvalue problem considered. Unit circle is shown
in every spectrum. The shifted eigenvalue (pair of complex eigenvalues represented by a diamond) on the
upper left spectrum becomes the dominant eigenvalue by using the shift-invert transformation on the lower
left spectrum. Legend: Upper left: Original spectrum (λ = γ) Upper right: Exponential transformation of the
spectrum (λ = eγ∆t) Lower right: Shift of the exponential transformation of the spectrum (λ = eγ∆t

− σ) Lower

left: Exponential Shift-invert transformation of the spectrum (λ = Γ)
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Figure 2. Details of the meshes used in each of the three problems solved. Note that a high-degree polynomial
is used inside each element. Superposed in color is the streamwise component of the basic velocity field.
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Figure 3. Stenotic flow at Re = 700, in which (K =
√

u2 + v2 + w2). Velocity modulus of the most unstable
eigenvector calculated by the exponential and the Arnoldi shift invert strategy with shift equal to 1. Left:

Exponential method. Right: Real shift-invert method.
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Figure 4. Back-step problem at Re = 750, in which (K =
√

u2 + v2 + w2). Velocity modulus of the most
unstable eigenvector calculated by the exponential and the Arnoldi shift invert strategy with shift equal to 1.
Left: Exponential method. Right: Real shift-invert method. See results of table 5.
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Figure 5. Two-dimensional swirl problem at Re = 4000, in which (K =
√

u2 + v2 + w2). Velocity modulus of the
most unstable eigenvector calculated by the exponential and the Arnoldi shift invert strategy with shift equal
to −1.2 + 0.1i. Upper: Exponential method. Lower: Real shift-invert method.
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