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a b s t r a c t

This study considers numerical methods for computation of optimal boundary and initial
perturbations to incompressible flows. Similar to previous work, constrained Lagrangian
functionals are built and gradient optimisation methods are applied to optimise perturba-
tions that maximise the energy of perturbations in the computational domain at a given
time horizon. Unlike most of the previous work in this field we consider both optimal ini-
tial and boundary condition problems and demonstrate how each can be transformed into
an eigenvalue problem. It is demonstrated analytically and numerically that both optimi-
sation and eigenvalue approaches converge to the same outcome, even though the optimi-
sation approach may converge more slowly owing to the large number of inflection points.
In a case study, these tools are used to calculate optimal initial and boundary perturbations
to the Batchelor vortex. It is observed that when the flow is asymptotically stable, the opti-
mal inflow perturbation is similar to the most unstable local eigenmode, while when the
flow is stable/weakly unstable, the spatial distribution of the optimal inflow perturbation
is similar to the local optimal initial perturbation.

! 2012 Elsevier Inc. All rights reserved.

1. Introduction

It is well-known that the evolution operators of perturbations in many open/closed flows are highly non-normal. The
non-orthogonality of the eigenmodes of these operators can induce significant transient energy growth over short time
intervals [1,2]. When the flow is asymptotically stable or weakly unstable, transient response to perturbations may induce
significant change to the flow over finite time horizons.

Perturbations that maximise the energy in the response perturbation flow field are referred to as optimal. The optimal
perturbation in the form of initial conditions has been extensively investigated in both local and global frameworks
[2–4]. In steady or periodic base flows, the optimal initial perturbation is a linear combination of the eigenmodes of the
evolution operator and over large time intervals, it approaches the leading adjoint eigenmode [5].

In local studies where the discretised matrix of the evolution operator is explicitly available, the optimal perturbation can
be calculated through a singular value decomposition of the fully discretised operator, where the square of the largest sin-
gular value is the optimal energy growth and the corresponding right and left singular vectors are the optimal perturbation
and its response, respectively [3].

Under more general conditions where the matrix form of the discretised operator is not available, commonly in
global studies with large-dimensional base flows which are inhomogeneous in at least two directions, the optimal initial
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perturbation can be calculated through an iterative method, such as an eigenvalue method or an optimisation method. In the
eigenvalue method, the optimal perturbation and energy growth are considered as the leading eigenvector/value of a joint
operator, whose action is to integrate the perturbation forwards through the linearised evolution operator and then back-
wards through the adjoint operator [4,6–8]. Instead of discretizing this joint operator and building the matrix form of it di-
rectly, a Krylov sequence consisting of the iterative outcomes of this operator is constructed, and then an Arnoldi method or
the Lanczos method is adopted to extract the leading eigenvector/eigenvalue of this joint operator. In this approach, the
objective can be changed by merely changing the inner product weight in the definition of norms of the initial and final per-
turbations. [9] have used this eigenvalue approach to calculate the optimal upstream disturbance that experiences largest
energy growth at a fixed downstream location in boundary layer flow. In the optimisation method, a constrained Lagrangian
functional is built and the optimal perturbation is the velocity vector which maximises the Lagrangian functional [2,10,11].
This optimisation method has also been adopted to calculate the nonlinear optimal initial perturbations by [12,13]. In the
latter work, the time-averaged dissipation, instead of the kinetic energy at a final time that is used commonly in the liter-
ature when defining an optimal perturbation, is chosen as the objective functional for better numerical convergence. These
two approaches are discussed by [14] when solving optimal initial perturbations and optimal forcing localised in space in the
Blasius boundary-layer flow and good agreement between the approaches is presented.

The complementary branch of the optimal perturbation problem —the optimal boundary perturbation problem — has re-
ceived relatively limited attention. In local studies, some algorithms to calculate the boundary control velocity vectors have
been proposed [10,11], but these algorithms are restrained to the context of parallel base flows and cannot be extended to
global studies without significant modifications. Most recently [15] have proposed an optimisation algorithm to calculate the
optimal spatial distribution of the inflow boundary perturbation to a stenotic flow, where the outflow velocity boundary con-
dition is set to zero Dirichlet conditions, providing that the domain is adequately long.

In this work, we first outline the optimisation and eigenvalue methods for global initial perturbations, and then, develop
an eigenvalue solver to compute the optimal boundary perturbations and demonstrate that this eigenvalue algorithm is
equivalent to the reported optimisation approach [15]. A Robin outflow boundary condition is adopted to release the restric-
tion on the size of the domain. Finally we implement these new numerical tools to calculate the optimal inflow boundary
perturbation to a vortex flow as a case study.

2. Problem definition

Working from the incompressible Navier–Stokes equations

@tu ¼ "u # $u" $pþ Re"1r2u; with $ # u ¼ 0;

where p is the modified or kinematic pressure, and u is the velocity vector, decomposing the flow field as the sum of a base
flow and a perturbation i.e. ðu; pÞ ¼ ðU; PÞ þ ðu0; p0Þ and omitting the interaction of perturbations, we obtain the linearised
Navier–Stokes (LNS) equations, which govern the evolution of perturbations, as

@tu0 ¼ "U # $u0 " ð$UÞT # u0 " $p0 þ Re"1r2u0; with $ # u0 ¼ 0;

or more compactly, considering pressure is a dependent variable,

@tu0 " Lðu0Þ ¼ 0: ð1Þ

If the base flow is homogeneous in the azimuthal direction in the cylindrical coordinates (z; r; h), we can further decompose
the perturbation field into azimuthal Fourier modes, each of which will evolve independently, such that:

ðu0;p0Þ ¼ ðu0; v 0;w0;p0Þ ¼ ½u0mðr; zÞ; v 0mðr; zÞ;w0mðr; zÞ;p0mðr; zÞ( expðimhÞ;

where m denotes an integer azimuthal wavenumber. If the base flow is homogeneous in the spanwise direction in a Carte-
sian coordinate, a similar spanwise Fourier mode can be defined at a real spanwise wavenumber. To keep notation reason-
ably compact in what follows we implicitly adopt Fourier decomposition for the perturbation field, only introduce its
azimuthal/spanwise Fourier mode index m when required, and suppress representation of h-dependence. In a similar vein,
since we mainly consider perturbation fields in the following, the prime (0) notation for perturbation variables is omitted
hereafter.

We introduce scalar products defined on spatial domain X and its boundary @X

ða;bÞ ¼
Z

X
a # bdV ; ha;bi ¼

Z s

0

Z

X
a # bdVdt;

½c;d( ¼ D
Z

@X
c # ddS; c;df g ¼ D

Z s

0

Z

@X
c # ddSdt;

where a;b 2 ½0; s( )X and c;d 2 ½0; s( ) @X. D is a spatial length scale introduced into these definitions in order to maintain
dimensional homogeneity as discussed below.

The optimal initial condition problem can be expressed as seeking an initial perturbation to maximise the energy growth
over time interval s, defined as the ratio of final energy at time s and the initial energy at time 0 and denoted as G; the
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optimal boundary condition problem can be expressed as seeking the boundary perturbations to maximise the gain, defined
as the ratio of final energy at time s and a measurement of the boundary perturbation, denoted as K. Hence

G ¼max
u0

ðus;usÞ
ðu0;u0Þ

and K ¼ max
uc

ðus;usÞ
fuc;ucg

;

where u0 2 X denotes the initial perturbation velocity vector, uc 2 @X represents the boundary velocity vector and us 2 X is
the response velocity vector at time s. In the initial value problem we set the boundary perturbation to zero, while in the
boundary value problem we set the initial perturbation to zero in order to isolate the developments of initial and boundary
perturbations and make the ratios G and K independent of the magnitude of initial or boundary perturbations.

To reduce the dimension of uc , we separate the spatial and temporal dependencies and specify the temporal dependence
explicitly, such that e.g.

ucðr; z; tÞ ¼ ûcðr; zÞf ðt;xÞ;

The function f ðt;xÞ contains terms to eliminate temporal and spatial discontinuity when integrating the governing equa-
tions, and when the final time s is large enough, this decomposition tends to the Fourier decomposition with x acting as
the frequency, as addressed in detail in Section 4.1. Therefore in the optimal boundary problem, we only optimise the spatial
dependence function ûcðr; zÞ. Correspondingly the object to maximise becomes

K ¼ max
ûc

ðus;usÞ
½ûc; ûc(

where we observe that f ðt;xÞ is spatially constant and has the effect of uniformly scaling us and so is not included. Note that
K is dimensionless regardless of the system of spatial measurement adopted, but is particular to the choice of f ðt;xÞ.

3. Optimal initial perturbations

In this section, we review the methodology to optimise the initial perturbations (Section 3.1) and demonstrate that this
optimisation problem can be transformed into an eigenvalue problem (Section 3.2).

3.1. Optimisation approach

Schmid [2] discussed a Lagrangian approach to computing the optimal initial perturbation. The Lagrangian functional to
be optimised or maximised can be written as

Lo ¼
ðus;usÞ
ðu0;u0Þ

" u*;
@u
@t
" LðuÞ

! "
; ð2Þ

where the first term is the energy ratio G to be maximised and the second term is a dynamic constraint enforcing the LNS
equations. Note that this definition is equivalent to that defined by [2,10], which contains three terms (the extra term is an
constraint that the initial condition of the optimisation loop is equal to the optimal initial perturbation) and all the equations
derived from these two forms of Lagrangian functional are the same. We note that the objective function, which is the energy
growth in (2), can be simplified as the final kinetic energy by adding an explicit constraint that the initial perturbation has
unit norm [14].

In order to simplify taking variations with respect to the perturbation field u, we integrate the second term in Eq. (2) by
parts [4] to obtain

"hu*; @tu" LðuÞi ¼ hu; @tu* þ L*ðu*Þiþ
Z s

0

Z

X
"@tðu # u*ÞdVdt þ

Z s

0

Z

X
$ # ½"Uðu # u*Þ þ up* " u*p

þ Re"1ð$u # u* " $u* # uÞ(dVdt; ð3Þ

where L*ðu*Þ ¼ U #ru* " $U # u* " $p* þ Re"1r2u* with $ # u* ¼ 0. The partial differential equation

@tu* þ L*ðu*Þ ¼ 0 ð4Þ

is referred to as the adjoint of the LNS equations in the literature [16]. We note that this equation should be integrated back-
wards from t ¼ s to t ¼ 0, since otherwise it contains a negative diffusion operator. Using the divergence theorem, the last
integral in (3) can be stated using only boundary terms so that

"hu*; @tu" LðuÞi ¼ hu; @tu* þ L*ðu*Þiþ
Z s

0

Z

X
"@tðu # u*ÞdVdt þ

Z s

0

Z

@X
n # ½"Uðu # u*Þ þ up* " u*p

þ Re"1ð$u # u* " $u* # uÞ(dSdt; ð5Þ

where n is a unit outward normal vector on the boundary of the domain, @X.
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As stated above, when calculating the optimal initial perturbation, the contributions of boundary perturbations are set to
zero. Adopting zero-Dirichlet boundary conditions for the velocity components for both LNS equations and the adjoint equa-
tions, the last term on the right hand side of (5) becomes zero, and therefore

L0 ¼
ðus;usÞ
ðu0;u0Þ

þ u;
@u*

@t
þ L*ðu*Þ

! "
" ðu*s;usÞ þ ðu*0;u0Þ: ð6Þ

Setting to zero the first variations of L0 with respect to its independent variables u*;u and us yields the following set of
equations:

dL0ðdu*Þ ¼ 0) @u
@t
" LðuÞ ¼ 0; ð7Þ

dL0ðduÞ ¼ 0) @u*

@t
þ L*ðu*Þ ¼ 0; ð8Þ

dL0ðdusÞ ¼ 0) u*s ¼
2us

ðu0;u0Þ
: ð9Þ

The first two equations recover the LNS equations and the adjoint equations, while the third initialises the adjoint equations
at t ¼ s with the scaled final condition of the LNS equations since the adjoint equations are integrated backwards.

The variations of the Lagrangian functional with respect to the initial condition u0 can be written as

dL0ðdu0Þ ¼ u*0 "
2ðus;usÞ
ðu0;u0Þ2

u0; du0

 !

: ð10Þ

Using the definition of the gradient of the Lagrangian associated with the Gâteaux differential given by [10], the gradient of
the Lagrangian functional with respect to the initial condition u0 can be expressed as

ru0L0 ¼ u*0 "
2ðus;usÞ
ðu0;u0Þ2

u0: ð11Þ

A gradient method is used to optimise u0 to reach maxima of G and an optimal step length is obtained by exploiting the lin-
ear feature of the governing equations to update u0 during the optimisation process. The optimisation procedure is detailed
in A.

3.2. Eigenvalue approach

As an alternative to the optimisation approach described above, [4] outlined an eigenvalue method based on primitive
variables to calculate the global optimal initial conditions. [14] have also used both approached to calculate the optimal ini-
tial perturbations and optimal forcing and demonstrated good agreement. Below we demonstrate that the optimisation and
eigenvalue approaches are equivalent. We define two transform operators to represent the actions of the LNS equations and
the adjoint equations,

us ¼M0u0 and u*0 ¼M
*
0u*s: ð12Þ

Comparing the two forms of the Lagrangian functional in equations (2) and (6), we see that

ðu*s;M0u0Þ ¼ ðM*
0u*s;u0Þ:

ThereforeM*
0 is the adjoint operator ofM0 with respect to the inner product ð#; #Þ. SubstitutingM0 andM*

0 into the Lagrang-
ian functional, we see that the Lagrangian can be expressed as a function of u0,

L0 ¼
ðu0;M*

0M0u0Þ
ðu0;u0Þ

: ð13Þ

Clearly the maximum value of the Lagrangian functional is the largest eigenvalue of the symmetric operatorM*
0M0, and the

corresponding eigenvector is the optimal initial perturbation. Next we demonstrate that the eigenvector corresponding to
the largest eigenvalue ofM*

0M0 is the only maximiser of the Lagrangian functional even though this functional is not con-
cave, and thus in the optimisation method the initial perturbation converges to the largest eigenvector ofM*

0M0. Taking the
variation of the Lagrangian functional (13) with respect to u0 produces

dL0ðdu0Þ ¼
2ðdu0;M*

0M0u0Þ
ðu0;u0Þ

" 2ðu0;M*
0M0u0Þðdu0;u0Þ
ðu0;u0Þ2

: ð14Þ

Substituting (9) and (12) into (14), it can be seen that this expression of first variation is equivalent to (10). In the discussions
above, the operators are kept in continuous forms and therefore have infinite dimensions. After spatial discretization, all the
vectors and operators have finite dimensions. Assuming that the optimal initial perturbation is discretised to an N dimen-
sional vector, then the joint operator M*

0M0 is discretised to an N ) N matrix. Since this operator is self-adjoint, the
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corresponding matrix will have N real eigenvalues and N orthogonal eigenvectors. We denote the eigenvalue and eigenvector
pairs of this matrix as ki and vi with i ¼ 1; . . . ;N and 0 6 k1 6 k2 6; . . . ;6 kN . For convenience we consider that the eigenvec-
tors are normalised so that ðvi;viÞ ¼ 1. We note that as the spatial discretization is refined, N increases and the smallest
eigenvalue k1 tends to zero.

We see that the variation of the Lagrangian functional in (14) is zero, at and only at u0 ¼ vi. We now calculate the second
order variation to see if u0 ¼ vi are local or global maximisers of the Lagrangian functional:

d2L0ðdu0Þ ¼ "
2ðu0;M*

0M0u0Þðdu0; du0Þ
ðu0;u0Þ2

" 8ðdu0;M*
0M0u0Þðu0; du0Þ
ðu0;u0Þ2

þ 2ðdu0;M*
0M0du0Þ

ðu0;u0Þ

þ 8ðu0;M*
0M0u0Þðdu0;u0Þ2

ðu0;u0Þ3
: ð15Þ

At the stationary points where u0 ¼ vi, the second and fourth terms on the right side of Eq. (15) are balanced and the second
order variation becomes

d2L0ðdu0Þ ¼
2

ðu0;u0Þ
ððdu0;M*

0M0du0Þ " ðdu0; du0ÞkiÞ: ð16Þ

We see that the sign of the second order variation depends on the second factor on the right side of Eq. (16). Since the
eigenvectors of M*

0M0, vi are orthogonal, du0 can be represented as

du0 ¼
XN

j¼1

ajvj; ð17Þ

Recalling that ðvj;vjÞ ¼ 1, we have

ðdu0;M*
0M0du0Þ ¼

XN

j¼1

a2
j kj; and ðdu0; du0Þki ¼ ki

XN

j¼1

a2
j ; ð18Þ

Substituting (18) into (16), we see that if ki ¼ k1, d2L0 P 0 (d2L0 ¼ 0 is satisfied when a2; . . . ; aN ¼ 0); if ki ¼ kN; d
2L0 6 0

(d2L0 ¼ 0 is satisfied when a1; . . . ; aN"1 ¼ 0); if ki – k1 and ki – kN , the sign of d2L0 depends on the values of a1; . . . ; aN . There-
fore u0 ¼ v1 is the global minimiser of the Lagrangian functional and this minimum value is k1; u0 ¼ vN is the global max-
imiser and this maximum value is kN; u0 ¼ v2; . . . ;vN"1 provide inflection points rather than minima or maxima. These
equilibrium states are schematically illustrated in Fig. 1. Theoretically the optimisation could terminate at either the max-
imum or inflection points. However, considering that the inflection points are sensitive to disturbances, the only robust solu-
tion for the optimisation is the global maximum u0 ¼ vN . At this maximum, we note that L0 ¼ G ¼ kN . It is worth noticing
that a refinement of the spatial discretization results in a larger N and subsequently more inflection points. Therefore if the
eigenpair ðkN;vNÞ is not dominant among all the pairs, a finer discretization is expected to result in a slower convergence.

The eigenvalues/eigenvectors of the operatorM*
0M0 can be calculated by building a Krylov sequence through iteratively

integrating a random initial perturbation forwards in the LNS equations and backwards in the adjoint equations and then
using an Arnoldi method to extract the leading eigenvalues/eigenvectors [4].

If the matrix form of the forward operator M0 were available, one could alternatively obtain the optimal initial pertur-
bation, optimal energy growth and optimal response from the singular value decomposition of M0:

M0U0i ¼ r0iV0i: ð19Þ

The right and left singular vectors U0i and V0i form two orthogonal bases, normalised so that ðU0i;U0iÞ ¼ 1 and ðV0i;V0iÞ ¼ 1.
The singular values ri are real and positive. Clearly the largest singular value is the square root of the optimal energy growth
and the corresponding right and left singular vectors are the optimal initial perturbation and the optimal outcome. This sin-
gular value decomposition approach is a direct method and only the forward operatorM0 is involved. In general, the matrix

Fig. 1. Schematic representation of the maximum, minimum and inflection points of the energy growth G as a function of the initial perturbation u0. The
eigenvectors in space RN are aligned along a one dimensional axis.
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corresponding to the action ofM0 after spatial and temporal discretization is not available and iterative methods, e.g. eigen-
value methods or optimisation methods have to be adopted.

4. Optimal boundary perturbations

In this section, we present a methodology to compute the other type of optimal perturbations considered in this work —
optimal Dirichlet-type boundary perturbations that maximise the energy of the response perturbation field over a fixed time
interval. In the following, we denote the segment of the boundary where the perturbation is introduced as the perturbation
boundary. As in Section 3, we first introduce the optimisation algorithm (Section 4.1), and then transform it into an eigen-
value method (Section 4.2).

4.1. Optimisation approach

Analogously to the analysis of the optimal initial condition problem, a Lagrangian functional for the optimal boundary
perturbation can be expressed as

Lc ¼
ðus;usÞ
½ûc; ûc(

" hu*; @tu" LðuÞi; ð20Þ

where the first term is the gain to be maximised and the second term is the constraint of the LNS equation.
Setting the adjoint velocity variables to zero on the boundary, u*ð@XÞ ¼ 0 and using zero initial conditions, we integrate

the second term by parts to obtain

Lc ¼
ðus;usÞ
½ûc; ûc(

þ hu; @tu* þ L*ðu*Þi" ðu*s;usÞ þ
Z s

0
ðp*n" Re"1$nu*Þf *ðt;xÞdt; ûc

# $
; ð21Þ

where f *ðt;xÞ is the adjoint of f ðt;xÞ.
In previous studies of local optimal boundary perturbations [10,11,17], the integration in the last expression of (21) van-

ishes because the pressure and a velocity component are eliminated through algebraic manipulations of the localised gov-
erning equations and both zero-Dirichlet and zero-Neumann conditions were enforced on the adjoint velocity components
on the perturbation boundary. In studies when the pressure term cannot be eliminated analytically, this integral has to be
taken into account. In the methodology to calculate the global optimal inflow perturbation for a stenotic flow presented in
[15], a zero pressure condition was imposed on the inflow boundary to simplify the calculation. In the current work, a com-
puted Neumann pressure boundary condition is adopted so as to relax the zero pressure simplification; such boundary con-
ditions are consistent with a velocity correction scheme [18]. Setting to zero the first variations of Lc with respect to its
independent variables u*;u and us yields the following set of equations:

dLcðdu*Þ ¼ 0) @tu" LðuÞ ¼ 0; ð22Þ

dLcðduÞ ¼ 0) @tu* þ L*ðu*Þ ¼ 0; ð23Þ

dLcðdusÞ ¼ 0) u*s ¼
2us

½ûc; ûc(
: ð24Þ

In the above, (22) are the LNS equations as previously defined in Eq. (1), which evolve the velocity perturbation uc forwards
in time from t ¼ 0 to t ¼ s but now subject to inhomogeneous boundary conditions, (23) are the adjoint equations, which
evolve the adjoint velocity u*s backwards from t ¼ s to t ¼ 0, while (24) scales the outcome of the LNS equations at time
t ¼ s in order to initialise the adjoint equations. The gradient of the Lagrangian functional with respect to the spatial distri-
bution of the boundary condition ûc can be expressed as

rûcLc ¼
"2ðus;usÞ
½ûc; ûc(2

ûc þ gðu*;p*;xÞ; ð25Þ

where

gðu*;p*;xÞ ¼
Z s

0
ðp*n" Re"1$nu*Þf *ðt;xÞdt:

We note that for the perturbation boundary, other valid combinations of boundary conditions exist for the adjoint velocity
variables besides the zero Dirichlet condition, i.e.

rnu* þ Rep"rnu
u

u* ¼ 0; with p* ¼ 0; ð26Þ

where the factor ðRep"rnuÞ=u (calculated component-by-component so that each term in this ratio is scalar) is calculated
and stored in the forward integration of (22) and substituted into the Robin condition (26) at every time step during the
backward integration of (23). For this boundary condition the definition of g becomes
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gðu*; p*;xÞ ¼
Z s

0
ð"n # UÞu*f *ðt;xÞdt:

This ‘outflow’ type condition on the adjoint variable might be considered as more appropriate if the perturbation boundary is
the inflow boundary and one follows the heuristic argument that the ‘inflow’ boundary for the LNS equations is an ‘outflow’
boundary condition for the adjoint equations owing to the change in sign of the advection terms. It has been demonstrated
however that both sets of boundary conditions lead to the same value of gain [15]. This combination of boundary conditions
also requires extra memory (to store ðRep"rnuÞ=u) and more computer time owing to the update of the Robin condition for
velocities in the backward integration. Therefore in the present work we did not employ this combination but instead took
u* ¼ 0 as noted above.

To summarise the initial and boundary conditions used in the optimal boundary condition problem, we adopt the follow-
ing approach. The initial condition for the LNS equations is u0 ¼ 0 on the interior of the domain X. For evolution of the ad-
joint equations, the initial adjoint state (at time s), u*s, is computed from (24).

On the perturbation boundary segment of @X, we have Dirichlet boundary conditions on the perturbation velocity:
u ¼ uc ¼ ûcf ðt;xÞ in which the temporal function f ðt;xÞ is prescribed, and the spatial function ûc is the object to optimise.
On this segment the adjoint boundary conditions are prescribed to be u* ¼ 0, while for pressure variables we adopt consis-
tent Neumann pressure conditions [19], which do not impose any additional restraints on the equations.

The specification of initial and boundary conditions for the LNS and adjoint equations imposes some constraints on the
temporal function f ðt;xÞ. We see that the initial condition for the LNS equations is set to zero, so the Dirichlet velocity con-
dition on the perturbation boundary at t ¼ 0 has to be zero to eliminate the spatial discontinuity at the beginning of the for-
ward integration. Further, since we require zero Dirichlet velocity conditions on the perturbed boundary for the adjoint
equations, the initial condition for the adjoint equations, which is scaled from the final condition of the LNS equations by
(24), has to be zero on the perturbation boundary, and therefore the final condition uðsÞ has to be zero on the perturbation
boundary, which requires uc ¼ 0 at t ¼ s. To satisfy these compatibility requirements, the time-dependence function should
satisfy f ð0;xÞ ¼ f ðs;xÞ ¼ 0. The form of the function chosen for the present study is presented in Section 5.2.3.

The outflow boundary segment deserves additional attention. We can use u ¼ 0 for m – 0, as presented in [15], but at
m ¼ 0, the mass flux into the domain from the perturbation boundary may be non-zero, and so a zero-Dirichlet outflow con-
dition violates the mass conservation law. A new outflow boundary condition is therefore adopted to avoid this violation. For
the forward integration it is a typical zero-Neumann outflow condition:rnu ¼ 0; p ¼ 0, while for the backward integration
it is a Robin condition, rnu* þ ReUnu* ¼ 0; p* ¼ 0. Inspecting Eq. (5), one notes that the integral over the outflow boundary
under these specifications is zero. At m – 0, the zero-Dirichlet outflow boundary condition and the new condition yield the
same result within machine precision, providing that the computational domain is adequately long for the perturbation not
to leave the domain. However this new outflow condition (Neumann for forward integration and Robin for backward inte-
gration) is suitable for general-sized domains and is adopted in the current study.

For the remaining boundaries, the boundary condition for the LNS equations and adjoint equations are the same. For
example, on a cylindrical axis boundaries, the boundary conditions for velocity and pressure variables are zero-Dirichlet
or zero-Neumann, depending on the azimuthal wave numbers, as outlined in [18] in combinations that also make no con-
tribution to the integral term in Eq. (5); on far-field segments, zero Dirichlet velocity conditions and computed Neumann
pressure conditions are adopted for the velocity components and pressure term in both LNS equations and the adjoint equa-
tions. The optimisation procedure is analogous to that used to calculate optimal initial perturbations (A).

4.2. Eigenvalue approach

The boundary perturbation optimisation problem can be also transformed into an eigenvalue problem. Similar to the
analysis of the optimal initial condition problem, we denote Mc as an evolution operator such that

us ¼Mcûc; ð27Þ

with dual operator M*
c

g ¼M*
cu*s: ð28Þ

Comparing the Lagrangian functional before and after the integration by parts as shown in (20) and (21), we note that Mc

and M*
c satisfy the duality relation arising from the last two terms in Eq. (5)

ða;McbÞ ¼ ½M*
ca;b( where a 2 X; b 2 @X: ð29Þ

Using relationships (27)–(29) in the Lagrangian functional, we obtain

Lc ¼
ðus;usÞ
½ûc; ûc(

¼ ½M
*
cMcûc; ûc(
½ûc; ûc(

:

Clearly the maximum value of Lc and the corresponding optimal boundary perturbation are the largest eigenvalue of the
operator M*

cMc and the associated eigenvector. Recalling (24) and using (27) and (28), we observe that the joint action
of Mc and M*

c on the boundary perturbation ûc can be expressed as
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M*
cMcûc ¼M*

cus ¼ g
½ûc; ûc(

2
: ð30Þ

Therefore when ûc becomes the leading eigenvector ofM*
cMc;g is parallel to the vector ûc and the corresponding eigenvalue

is ½g; ûc(=2.
Similarly to the analysis presented in Section 3.2, it can be demonstrated that the Lagrangian functional Lc has only one

maximiser, which is the leading eigenvector ofM*
cMc , where the maximum value of Lc is the corresponding largest eigen-

value; and only one minimiser, provided by the eigenvector associated with the smallest eigenvalue ofM*
cMc , which is the

minimum value of Lc . All the other eigenvectors of M*
cMc are inflection points of the Lagrangian functional [15].

Therefore an eigenvalue solver can be employed as an alternative to the optimisation method to calculate the optimal
boundary perturbation. We start from an initial guess of the boundary perturbation, evolve it forwards in the LNS equations,
use the final condition to initialise the adjoint LNS equation, evolve the adjoint variable backwards to obtain g (which must
be evaluated throughout the integration interval), and then use g to initialise the LNS equations to repeat this cycle. This
iterative action of the joint operator on the initial boundary perturbation builds a Krylov sequence and an Arnoldi method
can be used to extract the eigenvalue/vectors of the joint operator from the sequence.

Analogously to the case for the optimal initial perturbation discussed earlier, if the matrix form of the forward operator
Mc is available, we can obtain the optimal boundary perturbation, optimal gain and optimal response from the singular
value decomposition of Mc:

McUci ¼ rciVci: ð31Þ

The right and left singular vectors Uci and Vci form two orthogonal bases, and they are normalised so that ½Uci;Uci( ¼ 1 and
ðVci;VciÞ ¼ 1. The singular values rci are real and positive. Clearly the largest singular value is the square root of the optimal
gain and the corresponding right and left singular vectors are the optimal boundary perturbation and the optimal outcome.
This singular value decomposition approach is a direct method and only the forward operatorMc is involved. In general glo-
bal studies, the matrix form of Mc is not available and an iterative method such as an optimisation or eigenvalue method
must be adopted to calculate the optimal boundary perturbation.

5. Case study for a vortex flow

5.1. Numerical model of the vortex flow

In this section, we implement the algorithms presented above to calculate the optimal initial and inflow boundary per-
turbations to the Batchelor vortex. The Batchelor vortex is a solution to the Navier–Stokes equations under a boundary-layer-
type approximation obtained by [20] and it has been used extensively as a mathematical model of vortices. The Batchelor
vortex can be represented in the cylindrical coordinates ðz; r; hÞ as

UðrÞ ¼ aþ expð"r2Þ; VðrÞ ¼ 0; WðrÞ ¼ q
r
½1" expð"r2Þ(; ð32Þ

where a designates the free stream velocity and q is the swirl strength. Two values of the swirl strength, q ¼ 0:8 and q ¼ 3,
are considered in this study. At the first value of q ¼ 0:8, strong helical instability are observed [21,22], while at the second
value of q ¼ 3, the vortex is asymptotically stable but exhibit reasonably strong transient energy growth [23], due to the
interaction of the highly non-orthogonal eigenmodes in the continuous spectrum [24].

The Reynolds number is defined as Re ¼ DUR0=m, where DU is the dimensional velocity excess in the core of the vortex, R0

is defined as the radial coordinate where the non-dimensionalised streamwise velocity U ¼ 1þ expð"1Þ and m is the kine-
matic viscosity. The vortex core is defined as r ¼ 1:12, where the azimuthal velocity reaches a maximum. Re ¼ 100 is used
throughout this study.

Since optimal initial perturbations for the Batchelor vortex have been thoroughly investigated, we focus on optimal
boundary perturbations and introduce the boundary perturbation at the inflow boundary. Firstly we validate the methodol-
ogy presented above and demonstrate that the two approaches (optimisation approach and eigenvalue approach) yield the
same results in subsection 5.2 and then present the results of optimal inflow boundary perturbations at q ¼ 0:8 and q ¼ 3 in
subsection 5.3.

5.2. Discretisation and convergence

5.2.1. Discretisation
The LNS equations and adjoint equations are spatially discretised following the spectral/hp element method as described

by [25]. A stiffly stable velocity correction scheme [19] is applied. Details of the discretisation and its convergence properties
are given by [18]. The boundary conditions implemented are as discussed in Section 4.1.

In this numerical method, we construct a weak approximation of the governing equations by multiplying a test function
that vanishes on the boundary. Therefore the solution of the governing equations are required to be in the Sobolev space of
order one (have square-integrable derivatives). Then it is necessary that the boundary perturbations can be extended
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continuously into a function in the Sobolev space of order one. This restriction of the form of boundary perturbations can be
relaxed to be merely square-integrable by calculating very weak solutions of the governing equations, as discussed in [26].

The computational mesh containing 3150 elements, as well as the different types of boundaries are shown in Fig. 2. Each
element is further decomposed into P ) P sub-elements using a spectral element discretisation.

5.2.2. Convergence of the optimal initial perturbation
The convergence of energy growth G of initial perturbations with respect to P is shown in Table 1. We see that both the

optimisation method and eigenvalue method converge to the same values of optimal energy growth with six significant fig-
ures at P ¼ 5.

The convergence speeds of the optimal energy growth and optimal initial perturbation for both methods are reported in
Fig. 3. The convergence criteria for the optimal energy growth and the optimal initial perturbation are respectively defined as
r0value ¼ ðGk " G40Þ=G40 and r0vector ¼ 1" ðuk

0;u40
0 Þ=½ðu40

0 ;u40
0 Þðuk

0;uk
0Þ(

1=2, where the superscript denotes the index of iterations.
We see that the eigenvalue method converges much faster than the optimisation method, owing to the large dimension of
the joint operator, which has N " 2 inflection points, where the gradient of the Lagrangian functional with respect to the ini-
tial perturbation vanishes, and therefore decelerates the convergence of the gradient in the optimisation solver.

5.2.3. Convergence of the optimal boundary perturbation
As stated previously, we decompose the temporal and spatial dependence of the boundary perturbation and optimise the

spatial distribution of the perturbation associated with a temporal function

z

r

0 10 20 300

5
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20

inflow boundary outflow boundary

vortex axis

far-field boundary

Fig. 2. Computational mesh and boundaries.

Table 1
Convergence of the energy growth of the optimal initial perturbation G with respect to P at ðq; a; s;mÞ ¼ ð0:8;0;10;3Þ using both the
optimisation (OPT) and eigenvalue (EIG) methods. The Reynolds number is set to Re ¼ 100 hereafter.

P G (OPT) G (EIG)

3 18.4950 18.4950
4 18.5109 18.5109
5 18.5107 18.5107
6 18.5107 18.5107
7 18.5107 18.5107
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Fig. 3. Comparison of the convergence speed of (a) optimal energy growth and (b) optimal initial perturbation at ðq; a; s;mÞ ¼ ð0:8;0;10;3Þ for the
optimisation method and eigenvalue method.
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f ðt;xÞ ¼ ½1" expð"t2Þ(f1" exp½"ðs" tÞ2(g expðixtÞ; ð33Þ

where the first two factors on the right side yield a boundary perturbation starting smoothly from zero and terminating
smoothly to zero, as illustrated in Fig. 4. These two factors are used to eliminate the spatial and temporal discontinuities
as discussed in Section 4.1. A similar form of temporal function was employed in [15]. We see that for large enough values
of s, when 0+ t + s; f ðt;xÞ , expðixtÞ and so x acts as the temporal frequency of the boundary perturbation. Clearly the
adjoint of this function is f *ðt;xÞ ¼ f ðt;"xÞ.

As a convergence test, we consider the gain K as a function of the polynomial order for both the optimisation method and
eigenvalue method, as reported in Table 2. We see that both methods converge to four significant figures at P ¼ 6. For the
optimisation method, we have tested the steepest gradient method, conjugate gradient method and BFGS quasi-Newton
method to calculate the search direction and observe that the value of K is independent of the choice of these optimisation
methods.

In the last column of Table 2, we also show the correctness of the gradient of the Lagrangian functional, where dûc is an
arbitrary vector with a small enough magnitude and dLc ¼ Lcðûc þ dûcÞ " LcðûcÞ is obtained by evolving the boundary per-
turbations in the LNS equations only. We see that the gradientrûcLc obtained through evolving the perturbation in both the
LNS equations and the adjoint equations is accurate within a tolerance of 0.03% at P ¼ 6.

The convergence speeds of the optimal gain and optimal boundary perturbation for both optimisation method and eigen-
value method are reported in Fig. 5. The convergence criteria are defined as rcvalue ¼ ðKk " K10Þ=K10 and
rcvector ¼ 1" ½ûk

c ; û10
c (= ½û10

c ; û10
c (½ûk

c ; ûk
c (

% &1=2, where the superscript denotes the index of iterations. We see that in contrast
to what was observed for the calculation of optimal initial conditions, the optimisation method converges a little faster than

t
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Fig. 4. Real part of the temporal dependence of the boundary velocity perturbation at s ¼ 10 and x ¼ 5. Dashed lines represent the envelope of the
function.

Table 2
Convergence of the optimal boundary perturbations at ðq; a; s;x;mÞ ¼ ð0:8;0;10;0;3Þ.

P K(OPT) K (EIG) dK=½rûc
K; dûc (

3 6.944 6.721 0.9665
4 6.982 6.951 0.9987
5 6.983 6.980 0.9993
6 6.983 6.983 0.9997
7 6.983 6.983 0.9998
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Fig. 5. Comparison of the convergence speed of (a) optimal gain and (b) optimal inflow boundary perturbation at ðq; a; s;x;mÞ ¼ ð0:8;0;10;0;3Þ for the
optimisation method (OPT) and eigenvalue method (EIG).
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the eigenvalue method. This is because of the low dimension of the operatorM*
cMc , which has many fewer inflection points

than the operator M*
0M0 discussed in the optimal initial condition problem.

5.3. Optimal inflow boundary perturbations for the Batchelor vortex

5.3.1. Asymptotically unstable flow with q ¼ 0:8
Four azimuthal wave numbers, m ¼ 0;1;2;3, are investigated at q ¼ 0:8. The Batchelor vortex has helical unstable modes

at m ¼ 1;2;3. Since the axisymmetric mode has significant physical relevance to the bubble-type vortex breakdown, the
m ¼ 0 case is also considered even though this axisymmetric mode is locally stable/weakly unstable.

As illustrated in Fig. 6(a), the gain K does not grow exponentially with s at x ¼ 0. This is because the development of
perturbations in the domain is a mixture of spatial instabilities and temporal instabilities, especially at small values of s, pro-
vided that the axial length of the domain is fixed. Therefore the growth rate is larger than the energy growth of the most
unstable eigenmode that can be obtained by imposing periodic inflow/outflow boundary conditions. Owing to the helical
instability at the combination of parameters considered here, the value of K keeps increasing with s and we only consider
a limited range of time intervals 0 6 s 6 15. The development of boundary perturbations is most energetic at m ¼ 2 for
the combination of parameters considered, that is ða; q;xÞ ¼ ð0:5;0:8;0Þ, even though the most energetic temporal local
mode is obtained at m ¼ 3.
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Fig. 6. Variation of the optimal gain K with (a) terminal time s at ðx; a; qÞ ¼ ð0;0:5;0:8Þ and (b) time frequency x at ðs; a; qÞ ¼ ð15;0:5;0:8Þ.
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Fig. 7. Velocity components of optimal boundary perturbations at (a) ðq;m;x; sÞ ¼ ð0:8;0;0;15Þ, (b) ðq;m;x; sÞ ¼ ð0:8;1;0:3;15Þ, (c)
ðq;m;x; sÞ ¼ ð0:8;2; 0:2;15Þ and (d) ðq;m;x; sÞ ¼ ð0:8;3;0:1;15Þ. The boundary perturbation has been normalised such that ½ûc ; ûc ( ¼ 1.
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Fig. 6(b) illustrates that the maximum gain at a fixed value of s ¼ 15 is obtained at x ¼ 0:3;0:2;0:1 for m ¼ 1;2;3, respec-
tively. These values are close to the frequencies of the most unstable helical modes. For example, the most unstable local
mode obtained at m ¼ 2 has frequency 0:22.

Inspecting the optimal inflow boundary conditions shown in Fig. 7, it is seen that the energy of the optimal boundary
perturbation is concentrated in the region close to the vortex axis, which is similar to the unstable helical modes [21]. In this
figure, the temporal frequency x is chosen to maximise the gain K.

Evolving optimal inflow boundary perturbations to t ¼ s ¼ 15, we see the contours of azimuthal vorticity for these out-
comes in Fig. 8. These final outcomes are the result of the spatial and temporal evolution of optimal boundary conditions and
they have a similar structure to the unstable helical modes [21]. The dominant axial wave numbers of these outcomes are
close to the axial wave numbers of the most unstable helical modes. We see that the structures are in the form of spirals at
m ¼ 1;2;3 and bubbles around the axis at m ¼ 0. Note that the boundary perturbations have been normalised so that
½ûc; ûc( ¼ 1.

5.3.2. Asymptotically stable flow with q ¼ 3
At larger swirl number, q ¼ 3, the vortex flow is asymptotically stable but significant transient energy growth has been

observed owing to the non-orthogonality of the continuous eigenmodes [27]. Two mechanisms of transient growth have
been identified: the anti-lift-up mechanism associated with the transformation of azimuthal velocity into azimuthal vortic-
ity, and the Orr-induction mechanism associated with the energy transfer from the potential region into the vortex core [28].

Fig. 9 illustrates the variation of the gain K with the time interval s and the temporal inflow boundary frequency x. It is
seen that the values of K are slightly lower than those in the asymptotically unstable cases with q ¼ 0:8. Again, the gain in-
creases faster at small values of s owing to the mixing of temporal and spatial developments of perturbations.

At a fixed s, the maximum K is obtained at xmax ¼ 0:62 for the axisymmetric case and at x ¼ 0 for all the other cases
considered. This ‘frequency selection’ will be discussed in detail and compared against the optimal initial perturbations in
the following.

It is noted that the optimal boundary perturbations are concentrated in the potential flow region (see Fig. 10), rather than
inside the vortex core as those obtained in the asymptotically unstable conditions (see Fig. 7). Similar to the structures of the
optimal initial perturbations [27], the swirl velocity component dominates in the boundary perturbations except at m ¼ 1.
Two typical cases, m ¼ 0 and m ¼ 1 are discussed below.

At m ¼ 0, the transient growth based on both initial perturbations and boundary perturbations is mainly due to the trans-
formation of azimuthal velocity to azimuthal vorticity while the energy distribution in the radial direction is almost un-
changed (see Figs. 10(a) and 11(a) for the development of boundary perturbations and Figs. 12(a) and 12(b) for the
development of initial perturbations). The dominant axial wave numbers for the outcomes of optimal initial perturbations

Fig. 8. Contours of the axial velocity component of the outcomes of the optimal inflow boundary conditions at (a) ðq;m;x; sÞ ¼ ð0:8;0;0:4;15Þ, (b)
ðq;m;x; sÞ ¼ ð0:8;1;0:3;15Þ, (c) ðq;m;x; sÞ ¼ ð0:8;2;0:2;15Þ and (d) ðq;m;x; sÞ ¼ ð0:8;3;0:1;15Þ. The boundary perturbation has been normalised so that
½ûc ; ûc ( ¼ 1. The same contour levels, ½"0:5;0:5(, are used on all the subfigures. Dashed/solid lines denote negative/positive velocity respectively.
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Fig. 9. (a) Variation of the gain K with terminal time s at x ¼ 0 and (b) variation of G with time frequency x for s ¼ 15 at a ¼ 0:5 and q ¼ 3.
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and optimal boundary perturbations are the same, that is kmax ¼ 1:14. The optimal temporal frequency of the boundary per-
turbations reflects this axial wave number selection: 2pa=xmax , 2p=kmax.

At m ¼ 1, the transient growth from both initial perturbations and boundary perturbations results from the energy trans-
fer from the potential region into the vortex core. From the outcomes of the optimal boundary perturbation shown in Fig. 11,
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Fig. 10. Velocity components of optimal boundary perturbations at (a) ðq;m;x; sÞ ¼ ð3;0;0:6;15Þ, (b) ðq;m;x; sÞ ¼ ð3;1;0;15Þ, (c) ðq;m;x; sÞ ¼ ð3;2;0;15Þ
and (d) ðq;m;x; sÞ ¼ ð3;3; 0;15Þ. The boundary perturbation has been normalised so that ½ûc ; ûc ( ¼ 1.

Fig. 12. Contours of the axial velocity component of (a), optimal initial perturbation at m ¼ 0, (b), optimal final perturbation at m ¼ 0, (c), optimal initial
perturbation at m ¼ 1 and (d), optimal final perturbation at m ¼ 1. The contour levels are selected to highlight the structures of perturbations.

Fig. 11. Contours of the axial velocity component of the outcomes of the optimal inflow boundary conditions at (a) ðq;m;x; sÞ ¼ ð3;0;0:6;15Þ, (b)
ðq;m;x; sÞ ¼ ð3;1;0;15Þ, (c) ðq;m;x; sÞ ¼ ð3;2;0;15Þ and (d) ðq;m;x; sÞ ¼ ð3;3;0;15Þ. The boundary perturbation has been normalised so that ½ûc ; ûc ( ¼ 1.
The same contour levels, ["0.5,0.5], are used on all the subfigures. Dashed/solid lines denote negative/positive velocity respectively.
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it is observed that the energy has been introduced from the potential region into the vortex core at m ¼ 1. This link between
the potential region and vortex core can be explained by the non-normality of eigenmodes with the form of two wave pack-
ets — one inside the vortex core and the other in the potential region [27]. This energy transfer also appears at m ¼ 0, where a
string of bubble-type structures are induced along the axis but the distribution of major structures are static, as shown in
Fig. 12(b).

6. Conclusion

Constraint Lagrangian functionals are built in order to calculate optimal initial and boundary perturbations which induce
maximum energy in the domain at a fixed time horizon. In our analysis we have demonstrated that both Lagrangian opti-
misation problems can be transformed into eigenvalue methods. The optimal energy growth/gain and optimal initial/bound-
ary perturbations are the leading eigenvalue/eigenvector of a joint operator, whose action is related to the LNS equations and
the adjoint equations. When optimising the inflow boundary perturbations, a temporally smooth function which is zero at
both the beginning and end of the integration is adopted so as to eliminate spatial and temporal discontinuities. A new out-
flow boundary condition is adopted to avoid the possible violation of mass conservation in the mean Fourier mode (m ¼ 0).

We applied these methods to a vortex flow, modelled by the Batchelor vortex, to calculated optimal initial/inflow bound-
ary perturbations. Via a convergence test, it is shown that both optimisation and eigenvalue methods converge to the same
results. In the optimal initial condition problem, the eigenvalue approach converges much faster than the optimisation ap-
proach, because the large dimension of the joint operator generates a large number of inflection points and decelerates the
convergence of the gradient optimisation method. On the other hand, in the boundary condition problem, where the dimen-
sion of the joint operator is much smaller than that in the initial condition problem, both methods show fast convergence for
the test problem.

For the asymptotically unstable conditions, the optimal perturbation for the vortex flow takes a similar form to the most
unstable local mode — both have the energy concentrated inside the vortex core. The maximum gain K is obtained at the
temporal frequency of the most unstable local mode and the dominant axial wave number of the final outcome is the same
as the wave number of the most unstable helical mode. For the asymptotically stable conditions, the optimal perturbations
are similar to the optimal initial perturbations. When m ¼ 0, the anti-lift-up mechanism associated with energy transfer
from azimuthal velocity to azimuthal vorticity is observed in both the boundary condition and initial condition transient
processes. When m > 0, the Orr-induction mechanism associated with core contamination is also observed in the develop-
ment of both the optimal initial and boundary perturbations.
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Appendix A. Optimisation procedure

The optimisation procedure to maximise the Lagrangian functional and obtain the optimal initial condition, similar to the
algorithm outlined by [2], is as follows:

1. Evolve an initial guess of the optimal initial perturbation u0 to obtain us by integrating the LNS Eq. (1) forwards from t ¼ 0
to t ¼ s.

2. Scale us using (9) to obtain the initial condition of the adjoint equations u*s.
3. Evolve u*s using (4) to obtain u*0 by integrating the adjoint velocity backwards from t ¼ s to t ¼ 0.
4. Substitute us;u0 and u*0 into (11) to obtain ru0L0.
5. Update the initial perturbation from step k to kþ 1, such that ukþ1

0 ¼ uk
0 þ akPðru0L0Þk, where a is a step length and

Pðru0L0Þk is a search direction.
6. Repeat (2)–(6) until the energy growth G converges.

Three methods (steepest gradient, conjugate gradient, BFGS) are considered to calculate the search direction [29]. In the
steepest gradient method,

Pðru0L0Þk ¼ ðru0L0Þk;

in the (Fletcher–Reeves) conjugate gradient method,

Pðru0L0Þ0 ¼ ðru0L0Þ0;

Pðru0L0Þk ¼ ðru0L0Þk þ
ððru0L0Þk; ðru0L0ÞkÞ
ððru0L0Þk"1; ðru0L0Þk"1Þ

Pðru0L0Þk"1 for k > 0;
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in the BFGS method,

Pðru0L0Þ0 ¼ ðru0L0Þ0;

Pðru0L0Þk ¼ Hkðru0L0Þk for k > 0;

where Hk is the inverse Hessian approximation

H1 ¼ " y1T s1

y1T y1
I;

Hkþ1 ¼ ðI " qkskykTÞHkðI " qkykskTÞ " qkskskT
for k > 1;

and where

qk ¼ 1
ykT sk

; sk ¼ ukþ1
0 " uk

0; and yk ¼ ðru0L0Þkþ1 " ðru0L0Þk:

The step length a is the optimal step length that maximises

Gkþ1ðaÞ ¼ ðM0ðuk
0 þ aPkÞ;M0ðuk

0 þ aPkÞÞ
ðuk

0 þ aPk;uk
0 þ aPkÞ

:

Considering that M0 is a linear operator, through standard algebraic manipulation we obtain

Gkþ1ðaÞ ¼ ðM0Pk;M0PkÞ
ðPk;PkÞ

þ a3aþ a4

a2 þ a1aþ a2
; ðA:1Þ

where

a1 ¼
2ðuk

0;P
kÞ

ðPk;PkÞ
; a2 ¼

ðuk
0;uk

0Þ
ðPk;PkÞ

;

a3 ¼
2ðM0uk

0;M0PkÞ
ðPk;PkÞ

" 2ðM0Pk;M0PkÞðuk
0;P

kÞ
ðPk;PkÞ2

;

a4 ¼
ðM0uk

0;M0uk
0Þ

ðPk;PkÞ
" ðM0Pk;M0PkÞðuk

0;uk
0Þ

ðPk;PkÞ2
:

Differentiating (A.1) we see that Gkþ1ðaÞ reaches maxima at one of the four values of a:

a1 ¼ "
a4

a3
þ a2

4

a2
3
þ a2 "

a1a4

a3

' (1=2

;

a2 ¼ "
a4

a3
" a2

4

a2
3
þ a2 "

a1a4

a3

' (1=2

;

a3 ¼ 0; a4 ¼1:

We also note that if a3 ! 0, there is singularity when calculating a1 and a2. In this condition, the values of a1 and a2 should
be changed to

a1 ¼ a2 ¼ "
a1

2
:

Substituting a1–a4 into (A.1) and comparing the corresponding Gkþ1ðaÞ, we obtain the optimal value of a, denoted as amax. If
a1 or a2 is complex or real but negative, this value should be removed from the comparison. If a3 is the optimal value, it sug-
gests that uk

0 has converged to the optimal inflow perturbation and the optimisation should be ceased. If a4 is the optimal
value, it means that uk

0 should be updated to be Pk.
We note that Pk should be evolved through the LNS equations to obtain a1–a4 and the updated outcome velocity vector us

can be obtained from a linear combination

ukþ1
s ¼M0ðuk

0Þ þ amaxM0ðPkÞ: ðA:2Þ

Therefore step (1) for k > 1 in the optimisation procedure should be replaced with

1. Evolve Pk by integrating the LNS equations from t ¼ 0 to t ¼ s and substitute the result velocity vectorM0ðPkÞ into (A.2)
to obtain ukþ1

s .
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