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ABSTRACT

The rise of two-dimensional bubbles in
an inclined channel is studied numerically.
The numerical scheme uses a conservative
finite-difference formulation that solves the
equations of motion for both liquid and gas
phases. Accurate calculation of the interface
position and interfacial forces between gas
and liquid are an essential part of the numer-
ical scheme. Careful attention is also paid
to mass and momentum advection, and ro-
bust and reliable convergence of the pressure
field depends heavily on a multigrid tech-
nique. Bubble shape and rise velocity are
found to be strongly dependent on the rela-
tive size of the bubble and channel height and
less strongly dependent on inclination angle
and coefficients of viscosity and surface ten-
sion.

NOMENCLATURE

A Bubble cross sectional area

C Volume fraction of phase 1

ĝ Gravity unit vector

F S Interfacial force

Fr Froude number

L Channel height

P Pressure

R′ Equivalent bubble radius

Re Reynolds number

t Time

U Velocity vector

U Velocity scale

We Weber number

δt Time-step

δP Pressure correction

µ Dynamic viscosity

ρ Density

τ Viscous stress tensor

1. INTRODUCTION

The motion of large gas bubbles plays a
key role in many industrial processes, and
applications include gas sparging, pipeline
hold-up due to slugs, boiling heat transfer
under downward-facing heating surfaces and
bubbling in electrolytic cells. A good under-
standing of the physics of bubble rise is es-
sential, as bubble motion affects heat trans-
fer in boiling processes and voltage drop in
electrolytic applications. The present study
is motivated by the need to estimate bubble
rise velocities and understand fluid flow pat-
terns in an inclined channel geometry that
modelled an anode-cathode gap in a reduc-
tion cell. Geometries such as this occur in
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bi-polar battery cells and Hall-Heroult cells
used widely in the production of aluminium.

Experimental studies of the rise of gas
bubbles underneath an inclined plane have
been published by Maneri & Zuber (1974);
Che, Chen & Taylor (1991); and Max-
worthy (1991), however the literature is
sparse. The two-dimensional bubbles consid-
ered here may be thought of as a prototype
for more realistic three-dimensional flows and
more complex geometries such as those for
bubble rise in inclined pipes.

Numerical simulation of the motion of
large, discrete gas bubbles through a liquid
is difficult, since the interface position is un-
known and thus becomes an additional vari-
able in the problem formulation. Added to
this difficulty is the numerical stiffness that
results from large differences in density be-
tween gas and liquid (typically three orders
of magnitude). Interfacial forces between gas
and liquid are essential in predicting bubble
shape and rise velocity, and because these
forces are restricted to the interface (which
has one less dimension than the flow solution
space) their accurate prediction introduces
special difficulties to the numerical solution
of the problem.

2. NUMERICAL METHOD

Liquid and gas are modelled as a single
fluid with variable density and viscosity. The
equations of motion for this system are writ-
ten

∂C

∂t
+ ∇· (UC) = 0, (1)

ρ = ρ1C + ρ2(1 − C), (2)

∂ρU

∂t
+ ∇· (ρUU)

= −∇P +
1

Fr2
ρĝ +

1

We
F S +

1

Re
∇·τ,(3)

∇·U = 0. (4)

Instead of advecting density, a scalar indica-
tor (or phase function) C is advected with
the local velocity U . The density (and other
scalar quantities such as viscosity) are ob-
tained as shown in 2.

The dimensionless parameters in 1–4 are

Re =
ρ0UL
µ0

, We =
ρU2L

σ
, Fr =

U√
gL ,

where U is an (unknown) velocity scale, L
is the channel height, and ρ0 and µ0 are the
liquid density and viscosity. The coefficient
of surface tension is σ and g is the gravi-
tational acceleration. In all simulations de-
scribed below, the velocity scale is chosen to
be U =

√
gL which is equivalent to Fr ≡ 1.

A basic first-order temporal integration al-
gorithm is:

1. Estimate values of C by solving

Cn+1 = Cn − δt∇· (CnUn),

and estimate densities and viscosities
from

ρn+1 = ρgC
n+1 + ρf (1 − Cn+1),

µn+1 = µgC
n+1 + µf (1 − Cn+1).

2. Find intermediate values of the velocity
field by solving

U∗ =
ρnUn

ρn+1
+

δt

ρn+1
[−A(Un) −∇Pn

+ D(µn,Un)] ,

where the symbols A and D refer to the
advective and diffusive operators respec-
tively.

3. Calculate the pressure correction, δP ,
from the discrete form of the following
Helmholtz equation

∇·
(

1

ρn+1
∇δP

)

=
1

δt
∇·U∗.

4. Update velocity and pressure

Un+1 = U∗ − δt

ρn+1
∇δP ,

Pn+1 = Pn + δP .

Time evolution is accomplished using
an explicit, second-order, improved Euler
scheme which involves repetition of the steps
above, once with a half time-step, and then
once with a full time-step with the right-hand
side of each equation (except 1) determined
using half-time estimates of U , ρ and P .

Solution of the equations occurs on a uni-
form, staggered MAC mesh (Welch, Harlow,
Shannon & Daly 1965). In this mesh system,



all scalar quantities (P , C, µ, etc.) are de-
fined at cell centres, the x-component of ve-
locity, U , is defined at right- and left-hand
cell edges, and the y-component of veloc-
ity, V , is defined at the top and bottom cell
edges.

In order to maintain sharp interfaces, spe-
cial Volume-of-Fluid (VOF) techniques must
be used to advect C. The method here is de-
signed especially to ensure that mass and mo-
mentum advection are consistent. It is based
on the piecewise linear interface construction
method of Youngs (1982) and utilises a C-
mesh that is twice as fine as that used for
momentum and pressure (Rudman 1997).

Intermediate velocity calculation (step 2)
is undertaken using a purely explicit estimate
of the right hand sides. The pressure term is
calculated using centred differences as is the
viscous term. Because the viscosity is not
constant, the viscous term must be written
in stress-divergence form. Momentum advec-
tion utilises the fully multi-dimensional Flux-
Corrected-Transport (FCT) method of Zale-
sak (1979). Low-order momentum fluxes are
calculated using first order up-winding, and
high-order fluxes use a third-order QUICK
scheme. In both cases, up-wind estimates of
velocities are used whereas cell-edge densi-
ties are estimated in a pseudo-characteristic
manner, being determined on the basis of C-
advection on the fine mesh. Limiting is al-
most identical to that in Zalesak except that
the minimum and maximum values of ve-
locity (not momentum) are used to ensure
monotonicity. Details of the momentum ad-
vection algorithm are described in Rudman
(1997).

The pressure correction solution (step 3) is
based on the multigrid method of Wesseling
(1992). In order to obtain robust and rapid
convergence of the method, it is necessary to
employ:

• zeroth-order interpolation for the pro-
longation operator [P];

• a 16-point stencil based on an average
of linear interpolation in triangles and
linear interpolation in lines for the re-
striction operator [R]; and

• the Galerkin coarse grid operator [Ã]
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Figure 1: Dimensionless rise velocity as a func-
tion of equivalent bubble radius (cm). Com-
parison of numerical results with experiments
of Maneri and Zuber (1974).

discussed in Wesseling (1992), i.e. [Ã] =
[R][A][P].

The convergence rate of this multigrid
method is independent of the mesh size and
weakly dependent on the density ratio of the
problem, rising from the equivalent of ap-
proximately twenty-five fine grid iterations at
a density ratio of 1:1, to fifty at a density ra-
tio of 1000:1.

3. VALIDATION

Validation of the numerical model is un-
dertaken here by comparing the numeri-
cal results to the experimental results of
Maneri & Zuber (1974). In that study,
gas bubbles were released in a sloping chan-
nel sandwiched between two vertical glass
plates. The resulting flows can be consid-
ered two-dimensional. The experimental re-
sults at 10◦ inclination are compared to nu-
merical results of rise velocity in Figure 1,
which shows dimensionless rise velocity (non-
dimensionalised by

√
gL) versus equivalent

bubble radius (the radius of the circle with
equal cross-sectional area to the bubble).
The agreement is seen to be good and, as
observed experimentally, the bubble rise ve-
locity decreases as the equivalent bubble ra-
dius decreases. Validation for bubbles with
an equivalent radius larger than 3 cm is not
feasible at the present time due to the very
large computational domains required.

4. RESULTS



As the bubble rises, it is assumed that it
induces an equal and opposite counter flow
beneath it. Thus there is assumed to be no
net pumping of fluid by bubble rise. In order
to minimise the size of the computational do-
main, all simulations have been undertaken
in a coordinate frame that moves approxi-
mately with the leading edge of the bubble.
Because the rise velocity is not known a pri-
ori, the process of finding the correct rise ve-
locity is an iterative one. Initial conditions
are uniform inflow with a small bubble at
the upper wall. Gas is blown into the bub-
ble through the top boundary until the de-
sired bubble size is attained. Once the bub-
ble reaches the desired size, estimates of rise
velocity and mean bubble shape are made.
The simulations discussed here correspond to
an air/water system with channel heights of
12, 30 and 48 mm and channel inclinations
of 2◦ and 4◦ from the horizontal.

Bubble rise in this air/water system is an
unsteady phenomenon as seen in Figure 2,
which shows an instantaneous bubble pro-
file and velocity vectors in the computational
frame and in a stationary coordinate frame.
Clearly seen in Figure 2(b) are vortices that
have been shed from the rising bubble. Inter-
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Figure 2: Instantaneous bubble shape and ve-
locity vectors for bubble rise in a channel in-
clined at 4◦: (a) Computational coordinate
frame, (b) coordinate frame stationary with re-
spect to the walls. Every fourth vector in each
direction is displayed.

action of these bubbles with the interface en-
sures unsteadiness in the flow and sometimes
leads to detachment of significant fractions of
the bubble.

4.1 Time-mean bubble shape

Non-dimensional bubble size is quantified
using a non-dimensional equivalent bubble
radius

R′ =
1

L

(

A

π

)1/2

,

where A is the cross-sectional area of the
bubble and L is the channel height. The
time-mean bubble shape is primarily a func-
tion of channel inclination and R′. The
time-mean bubble shape for a range of non-
dimensional bubble sizes is shown in Figure 3
for a channel inclination of 2◦ and Figure 4
for 4◦. The time-mean bubble profile can
be split into several pieces: (i) a round nose
that is well represented with a circular arc,
(ii) an almost straight edge that is absent in
small bubbles and increases in length once
the bubble fills approximately half the chan-
nel width, and (iii) a tail that is approxi-
mately horizontal. The radius of curvature
of the bubble nose increases with increasing
bubble size. A fourth feature that is often
present, especially for larger bubble sizes, is
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Figure 3: Time-mean bubble shapes for R′ of
1.0, 0.7, 0.4, 0.28 and 0.2. Data are for a
channel inclination of 2◦ and are taken from a
range of channel heights.
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Figure 4: Time-mean bubble shapes for R′ of
1.0, 0.7, 0.56, 0.4, 0.28 and 0.2. Data are for
channel inclination of 4◦ and are taken from a
range of channel heights.



a small cusp that joins the circular nose to
the flat tail. It is at this point that the flow
generally separates from the bubble surface,
leading to the formation of wake vortices and
unsteadiness behind the bubble.

Unsteadiness resulting from vortex shed-
ding may be beneficial in cooling applications
and may help to mix any thermal stratifica-
tions that arise in the system.

Note that as the channel inclination is in-
creased, the bubbles become shorter and the
blockage presented by the bubble increases
for a given bubble size. Also, as the bub-
ble size increases for a fixed inclination, the
blockage presented by the bubble appears to
asymptote to a constant value (different for
each inclination).

4.2 Bubble rise velocity

Bubble rise velocities are estimated to lie
in the range 0.10–0.25 m/s for the range of
parameters considered here. The rise veloc-
ity, non-dimensionalised with

√
gL, is plot-

ted against R′ in Figure 5. The data for
2◦ channel inclination consistently lie below
those for 4◦, which is not unexpected as the
tangential component of the buoyancy force
decreases with decreasing inclination. How-
ever, the difference in the rise velocity of
small bubbles is proportionally greater than
the differences for large bubbles. For the
largest bubble size (R′ = 1.0) the difference
in rise velocity is negligible. The theoreti-
cal results of Couët & Strumulo (1987) sug-
gest that for infinitely large bubbles, the non-
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Figure 5: Non-dimensional bubble rise veloc-
ity (velocity divided by (gL)1/2) versus non-
dimensional bubble size, R′.

dimensional rise velocity of two-dimensional
bubbles asymptotes to a constant value as
the channel inclination approaches 0◦. (In
the limiting case, bubble motion should be
considered to be a gravity current and not a
discrete bubble.) Thus the observation here
that rise velocity becomes less sensitive to in-
clination angle for larger bubbles is not sur-
prising. (Note that the asymptotic value as
the inclination approaches zero is dependent
on the magnitude of surface tension.)

For a given angle, non-dimensional rise ve-
locities do not fall on a single curve. This
is a reflection of the role that surface ten-
sion plays in determining rise velocity. As
the channel height decreases, surface tension
forces become proportionally greater for the
same R′. It is observed here that increasing
surface tension decreases non-dimensional
rise velocity for all bubble sizes, in line with
the theoretical results of Couët & Strumulo
(1987) which showed the same trend for in-
finitely large bubbles.

Although not clear from Figure 5, as R′

increases bubble rise velocity asymptotes to
a constant value for a fixed channel height.
This is in agreement with the experimental
results of Maneri & Zuber (1974) and is re-
lated to the blockage presented by the bub-
ble, which also asymptotes as bubble size in-
creases.

5. SUMMARY

A numerical method has been presented
that allows the simulation of gas-liquid in-
terfacial flows. Application of the method to
study the rise of large two-dimensional gas
bubbles in an inclined channel at low incli-
nation angles has shown that bubble rise is
highly unsteady and that vortices are shed
from the bubble sides. The unsteadiness may
have advantages in some systems by provid-
ing mixing and ensuring even temperature
and chemical compositions. Bubble rise is
also seen to be a complex function of bubble
size, channel inclination and surface tension.
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