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The instability modes arising within simple non-reversing pulsatile flows in a circular
tube with a smooth axisymmetric constriction are examined using global Floquet
stability analysis and direct numerical simulation. The sectionally averaged pulsatile
flow is represented with one harmonic component superimposed on a time-mean
flow. We have previously identified a period-doubling global instability mechanism
associated with alternating tilting of the vortex rings that are ejected out of the stenosis
throat with each pulse. Here we show that while alternating tilting of vortex rings
is the primary instability mode for comparatively larger reduced velocities associated
with long pulse periods (or low Womersley numbers), for lower reduced velocities that
are associated with shorter pulse periods the primary instability typically manifests
as azimuthal waves (Widnall instability modes) of low wavenumber that grow on
each vortex ring. Convective shear-layer instabilities are also supported by the types
of flow considered. To provide an insight into the comparative role of these types of
instability, which have still shorter temporal periods, we also introduce high-frequency
low-amplitude perturbations to the base flows of the above global instabilities. For
the range of parameters considered, we observe that the dominant features of the
primary Floquet instability persist, but that the additional presence of the convective
instability can have a destabilizing effect, especially for long pulse periods.

1. Introduction
Pulsatile flow in a straight tube with a smooth axisymmetric constriction provides an

idealization of vascular flow in a stenosed artery, where such occlusions are typically
associated with atherosclerotic plaques. The close association between arterial disease
and flow-related mechanisms (Caro, Fitz-Gerald & Schroter 1971) has motivated
a number of studies of flow within both idealized and anatomically correct model
stenoses, as reviewed by Berger & Jou (2000).

Some of the earliest investigations into stenotic transitional flows were undertaken
experimentally in idealized axisymmetric stenotic tubes (Cassanova & Giddens 1978;
Khalifa & Giddens 1981; Ahmed & Giddens 1983, 1984; Ojha, Cobbold, Johnston &
Hummel 1989). The application of computational fluid dynamics has more recently
made an impact, through numerical simulations of both idealized and anatomical
geometries (Stroud, Berger & Saloner 2000, 2002; Long et al. 2001; Mallinger &
Drikakis 2002). This body of work has tended to consider either axisymmetric
geometries or more complex anatomically derived geometries which cannot be
readily reproduced. In contrast, the complementary problem of a two-dimensional
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channel has been investigated in both symmetric and non-symmetric, yet idealized,
configurations although even for the symmetric configuration the flow instabilities
appear quite distinct from those that arise in axisymmetric geometries (Sobey &
Drazin 1986; Pedley 2000; Mittal, Simmons & Najjar 2003; Pitt, Sherwin & Theofilis
2005). Varghese, Frankel & Fischer 2006 examine flow transition in a non-symmetric
idealized constricted tube.

In nearly all of the above studies, flow instability and transition to turbulence
has been a common focus. Motivation is provided by the fact that under standard
physiological conditions, arterial flows are usually considered to be laminar, although
always unsteady and often with separation. However, in the case of a stenotic
pipe flow, the increase in local Reynolds number due to the constriction and the
introduction of an inflection point into the velocity profile downstream of the
constriction can lead to flow transition.

Experimental studies of pulsatile stenotic flows with axisymmetric contractions have
suggested that transition occurs a few pipe diameters downstream of the stenosis, does
not always persist over the whole pulse cycle, and that flow relaminarizes downstream.
For example Ojha et al. (1989), in a flow-visualization experiment with a 75 %-
occlusion stenosis, divided the post-stenotic flow into four zones. Zone I, reaching to
three diameters downstream, is called the ‘stable jet region’, although some indication
of wavy structure is observed on the jet front in this region; Zone II, spanning
3–4.5 diameters downstream, is called the ‘transition region’, where the waves become
larger; in Zone III, the ‘turbulent region’, 4.5–7.5 diameters downstream, the front
rapidly distorts; Zone IV, further downstream again, is labelled ‘relaminarization’.
Khalifa & Giddens (1981) had drawn attention to shear-layer oscillations that can
grow after the passage of each ‘starting structure’.

Experimental investigation and/or direct numerical simulation of turbulent flows
does not necessarily provide a sound basis for understanding the underlying instability
mechanisms leading to transition. Insight into these mechanisms can often be obtained
by the linearized stability analysis of a steady or time-periodic flow. For purely
oscillatory flows in unconstricted straight tubes, instability mechanisms have been
investigated by Yang & Yih (1977) and Akhavan, Kamm & Shapiro (1991). We have
applied global Floquet analysis of the governing equations, linearized about a two-
dimensional axisymmetric state which included the stenotic geometry, and coupled
this with direct numerical simulation of transitional flows (Sherwin & Blackburn
2005). That work identified the ‘starting structures’ as vortex rings and studied the
instability modes and transition for both single- and two-harmonic pulsatile stenotic
flow in the parameter range of time-averaged Reynolds number (based on mean flow
and diameter) between 250 and 550 and non-dimensional pulse period (or equivalently
reduced velocity) from 2.5 to 7.5. It was demonstrated that in the range of parameters
investigated, the transition to turbulence was initiated by a period-doubling instability
of the vortex rings that are ejected from the stenosis during each pulsatile cycle. The
transitional behaviour agrees in broad terms with the zonal categorization supplied
by Ojha et al. (1989), although the specifics of the length scales were somewhat
different. Another finding of our earlier work was that the extended jet shear layer
which rolls up to form vortex rings can be susceptible to convective instability, which
is almost certainly the same phenomenon as the shear-layer oscillations observed by
Khalifa & Giddens (1981) and probably accounts for the wavy structures observed
in Ojha et al.’s Zone I.

In the present work we return to the same theme, but provide a more systematic
and expansive parametric study of the effect of pulse period on instability modes
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Figure 1. (a) Stenosis geometry and (b) pulsatile flow waveform considered in this study.

primarily based around a single-harmonic (mean plus oscillatory) stenotic flow. In
expanding the scope of the investigation we have now identified two different global
instability mechanisms which can arise in pulsatile stenotic pipe flows: a period-
doubling vortex-tilting instability and a short-wavelength vortex core instability. Both
are associated with the creation and transport of a new vortex ring during each pulse,
which is a fundamental feature of pulsatile stenotic flow.

However, convective shear-layer instabilities can also be important in these flows.
To examine the potential influence of shear-layer instabilities in conjunction with the
above global instabilities, we have also considered the case where a high-frequency
low-amplitude perturbation is introduced to the base flow. Initially considering the
high-frequency perturbation to a steady base flow, we demonstrate that the separated
shear layer is susceptible to perturbations with high frequency. This is also true of
pulsatile flows, especially those of longer pulse periods, which can have extended
shear layers left in the wake of the vortex ring that lies at the leading edge of each
pulse. Introducing the most susceptible shear-layer frequency to the pulsatile base flow
of the global instabilities indicated that the relatively short pulsatile period vortex
core instability is uninfluenced by the perturbation. For longer pulse periods, the
period-doubling instability can be significantly enhanced by the perturbations, but
the vortex-tilting mechanism remains the same.

1.1. Problem definition and dimensionless groups

The stenosis under investigation has a 50 % diametral contraction with a smooth
sinusiodal axial profile. Adoption of this level of occlusion (50 % on diameter, 75 %
on area) is motivated by the observation that in clinical practice it is a level readily
identified through ultrasound imaging, and it has also been used in a number of other
studies. The symmetry of the dynamical system means that a cylindrical coordinate
system is the natural choice, and we locate the origin at the centre of the stenosis, as
indicated in figure 1 (a). The axial profile of the stenosis is given by

r(z) = 0.5Dmin + 0.5(D − Dmin) sin2(πz/L) over − 0.5 � (z/L) < 0.5,

where D is the tube diameter, Dmin is the stenosis throat diameter, and L is its length.
Here, D/Dmin = L/D = 2.

In order to quantify the axisymmetric inflow u(r, t) of temporal period T , we use
the sectional average

ū(t) = (8/D2)

∫ D/2

0

u(r, t) r dr,

and temporal average

ūm =
1

T

∫ T

0

ū(t) dt.
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For given ū(t) we can define at least three independent dimensionless groups: the
reduced velocity Ured , the peak-to-mean flow ratio, and the Reynolds number Re,
respectively given by

Ured = ūmT /D, Upm = max
0�t�T

ū(t)/ūm = ūpeak/ūm, Re = ūmD/ν,

where ν is the kinematic viscosity of the fluid. An additional non-independent dimen-
sionless parameter, the Womersley number α = (πRe/2Ured )

1/2 = (2π/T ν)1/2D/2, is
also commonly used in this applications area, following the application and extension
of earlier analysis by Sexl (1930) to work on arterial-type flows in both rigid and
elastic tubes by Womersley (1955). We prefer to use the reduced velocity so that
the effect of viscosity is parameterized only by Reynolds number, and because the
reduced velocity has a simple physical interpretation as the dimensionless distance
travelled by the bulk flow in one pulse period. The reduced velocity can also be
interpreted as a dimensionless pulse period. The single-harmonic sectional-average
flow temporal waveform that is the main focus of the present work is

ū(t) = ūm[1 + 0.75 sin(2π t/T )], (1.1)

as illustrated in figure 1 (b). This is the same as the single-harmonic waveform chosen
in Sherwin & Blackburn (2005), and has a peak-to-mean ratio Upm = 1.75. (Naturally
occurring arterial flows have a broader frequency content and often also have a higher
peak-to-mean ratio, although lower values are also observed.) In § 6, we also examine
high-frequency convective shear-layer instability both for steady and pulsatile flows,
with a much smaller (perturbation-level) oscillation amplitude ε = 0.001.

Inlet flows are computed from Womersley’s solution for fully developed periodic
pulsatile laminar flow in a circular tube, which is the sum of Fourier–Bessel
components at each temporal harmonic n defined by

un(r, t) = Re

[
AniT

ρ2πn

(
J0(i

3/2α 2r/D)

J0(i3/2α)
− 1

)
exp 2π int/T

]
, (1.2)

where i = (−1)1/2, J0 is the complex Bessel function of zeroth order, ρ is the fluid
density, and α is the aforementioned Womersley number. The parameter An is a
complex number representing the driving pressure gradient ∂zp = An exp 2π int/T

which can be determined from a specified sectional-average velocity ū(t) at a given
harmonic n. In the present study, we have primarily restricted consideration to
n ∈ {0, 1}; when n = 0, (1.2) reduces to the standard parabolic Hagen–Poiseuille
profile for steady flow, u = 2(1 − 4r2/D2). In the study of the effect of convective
shear-layer instability on pulsatile flows found in § 6.2, we extend the set of harmonics
to include an additional high frequency.

As is commonly justified in many works on blood flows in the major arteries,
Newtonian rheology has been assumed. Although the effect of artery wall compliance
is potentially important, it has been ignored in the present work on the assumption
that the major role of the compliance – a distributed property – will be to influence
the shape of the waveform reaching a given site, rather than to significantly affect
local flow dynamics. For discussion of these assumptions and reviews on blood flow
in arteries, see Ku (1997), Wootton & Ku (1999), Berger & Jou (2000) and Taylor &
Draney (2004).

1.2. Outline of paper

In § 2, the numerical and analytical methods employed are described in brief. In
order to provide context for the stability analysis to follow, the effect of variation
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in reduced velocity (pulse period) on base flows at fixed Re = 400 is examined in
§ 3. In § 4, we use Floquet stability analysis and three-dimensional direct numerical
simulation (DNS) to study the effect of Ured on the period-doubling mode: this is a
superset of the three single-harmonic results presented in our earlier paper. We also
introduce phase-averaged statistics to help quantify the corresponding effect of Ured

on time-asymptotic turbulent flows following transition; the locations of turbulent
breakdowns may evolve to locations considerably upstream of the location of the
peak Floquet mode amplitude. In § 5, we show that at lower reduced velocities (shorter
pulse periods) than for the period-doubling mode, the primary instability manifests as
azimuthal waves, evocative of the Widnall modes observed for isolated vortex rings
(Widnall, Bliss & Tsai 1974), and again we also study the flow following transition
using three-dimensional DNS. At still shorter periods, the shear layers of steady
and long, pulse period stenotic flows are found to be susceptible to a convective
instability, which we examine by adding a harmonic perturbation to the inflow in
axisymmetric DNS and following this through to the effects on Floquet instability
and three-dimensional DNS; these aspects are dealt with in § 6. The whole study is
summarized and discussed in §§ 7 and 8.

2. Numerical methods
For complete details of the numerical methods and their prior application to this

problem, consult Blackburn (2002), Blackburn & Sherwin (2004) and Sherwin &
Blackburn (2005). In the following, we summarize the numerical and analytical
techniques employed.

The paper addresses the linear Floquet stability analysis and direct numerical
simulation of the incompressible Navier–Stokes equations, which are treated in
cylindrical coordinates (z, r, θ). The spatial discretization couples spectral elements
having nodal Gauss–Lobatto–Legendre (GLL) basis functions in the meridional
semiplane with Fourier basis functions in the azimuth. Axisymmetric flows can
be considered as the zeroth azimuthal Fourier mode in such a scheme. Temporal
integration is performed using a mixed implicit–explicit pseudo-spectral velocity
correction scheme of second order (Karniadakis, Israeli & Orszag 1991; Guermond &
Shen 2003).

The spectral element macro mesh employed both in the present study and also in
the single-harmonic part of Sherwin & Blackburn (2005) is illustrated in figure 2.
There are 743 spectral elements, concentrated around the stenosis throat and where
the shear layers are thinnest. The comparatively long outflow was found necessary
to accommodate and resolve the Floquet modes, which can reach their greatest
amplitude some distance downstream of the stenosis. In the previous study, a GLL
basis function order Np = 7 was found adequate to resolve Floquet multipliers
to approximately four-figure accuracy, and has been retained through the present
work. The mesh has approximately 38 000 independent degrees of freedom for each
azimuthal semi-plane, i.e. a semi-plane defined by a fixed angle θ and r � 0.

Temporal Floquet analysis examines the behaviour of a perturbation u′ to a T -
periodic base flow U , to determine whether the perturbation grows or decays from
cycle to cycle. In a linear analysis, the evolution equations for the perturbation
flow are the Navier–Stokes equations linearized about the base flow. Perturbation
solutions can be written as a sum of Floquet modes ũ(t0) exp σ (t − t0) where ũ(t0) is a
T -periodic Floquet eigenfunction, evaluated at arbitrary phase t0, and σ is a Floquet
exponent. Floquet multipliers µ are related to the Floquet exponents by µ = exp σT ,
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Figure 2. Computational mesh in the meridional semiplane. (a) Layout of the 743 spectral
elements. (b) Close up of the stenosis.

and indicate how much the Floquet modes grow (or shrink) from cycle to cycle. In
general, the exponents, the multipliers, and the eigenfunctions can be real or occur
in complex-conjugate pairs. Instability occurs when a multiplier leaves the unit circle,
|µ| = 1, or equivalently when the real part of a Floquet exponent becomes positive.
In the present treatment, Floquet modes can take any spatial form supported in a
fixed frame of reference by the global (r , z) discretization and hence, by definition, an
unstable Floquet mode is a global instability.

As noted by Barkley & Henderson (1996) in the case (as here) where base flows are
two-dimensional two-component, we may employ restricted-symmetry mode shapes
of type

(ũ, ṽ, w̃)(z, r, θ, t) = (û cos kθ, v̂ cos kθ, ŵ sin kθ)(z, r, t), (2.1)

where (ũ, ṽ, w̃) are, respectively, axial, radial and azimuthal velocity components,
and with k an integer wavenumber. Since for the restricted class of base flows the
above azimuthal structure is invariant under the linearized Navier–Stokes operator,
expansions described by (2.1) are suitable candidates for eigenmodes. This is true
without further qualification if the Floquet multipliers are real. If multipliers are,
however, found to be complex-conjugate, then, as explained by Blackburn & Lopez
(2003), an expanded set of basis functions should also be used to compute (modulated)
travelling-wave modes, while (2.1) gives a (modulated) standing wave. If the multiplier
is real, or if one is only considering the modulated standing wave in the complex-
conjugate case, then the above expansion provides an instance of the complete set of
instability modes that forms a pitchfork of revolution in which the non-axisymmetric
mode shapes can be arbitrarily rotated about the cylindrical axis. As was the case
in Sherwin & Blackburn (2005), all the unstable Floquet modes in the present
investigation are found to occur with real multipliers, so (2.1) has been used for
all Floquet analysis cases presented, whereas for DNS, complete (i.e. fully complex)
Fourier bases were adopted.

The following boundary conditions were applied. At the inflow, velocities
were computed from (1.2) and imposed at z/D = −5 when computing either
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Figure 3. The effect of pulse period on base flow vorticity on a section through the tube
centreline at Re = 400. (a) Ured = 0.5, α = 33.45; (b) Ured = 1, α = 25.07; (c) Ured = 2,
α = 17.72; (d) Ured = 5, α = 11.21; (e) Ured = 10, α = 7.93. Fifteen contour levels equispaced
between ωθ = −10ūm/D and 100ūm/D, at phase t = jT , j ∈ �.

two-dimensional DNS (e.g. for base flows) or three-dimensional DNS. Outflow
boundary conditions of type (∂u/∂z = 0, p = 0) are used in both DNS and
stability analysis at z/D = 45. All other boundary conditions (including at the
inflow boundary when carrying out stability analysis) are of wall type, i.e. u = 0, and
with a pressure boundary condition of computed Neumann type (Karniadakis et al.
1991; Blackburn & Sherwin 2004).

Stability analysis is computed using an explicitly restarted Arnoldi method described
by Barkley & Henderson (1996), Tuckerman & Barkley (2000) and Blackburn (2002).
Typically, these methods rely on the repeated application of an operator (here, the
linearized Navier–Stokes operator, integrated over a period T ), rather than explicit
computation of the equivalent matrix operator, and deliver some small number of
leading modes. While checking the computations presented herein, we made a detailed
study of the influence of the Krylov dimension on the computed mode shape. We
found that while the computed Floquet multiplier was robust, the mode shape could
become corrupt if the Krylov dimension was made too large (here, more than about
20), and for all the computations presented, the Krylov dimension was either 8 or 12.
The corruption is most probably related to finite-precision limitations in a modified
Gram–Schmidt vector orthogonalization that forms part of the iteration.

3. Axisymmetric base flows
The purpose of this section is to introduce the main characteristics of the single-

harmonic base flows used in subsequent stability analysis. We temporarily restrict
attention to a single Reynolds number, Re = 400.

The primary visual feature of pulsatile stenotic flow is vortex rings that form
downstream of the stenosis from roll-ups of the shear layer that separates in the
throat, just past the location of minimum cross-section. When only a single harmonic
is present, a single ring forms with each pulse period. Figure 3 shows the effect
of reduced velocity (dimensionless pulse period) on the vorticity contours of the
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axisymmetric flows. In this plot, all simulations are at phase point t = jT , j ∈ �.
As may be expected, the effect of increasing Ured is to increase the axial spacing of
successive vortex rings. As Ured increases, elongated shear layers may be observed in
the wakes of the primary shear-layer roll-ups. We shall later find that the dynamics
of these shear layers can contribute significantly to the overall flow behaviour. For
the lower reduced velocities (figure 3 a, b) there is also some indication of secondary
ring structures appearing near the first fully separated vortex ring. As the vortex rings
move further downstream, their vorticity diffuses away and they eventually disappear;
this is especially evident in figure 3 (a).

A feature that is apparent from a comparison of vortex spacings in figure 3 (a–c),
where the reduced velocities increase by successive factors of two, is that the initial
traverse speed of the vortex rings is approximately constant, independent of Ured .
To investigate this point in more detail, we show in figure 4 the axial locations of
successive identifiable vortex rings (taken as those of the local maxima of vorticity)
relative to the location, z0, of the first identifiable vortex ring, as a function of
time from an arbitrary phase point, t0. The values were obtained from instantaneous
snapshots of the flow taken at the same phase point, t = jT , for each value of
Ured . For any value of Ured , the task of identifying individual vortices was abandoned
when there were no further readily discernable maxima of vorticity along an axial
traverse. It may be seen that for all reduced velocities, the intial vortex ring speed
is approximately the same, with an approximate value 3ūm. We note that the ring
translation speeds are considerably less than the peak bulk velocity at the thoat,
which is Upm(D/Dmin)

2ūm = 7ūm, and lower also than the mean bulk velocity at
the throat, (D/Dmin)

2ūm = 4ūm. That the initial translation speeds are approximately
independent of Ured has a one-to-one correspondence with the fact that the initial
spacing of successive rings scales approximately linearly with Ured , as was observed
in relation to figure 3: the spacing is 	z/D ≈ 3Ured .

Sufficiently far downstream of the stenosis, and with laminar flow, one may expect
the velocity profile to recover to the upstream value provided by (1.2). As the strength
of an individual vortex falls to zero, relative to that of the inflow profile, it is
reasonable to assume that its average advection velocity falls to approximately ūm.
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This behaviour may be noted in figure 4, for the higher values of Ured and at large
times. On the other hand, for small values of Ured , the viscous decay of vortices
completes well before the flow recovers to the inlet profile, and so the asymptotic
speeds appear much higher.

The initial vortex ring speeds are approximately independent of reduced velocity,
which implies that the circulations around the vortex cores are approximately
independent of pulse period. On the other hand, the pulse-integral vorticity flux
from the separation zone must increase approximately linearly with reduced velocity,
since although the bulk velocities are independent of Ured , this quantity is proportional
to the period T . The behaviour is apparently related to what is observed for isolated
laminar vortex rings generated by motion of a piston in a tube, ejecting into a large
body of fluid (Gharib, Rambod & Shariff 1998; Rosenfeld, Rambod & Gharib 1998).
As piston stroke increases, normalized circulation (and hence speed) of the rings
increases too, but only to a universal limiting value known as a ‘formation number’.
At higher stroke levels, excess vorticity is pinched off from the vortex ring, and trails
behind it as a shear layer (which may, in turn, roll up into a subsidiary train of
discrete vortices). Similar behaviour can be observed for the higher reduced velocity
flows of figure 3 (d, e), where elongated shear layers trail behind rolled-up vortex rings.

A final point to be made in relation to figure 4 is that, at the same Reynolds number,
vortex rings survive as identifiable entities for longer times as reduced velocity (or
dimensionless pulse period) is increased.

4. Period doubling instability mode
Axisymmetric time-periodic base flows are the state about which we linearize prior

to conducting Floquet analysis for three-dimensional instabilities. At any reduced
velocity, base flows are pre-computed for a range of Reynolds number, and the
dominant Floquet multiplier µ and its associated eigenfunction (at a specific phase
point t/T ) is established at each Reynolds number. By interpolating to |µ| = 1, the
marginal stability Reynolds number is established, as shown in figure 14 of Sherwin &
Blackburn (2005). All the pulsatile flow instability modes discovered in that study
had µc = −1, which corresponds to a period-doubling bifurcation. The instability can
be physically associated with a tilting of the vortex rings, and the period-doubling
mechanism was shown to be that the downwash induced by this tilting in the wake
of one ring drives an opposite tilt on the succeeding ring. Because the mechanism of
this instability mode was described in some detail in Sherwin & Blackburn (2005),
the treatment of this aspect here will be somewhat abbreviated, and concentrate more
heavily on the effects of variation of pulse period.

4.1. Linear stability

The tilting mechanism necessarily arises in the first azimuthal Fourier mode,
wavenumber k = 1. In figure 5, we show an example wavenumber spectrum of
Floquet multiplier magnitudes computed at Ured = 3.25, Re = 400, which shows all
the other modes to be stable, with the least stable of these occurring at k = 4.

Through the process of interpolation at each reduced velocity, we have established
the curve of marginal stability of the period-doubling mode as a function of Ured ,
shown in figure 6. An ‘optimal’ reduced velocity (minimum Rec) occurs near Ured =
3.25, where Rec = 380. At Ured < 2, Rec for this mode grows rapidly to high values,
while it appears that in the high Ured limit, Rec grows approximately linearly with
Ured .



66 H. M. Blackburn and S. J. Sherwin

0

–1

µ

0 2 4 6 8
k

Figure 5. Azimuthal wavenumber spectrum of Floquet multipliers at Ured = 3.25, Re = 400.
The negative multiplier of the unstable mode at k = 1 indicates a period-doubling instability.

600

400

200

0 2 4 6 8 10

Rec

Ured

Figure 6. Curve of critical Reynolds number for the period-doubling instability mode as a
function of reduced velocity.

Figure 7 provides a number of contour plot pairs of instantaneous energy per unit
mass q = u2/2 in the base flow and also the logarithm of q for the corresponding
period-doubling mode, both illustrated at the phase point t = jT for various Ured

and at Re close to Rec. The pair (figure 7e, f) at Ured = 3.25,Re = 370 corresponds to
the optimum reduced velocity in figure 6. The pulsatility of the base flows is readily
observed: each local maximum of q here corresponds to a vortex ring. It can be seen
that as the optimum reduced velocity, Ured = 3.25, is approached from below, the peak
energy in the Floquet modes migrates upstream towards the stenosis and is associated
with sets of vortex rings located progressively closer to the stenosis. However, in all
these cases, as a downstream traverse is made from one base flow vortex to the next,
the Floquet modal energy first grows, then dies away. We take this to indicate a
competition between an instability that tries to grow with distance downstream (or
time), while the energy of the base flow pulses, that feed the instability, dissipates.
Note that at low reduced velocities, there is significant overlap of contours of modal
energy associated with successive base flow pulses, indicative of a strong cooperative
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Figure 7. Contour plot pairs showing instantaneous energy q in the base flow (top of pair)
and logarithm of energy in the period-doubling Floquet instability mode (bottom of pair)
on a plane containing the tube centreline for: (a, b) Ured = 1.75, Re = 545; (c, d) Ured = 2.5,
Re = 389; (e, f) Ured = 3.25, Re = 370; (g, h) Ured = 5, Re = 415; (i, j) Ured = 7.5, Re = 500;
(k, l) Ured = 10, Re = 590. Results are all close to marginal stability and shown at phase
point t = jT . Base flow contour levels are drawn at 2ū2

m, 4ū2
m, . . . , 10ū2

m. Eigenmodes were
pre-normalized such that the (two-dimensional) domain-integral of modal kinetic energy is
equal to ū2

mD2, and has (log) energy contours drawn at decade-and-a-half intervals from −9
to −3. Note that the visualized outflow region is 15D shorter than the computational domain.

coupling from the instability on one ring to those on its immediate partners through
the alternating-wake-downwash mechanism mentioned above.

At Ured = 3.25, modal energy contours can just be observed starting to appear on
the first base flow pulse downstream of the stenosis, at z/D ≈ 8. At higher reduced
velocities, we observe that the Floquet mode’s energy is associated with just the first
vortex downstream of the stenosis; this is confirmed by the pair (g, h) where there
is no observable modal energy on the second visible base flow pulse downstream
of the stenosis. This indicates a reduction in the cooperative coupling between the
instability that grows on successive rings, probably brought about by increased axial
spacing. We associate the asymptotic high-Ured behaviour seen on the critical curve in
figure 6 (where Rec grows linearly with Ured ) with this change in spatial structure of
the Floquet energy with respect to the base flow vortex ring locations. We will return
to this discussion in § 7.2.

4.2. Nonlinear asymptotic states

In DNS studies, we initiate simulations by adding a small component of the leading
Floquet mode to the axisymmetric base flow, and projecting the combination to a
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three-dimensional space with a large number of Fourier modes. The simulation is then
integrated forward in time until an asymptotic statistically stationary state is reached.
As explained in Sherwin & Blackburn (2005), this evolution may take the order of
hundreds of pulse periods to achieve. The typical behaviour is for the instability to
gain an initial saturation relatively quickly, with nonlinear behaviour that could be
modelled using a low-order normal form. During this phase, the maximum three-
dimensional energy arises in approximately the same axial location as for the Floquet
mode. Subsequently, however, there is a long second saturation to the asymptotic
state, in which the peak three-dimensional energy evolves slowly upstream towards
the stenosis. As this happens the amount of three-dimensional energy in the flow also
increases, associated with the flow making a localized transition to turbulence, but
also with the fact that the energy of the vortex rings that feed the instability is greater
upstream. In the asymptotic state, the transition typically appears on the vortex ring
most recently blown out of the stenosis, even though the peak energy of the Floquet
mode may have arisen far downstream.

Figure 8 illustrates the asymptotic state for Ured = 2.5, Re = 400 at phases t = jT

and t = (j + 1)T , i.e. one pulse period apart. See Sherwin & Blackburn (2005) for
details of the progression to this asymptotic state. Three instantaneous isosurfaces
are used. An isosurface drawn on a positive value of the discriminant D of the
velocity gradient tensor is used in order to pick out the pulse-driven vortex rings.
(As explained by Chong, Perry & Cantwell (1990), where the discriminant is positive,
the velocity gradient tensor has a complex-conjugate pair of eigenvalues, and the
flow has a local spiralling character. As demonstrated by Blackburn, Mansour &
Cantwell (1996), isosurfaces based on this measure serve well as markers for isolated
vortices, particularly in the presence of walls. In the present context, such isosurfaces
are preferable to those of enstrophy, because this quantity takes local maxima on the
walls of the tube and hence its isosurfaces tend to obscure vortex structure within.)
The other two isosurfaces in figure 8 are drawn on equal-magnitude positive and
negative values of axial vorticity component; these emphasize the departure of the
flow from axisymmetry.

In figure 8(a), there is an isolated, completely axisymmetric isosurface of D located
in the stenosis throat, while approximately 2.5D downstream, an isolated vortex ring
may be seen, tilting streamwise at the top of the tube, and is accompanied near the
centreline by two isosurfaces of the streamwise vorticity component as it begins to
distort three-dimensionally. Approximately one further diameter downstream, there
is a tangle of interlocked isosurfaces that marks a weakly turbulent breakdown of
two previous vortex rings. Note also that the dominant tilt at the upstream end
of this tangle seems to be the reverse of that for the approaching vortex ring.
The breakdown dissipates further downstream, however, and by approximately 8D
downstream, relaminarization appears to be well underway. Eventually, the laminar
pulsatile flow profile of the inlet flow is regained, although we have not studied the
approach to this state in detail.

Now comparing figure 8(b) to figure 8(a), the period-doubling nature of the
instability is readily seen, since the second image is nearly an exact reflection about a
horizontal plane of the first. This is true even at the upstream end of the apparently
turbulent burst, and the effect is still quite strong near its downstream limit. This
feature persists in the statistics when the solution is perturbed through the addition
of low-energy random noise.

All the period-doubling instabilities that we have investigated via DNS have shown
broadly similar behaviour, in that (i) there is a slow migration of the breakdown
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(a)

(b)

Figure 8. Two visualizations of the asymptotic turbulent state for Ured = 2.5, Re = 400, at
a time interval 	t = T . Instantaneous isosurfaces of velocity gradient tensor discriminant
(blue, D = 8 × 104ū6

m/D6), and equal magnitudes of positive and negative axial vorticity
component (red/yellow, ωz = ±2ūm/D). In each view, the first well-organized set of structures
downstream of the throat represents a vortex ring that has begun to tilt and distort; the second
less-organized set results from the breakdown of the two preceding vortex rings. Note that
the flow at times (a) and (b) forms almost exact mirror images, consistent with the underlying
period-doubling instability.

(a)

(b)

Figure 12. Isosurfaces illustrating the (a) wavenumber k = 3 and (b) wavenumber k = 4 wavy
instability modes at Ured = 0.875, Re =325, at phase point t = jT . Vortex rings of the base flow
are visualized on a positive value of the velocity gradient tensor discriminant (blue, D = 8 ×
104 ū6

m/D6), while the wavy mode shapes are visualized using equal-magnitude but oppositely
signed values of axial vorticity component (red/yellow, arbitrary equal-magnitude levels).

(a)

(b)

(c)

Figure 15. Visualizations of turbulent states for Ured = 1, Re = 350, promoted by a k = 3
instability. (a) The progression to a wavy vortex ring, visualized via an isosurface of velocity
gradient discriminant D = 4 × 105ū6

m/D6, looking upstream to the throat and inlet, for a state
after the instability has completed an initial nonlinear saturation. (b) A different view at the
same stage in the transition process. Blue–red–yellow isosurfaces as described in caption for
figure 8. At stage (c), a number of pulse cycles later, the flow has reached an asymptotic state
and turbulent breakdown occurs just a few tube diameters downstream of the throat.
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point upstream to an asymptotic location; (ii) the breakdown is followed by apparent
relaminarization downstream, most probably leading to recovery of the far-upstream
laminar–pulsatile velocity profile; and (iii) the period-doubling nature of the instability
is retained in the nonlinear asymptotic state. As was remarked in § 6.4.4 of Sherwin &
Blackburn (2005), the overall description of behaviour seen here is in many ways
similar to the experimental flow visualization observations made by Ojha et al.
(1989) at Re = 575, Upm = 1.6 and Ured = 16.1 in a tube with a sharp-edged
2:1 diametral contraction. They did not report period-doubling behaviour, but were
perhaps unaware of this possibility. We note that no existing study analyses the
stability of pulsatile flow in a straight tube, thus it is unclear if we may expect the
flow to relaminarize in all cases.

Next, we examine the phase-averaged flows in the asymptotic states for cases
(Ured = 2.5, Re = 400), (Ured = 5, Re = 430), (Ured = 7.5, Re = 510) and (Ured = 10,
Re = 600). By inspection of figure 6 the Reynolds numbers will be seen to be just
slightly greater than the critical values at each reduced velocity. The number of
azimuthal Fourier modes (half the number of azimuthal planes of data) was set to
16, 24, 24 and 32, respectively, producing approximately 1.2, 1.8, 1.8 and 2.4 million
grid points for the four cases, in recognition of the increasing Reynolds numbers. It
has been verified that the spread of Fourier-mode-k kinetic energies

Ek =
1

2Aū2
m

∫
Ω

ûk · û∗
kr dΩ (4.1)

(where Ω is the extent of the two-dimensional meridional semiplane and û∗
k denotes

the complex conjugate of the velocity data in the kth Fourier mode) from the first
to the last non-axisymmetric mode in each case spans at least three decades, which
is thought to be sufficient, given the resolution in the meridional semiplane. The
quantity then examined is the turbulent energy q ′ = u′2/2 after the mean and periodic
flows have been removed (Reynolds & Hussain 1972). Considering that only a single
contribution to a phase average can be accumulated in each pulse period, we have
restricted these calculations to averages over 50 periods; as this is an even number, any
alternation associated directly with period-doubling is averaged out. For each flow, we
have computed eight phase averages at ti = (j + i/8)T , then their azimuthal averages,
and finally, extracted contours of q ′. Outcomes are presented as two-dimensional
contour plots on a plane containing the tube centreline; in order to save space we
have presented only four of the eight phases collected. Note that contour levels are
identical in each case.

Figure 9 (a) shows the set of contours for phase-averaged turbulent energy computed
in this manner for (Ured = 2.5, Re = 400), i.e. corresponding to the state illustrated
in figure 8. There is evidently some spatial structure to the random fluctuations, in
agreement with the qualitative remarks made above in relation to figure 8. We see
that the turbulent energy is effectively contained within an approximately 4D-long
region commencing at z/D ≈ 2.5. Note the contrast with the linear Floquet mode
seen for the same reduced velocity in figure 7 (d), where the greatest modal energy
arises near z/D = 20.

Figures 9(b)–9(d) show the phase-average outcomes in the asymptotic states at
(Ured = 5, Re = 430), (Ured = 7.5, Re = 510) and (Ured = 10, Re = 600), respectively.
A similar to that pattern of behaviour seen in figure 9 (a) is observed, but the location
of the turbulent burst moves downstream as Ured , or equivalently dimensionless pulse
period, increases. The axial spread of the energy across a pulse period remains
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Figure 9. Contours of phase-averaged turbulent energy on a slice through the pipe centreline
at four temporal phases for the asymptotic states at (a) Ured = 2.5, Re = 400; (b) Ured = 5,
Re = 430; (c) Ured = 7.5, Re = 510; (d) Ured = 10, Re = 600. The contour levels of kinetic
energy for each panel are drawn at ū2

m/3, 2ū2
m/3, . . . , 2.

approximately 4D, and the amount of energy decreases as the breakdown locations
move downstream with increasing Ured .

5. Wavy instability modes
5.1. Linear instability

In figure 6, it is observed that Rec for the period-doubling mode increases rapidly
as Ured decreases to values below two. Also, in figure 5, a second leading mode is
observed at wavenumber k = 4. It transpires that for a range of reduced velocities
Ured < 2, the set of modes k > 1 that are stable at higher reduced velocities grow to
dominate, as exemplified in figure 10 which shows the spectrum of Floquet multipliers
at Ured = 0.875, Re = 350, where both k = 3 and k = 4 are unstable modes, and
the one at k = 3 dominates. Note that now the dominant multipliers are real and
positive, and hence the modes are synchronous with the base flow.



72 H. M. Blackburn and S. J. Sherwin

1.0

1.5

0.5

µ

0 2 4 6 8
k

Figure 10. Azimuthal wavenumber spectrum of Floquet multipliers at Ured = 0.875,
Re = 350. Wavy modes with both k = 3 and k = 4 are unstable.
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Figure 11. Critical curves for the wavenumber k = 3 and k = 4 wavy modes.

The marginal-Re stability curves for the k = 3 and k = 4 modes compete for
dominance, as shown in figure 11 where it is seen that for Ured � 1.5, the k = 4
mode is the least stable, while at lower reduced velocities the k = 3 mode becomes
the slightly less stable of the pair. Like the period-doubling mode, the wavy modes
have an ‘optimal’ reduced velocity (now near Ured = 0.875); at lower values, the
marginal stability Reynolds numbers increase rapidly with falling Ured , whereas in the
high-Ured limit, there is again an approximately linear variation of Rec with Ured for
both modes.

Figure 12 (see p. 69) uses isosurface visualization to illustrate the structure of these
wavy modes at Ured = 0.875, Re = 325, slightly below the marginal stability value of
Rec = 335 for the k = 3 mode. We have used an isosurface of a positive value of the
discriminant D of the velocity gradient tensor for the base flow to show the locations
of vortex rings, while the linear instability modes are shown using equal-magnitude
positive/negative values of streamwise vorticity component. Note that in this figure
there is by definition no distortion of the base flow vortices, which have been shown
to reveal the spatial relationship between the instability modes and the base flow. In
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(a) (b) (c) (d)

Figure 13. Structure of the wavy modes in cross-section. for Ured = 0.875, Re = 325, phase
point t = jT . (a) Contours of velocity gradient tensor discriminant D (black, positive)
for the base flow at z/D = 7.75 and (b) contours of the k = 3 Floquet mode radial
velocity component at the same axial station – nine contours drawn equispaced over an
arbitrary but equal-magnitude, positive/negative range. (c, d) Equivalent contours at axial
station z/D = 4.95, k = 4 Floquet mode.

figure 12 (a), the k = 3 instability mode can be seen to begin growing in an isolated
manner on the second vortex downstream of the stenosis. Therefore, this is a type
of wavy vortex ring instability. It seems, however, that as the modal energy grows
downstream there is significant axial linkage between the three-dimensional instability
growing on sequentially created rings. Since the sign of streamwise vorticity in the
instability is constant along an axial traverse at fixed radius, the axial linkage indicates
cooperation between instabilities of successive rings. If anything, this phenomenon
appears stronger for the k = 4 instability seen in figure 12 (b).

More detail of the cross-sectional structure of the base flow and instability modes
can be seen in figure 13, again for Ured = 0.875, Re = 325, t = jT . Figures 13(a) and
13(b) show, respectively, a contour of velocity gradient discriminant D in the base
flow and a contour of radial velocity component of the k = 3 Floquet mode, at axial
location z/D = 7.75, while figures 13(c) and 13(d) show corresponding contours for
the k = 4 mode, at axial location z/D = 4.95. While contours of D for the base flow
indicate vortex structures apparently confined to r/D � 0.3, the spread of positive
azimuthal vorticity on the same sections is rather more diffuse, reaching from r/D = 0
to r/D ≈ 0.45 with a maximum near r/D = 0.23. The radial structure of each Floquet
mode contains two nodes, which conforms to the predictions of Widnall et al. (1974)
for short-wavelength instabilities on isolated unconstrained vortex rings, even though
the current rings cannot be considered slender (of small core/radius ratio) as was the
case in their analysis, and are also contained within a tube.

The analysis of Widnall et al. (1974) may be summarized by figure 4 of their paper,
which shows the most unstable wavenumber as a function of dimensionless vortex ring
speed Ṽ = V0/(Γ/4πR), where V0 is the vortex propagation speed, Γ is its circulation,
R is the ring radius. Their computations were carried out for a number of assumed
core vorticity distributions; a smooth distribution had the closest match to their
experimental results, which, however, always gave slightly higher values of instability
wavenumber. To compute a representative Ṽ , we use V0 = 3ūm (see our figure 4), and
for Ured = 1 have computed Γ = 5.46ūmD for the first identifiable vortex ring, centred
near (z/D = 3.3, r/D = 0.29), in figure 3 (b). This gives Ṽ = 3/(5.46/4π × 0.29) = 2.00.
Extrapolating the smooth-core data in figure 4, Widnall et al. (1974) to Ṽ = 2, we
find an instability wavenumber of approximately 3; extrapolating the experimental
data gives approximately 4. In conjunction with the fact that we obtain the same
radial structure of instability modes as Widnall et al. (1974), this agreement with our
Floquet-mode wavenumbers supports the proposition that our wavy modes can be
considered to be a type of Widnall vortex-core instability.
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Figure 14. Contour plot pairs showing instantaneous energy in the base flow and logarithm
of energy in the wavy-ring Floquet instability mode at an azimuthal wavenumber of k = 3
for: (a, b) Ured = 0.65, Re = 600; (c, d) Ured = 0.75, Re = 350; (e, f) Ured = 0.875, Re = 325;
(g, h) Ured = 1, Re = 339; (i, j) Ured = 1.5, Re = 425; (k, l) Ured = 2, Re = 500. Results are all
close to marginal stability and shown at phase point t = jT . Contour levels as for figure 7.

Figure 14 shows pairs of plots of contours of energy in the base flows and the
logarithm of energy in the k = 3 Floquet modes for a progressive increase in reduced
velocity. The modal energy contours in each case show that for these modes, energy
is always spread in an apparently connected manner across a number of base flow
pulses/vortices, which, as noted above, is taken again to be indicative of a cooperative
mechanism. The optimum Ured (near Ured = 0.875, figure 14 e, f) is, as was the case
for the period-doubling mode, again associated with modal energy occurring at a
minimum distance from the stenosis.

5.2. Nonlinear evolution

Under nonlinear evolution from a base flow seeded with the instability mode, a
sequence of events is found similar to the case for the period-doubling mode. Starting
with initial exponential growth, there is an initial nonlinear saturation with the peak
energy occurring in an axial location similar to that for the Floquet mode, and this
is followed by a second slow saturation to the asymptotic state. Again the asymptotic
state possesses a localized turbulent breakdown, and subsequently the slow second
saturation is associated with an upstream migration to a limit of the site of this
breakdown.

Figure 15 (see p. 69) illustrates the three-dimensional transitional flow at Ured = 1,
Re = 350, promoted by an instability in the k = 3 mode. In figure 15 (a), at
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Figure 16. Contours of phase-averaged turbulent energy q ′ on a slice through the pipe
centreline for the asymptotic state at Ured = 1, Re = 350 for phases: (a) t = jT ; (b)
t = (j + 1/8)T ; (c) t = (j + 2/8)T ; (d) t = (j + 3/8)T ; (e) t = (j + 4/8)T ; (f) t = (j + 5/8)T ;
(g) t = (j + 6/8)T ; (h) t = (j + 7/8)T . Contour levels as for figure 9.

the end of the first weakly nonlinear saturation, we see a perpective view looking
upstream to a sequence of vortex rings, where the ring nearest the viewpoint is
highly distorted, and has three-fold azimuthal symmetry. The similarity to previously
published visualizations of comparatively low-wavenumber smoke-ring instabilities
(see e.g. figure 5 of Widnall et al. 1974) is striking. Figure 15 (b) shows a different view
at the same stage of nonlinear evolution, and we can see that further downstream,
the ring generated immediately prior to that which is highly distorted but also
highly symmetrical in figure 15 (a) undergoes a complicated (and highly dissipative)
breakdown. Figure 15 (c) shows results from the same simulation, but many pulse
cycles later, after the system has reached its asymptotic state. Here, three-dimension-
al instability reaches upstream to begin vortex ring distortion almost immediately
following detachment, and this is linked directly to the breakdown of the previously
created vortex ring.

Similar to the data processed for the period-doubling mode in figure 9, we have
also considered the contours of phase-averaged turbulence energy (after the mean and
periodic base flow has been removed) for the wavy mode. Figure 16 shows contours
of phase-average (and also azimuthal-average) turbulent energy q ′ for the asymptotic
state at Ured = 1, Re = 350. Contour levels are the same as for figure 9. Once again
we observe how the energy is confined in a region very close to the stenosis, z/D in
the range 1–5 as compared to the large spatial extent of the Floquet mode.

6. Interaction with convective shear-layer instability
As was noted in § 1, a feature of previous experimental studies of stenotic flows

(e.g. Khalifa & Giddens 1981; Ojha et al. 1989) is the appearance of shear-layer
instabilities. Because a well-resolved numerical study provides a much lower level
of extraneous input (i.e. noise) than is possible in even the most well-controlled
physical experiment, we do not normally observe shear-layer oscillations unless the
flow has become turbulent, or forcing is explicitly introduced to drive them. We
observed (Sherwin & Blackburn 2005) spontaneous shear-layer oscillations in DNS
of a turbulent stenotic flow at Re = 750 with a steady Hagen–Poiseuille inflow, and
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Figure 17. Local analysis of inviscid instability for the axial velocity profile of steady flow
at Re = 700, z/D = 2.5. (a) Axial velocity profile; (b) profile for the cylindrical-coordinate
equivalent of Fjørtoft’s criterion (Kumaran 1996, Proposition 2).

made a more detailed study of the presence and effect of shear-layer oscillations
driven by a high-frequency inflow perturbation on a two-harmonic pulsatile flow at
Ured = 5. For the latter flow, the effects of the shear-layer oscillations on the Floquet
instability were minimal, which was thought to be because the Floquet mode’s most
energetic region was physically remote from the location of the shear-layer instability.
In general, we may expect pulsatile flows of higher reduced velocity to be more
susceptible to shear-layer oscillations, because, as outlined in § 3, shear layers that
appear in the wake of vortex rings become more extensive at large pulse periods. The
frequencies at which the shear layers are excited are usually well above those of the
underlying pulsatility, related to the fact that the shear layers are thin compared to
the tube diameter.

In the present section, we return to the study of convective shear-layer instability
of these flows energized through high-frequency inflow forcing. Our method will be
relatively heuristic, being based largely on axisymmetric DNS, coupled with our
Floquet analysis technique when required in specific cases. Since, by definition,
a convective instability will eventually wash out of the domain in the absence
of perturbation, we drive it continuously by adding a small-amplitude harmonic
streamwise perturbation to the inflow boundary condition. It is found that over a
comparatively narrow frequency/reduced velocity band, this type of perturbation
excites oscillations in separated shear layers downstream of the stenosis throat and
may induce shear-layer roll-up. We recognize that recent adjoint-based methods
advanced for the study of non-normal global modes and optimal growth problems
(see e.g. Chomaz 2005) would provide a more complete formal basis for this study.

6.1. Convective instability of steady flow

Axisymmetric steady flow in our stenotic geometry is susceptible to shear-layer
instability. The flow may naively be expected to possess instability because radial
profiles of axial velocity beyond the separation point immediately downstream of
the stenosis, and until the Hagen–Poiseuille profile is restored, all show a point of
inflection. Using the cylindrical-coordinate equivalent of the Fjørtoft criterion derived
by Kumaran (1996, Proposition 2), we demonstrate in figure 17 that, under inviscid
assumptions, these flows satisfy a necessary condition for instability, since at the wall
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Figure 18. (a) Contours and (b) isosurface of instantaneous azimuthal vorticity (ωθ = 25ūm/D)
for the axisymmetric convective instability of steady flow at Re = 700, Ured = 0.3, near peak
sensitivity.

u′ < 0, and there is a region where u′′ − u′/r � 0 (here, prime signifies differentiation
with respect to the radial coordinate).

For the present viscous flow, we employ the simple expedient outlined above of
adding a small-amplitude high-frequency harmonic to the inflow, so that it is described
by

ū(t) = ūm[1 + 0.001 sin(2π t/T )]. (6.1)

The perturbation is at a level that is visibly imperceptible compared to the underlying
flow; however, it excites a convective instability in the separated shear layer,
whose pointwise amplitude may be much larger than the perturbation. The visual
characteristics of the resulting flows are exemplified in figure 18, where the Reynolds
number of the bulk flow is Re = 700 (below the critical global instability Reynolds
number for steady flow of 722 found by Sherwin & Blackburn 2005) and the reduced
velocity of the perturbation is Ured = 0.3. Note that the shear layer rolls up into a
set of discrete vortices. The mean vortex spacing at formation is 	z/D ≈ 0.7, rising
slowly downstream to approximately 0.8 before diffusion takes over and the vortices
dissipate at z/D ∼ 6.

In order to quantify this behaviour, we use as a measure of response the cycle-
maximum kinetic energy in the perturbation flow,

Q′
max = max

T
0.5

∫
Ω

r(u − ubase)
2 dΩ, (6.2)

where Ω is the extent of the two-dimensional computational domain, normalized by
the domain-integral of the kinetic energy in the corresponding steady (unperturbed,
base) flow, Q. This normalized quantity is shown as functions both of perturbation
reduced velocity and mean flow Reynolds number in figure 19. It can be seen that the
shear layer is susceptible over a range of reduced velocities that broadens as Reynolds
numbers increase, and also that the responses peak near Ured ≈ 0.4.

6.2. Convective instability of pulsatile flow

Now we examine the effect of a high-frequency perturbation applied on top of base
flows that are already pulsatile with Upm = 1.75, i.e. those that served as the bases for
the work of §§ 3–5. In order to contain the investigation to a manageable size, we have
chosen three exemplar base flow reduced velocities: Ured = 0.875, the most susceptible
for wavy instability; Ured = 3.25, the most susceptible for period-doubling instability;
and Ured = 10, the highest included in the present work. The corresponding Reynolds
numbers were set, respectively, at 350, 400 and 600, in each case slightly greater than
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Figure 19. Convective instability results for axisymmetric steady flow. These show the domain
integral of kinetic energy in the difference between the perturbed flow and the steady flow,
normalized by the domain integral of energy in the corresponding steady flow, as functions of
reduced velocity and Reynolds number (in steps of 100, from 200 to 700).

the marginal-Floquet-stability value. We recall that according to the results presented
in § 3, all the unperturbed flows will produce a single vortex ring per pulse period, but
that as reduced velocities increase, we can expect that there will be an increasingly
long shear layer left in the wake of this ‘vortex front’. The bulk inlet flow is now
described by

ū(t) = ūm[1 + 0.75 sin(2π t/T ) + 0.001 sin(2π nt/T )]. (6.3)

To help reduce the parameter space and for simplicity, the high-frequency perturbation
is chosen to be temporal harmonic n of the base flow. Further, we have considered only
the fixed phase relationship described above. If the reduced velocity of the underlying
pulsatile base flow is described by Ured (base) = ūmT /D, the reduced velocity of the
perturbation can also be written as Ured (ε) = Ured (base)/n = ūmT /nD.

6.2.1. Effect on axisymmetric flow

Initially, the response to the perturbation forcing was examined as an axisymmetric
problem. The effect of shear-layer excitation is quantified in a similar fashion as
employed in (6.2) for steady base flows, albeit generalized so that at any point in
the pulse period T , the perturbation flow is computed with respect to the relevant
instantaneous unperturbed single-harmonic flow. Likewise, the normalizing energy,
Q̂, is now the peak domain-integral kinetic energy in the unperturbed flow. The
response amplitudes are shown in figure 20. Clearly, the sensitivity to perturbation
grows with reduced velocity of the base flow and as for the steady flow, there exists a
perturbation reduced velocity at which each flow is most sensitive. For the pulsatile
flows, this is of order 0.2, approximately half the value for steady flow.

Since in this study when increasing the base flow reduced velocities we have also
increased Reynolds number, we cannot state conclusively that the increased sensitivity
stems solely from increase in reduced velocities. However, observation of the perturbed
flows shows that the response is more significant in the extended shear layers that exist
in the wake of a vortex ring at higher base flow reduced velocities. Thus, following
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Figure 20. Convective instability results for axisymmetric pulsatile flows. Peak domain-
integral energy in the perturbation flow Q′ (normalized by peak energy in the unperturbed

flow, Q̂) when a high-frequency low-level harmonic forcing at reduced velocity Ured (ε) is
added to the inlet of three pulsatile base flows. Reynolds numbers for the three base flows at
Ured = 0.875, 3.25 and 10 were, respectively, 350, 400 and 600.

the reasoning outlined at the start of § 6.2, we may expect that at a given Reynolds
number, pulsatile flows of higher reduced velocity should be more responsive to
convective instability. As also noted above, the range of excited perturbation reduced
velocities also broadens with an increase in reduced velocity of the base flow.

6.2.2. Interaction with Floquet instability

We note that in the three cases considered, the perturbation reduced velocity for
peak sensitivity to convective instability, Ured (ε) ≈ 0.2, lies well below (i.e. at a
shorter period than) the reduced velocities for either the period-doubling or wavy-
mode Floquet instabilities. However, it is interesting to examine the effect of the
high-frequency perturbation on Floquet instability, where the base flow for stability
analysis is now the high-frequency-perturbed axisymmetric pulsatile flow. Analysis has
been carried out for the three cases with a perturbation reduced velocity corresponding
approximately to the peak values found in figure 20: for (Ured (base) = 0.875,Re =
350), n = 7, i.e. Ured (ε) = 0.125, wavenumber k = 4; for (Ured (base) = 3.25,Re = 400),
n = 20, i.e. Ured (ε) = 0.1625, k = 1; and for (Ured (base) = 10, Re = 600), n = 50, i.e.
Ured (ε) = 0.2, k = 1. While for Ured (base) = 0.875 and 3.25 there is almost no effect
on Floquet multipliers, which are the same to three significant figures, with or without
the perturbation, there is a large destabilizing effect for Ured = 10, since the multiplier
increases by approximately an order of magnitude from µ = −1.18 to µ = −12.7
when the perturbation is present. (By mesh Np-refinement, we have checked that these
values are resolution-independent.) Note that the period-doubling character of this
instability is robust to the applied perturbation, since the multiplier remains negative.
In figure 21, we show base kinetic energies of both base flows and Floquet modes
for both the unperturbed case (a–d) and perturbed case (e–h), for phases t = jT and
t = (j + 1/2)T .

A number of features can be seen in figure 21. The first is that (especially for
the unperturbed flow) the Floquet mode is most energetic near the leading edges of



80 H. M. Blackburn and S. J. Sherwin

(a)

(b)

(c)

(d )

(e)

( f )

(g)

(h)

0 10 20

z/D

30 40

Figure 21. The effect of high-frequency low-amplitude perturbation on Floquet instability for
Ured = 10, Re = 600. Contour plot pairs showing instantaneous energy q in the base flow (top
of pair) and logarithm of energy in the period-doubling Floquet instability mode (bottom of
pair) on a plane containing the tube centreline. (a–d) The case without perturbation, where
µ = −1.18, showing the base flow and Floquet instability mode for (a, b), t = jT ; (c, d),
t = (j + 1/2)T . For (e–h), high-frequency perturbation is added to the inlet flow, changing
the Floquet multiplier to µ = −12.7. Observe that the perturbation has most effect on both
the base flow and mode shape for (g, h), when t = (j + 1/2)T . Base flow contour levels are
drawn at 2, 4, 6, 8 and 10ū2

m in (a) and (e) and at 3, 12 and 20ū2
m in (c) and (g). Eigenmode

normalization and contour levels as for figures 7 and 14.

pulse fronts (i.e. near the leading vortex rings), for both t = jT and t = (j + 1/2)T .
The second is that the base flow is more energetic at phase t = (j + 1/2)T than at
t = jT (this is not immediately visually apparent, but follows from consideration
of the different contour levels applied to the base flows at phases t = jT and
t = (j + 1/2)T ). Thirdly, in common with the Floquet analysis results of figures 7
and 14, modal energy grows as the disturbance moves downstream, but this occurs
as the corresponding base flow energy dissipates; eventually the modal energy also
falls, but here that must occur outside the computational domain. Perhaps the most
important feature is that while the high-frequency perturbation is always present, its
effect is only obvious here – in both the base flow and the Floquet mode – for phase
t = (j + 1/2)T , when the extended shear layer is more energetic, in the wake of the
vortex front closest to the stenosis. Clearly, the effect of the perturbation on the base
flow is greatest within this extended shear layer, which at t = (j + 1/2)T (figure 21 g)
has rolled up into a set of concentrated vortices in much the same fashion as seen in
figure 18 for the perturbed steady inflow. A significant increase in the axial extent of
the Floquet mode energy in this vicinity can be seen in figure 21 (h).

6.2.3. Nonlinear response via DNS

To conclude this section, the effect of applying the high-frequency perturbation on
the inflow for DNS is investigated for (Ured = 10,Re = 600). Restarting from the
asymptotic state for the unperturbed flow obtained for these control parameters in
§ 4.2, the high-frequency perturbation was added to the inflow, the simulation run
for another 10 pulse cycles, followed by phase-averaging for 15 cycles. Contours of
phase-averaged turbulent energy for this flow are shown in figure 22, which may
be compared to those of figure 9 (d). It is immediately apparent that the effect
of the perturbation has been to translate the location of turbulent breakdown yet
further upstream towards the stenosis, approximately halving the distance between
the stenosis and the breakdown from order 10D to order 5D. The effect of shear-layer
oscillations in the phase-averaged turbulent energy is most evident for t = (j +1/4)T .
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Figure 22. Contours of phase-averaged turbulent energy on a slice through the pipe centreline
at four temporal phases for the asymptotic state in DNS at Ured = 10, Re = 600, with added
high-frequency low-amplitude perturbation. Contour levels as for figure 9; cf. figure 9 (d).

Response to the convective instability for (Ured = 10, Re = 600) is large enough
that it becomes almost impossible to discern the underlying period-doubling nature
of the Floquet instability in the DNS results. This is not true in the absence of
perturbation, where period-doubling is evident either visually (as for figure 8), or by
detailed examination of velocity time series extracted at locations within the turbulent
breakdown. When the perturbation is present, comparatively large high-frequency
velocity fluctuations (albeit with significant bandwidth) associated with shear-layer
oscillations can mask the effect. Naturally, the magnitude of the convective instability
response and the importance of this masking effect will vary with the amplitude at
which the convective instability is driven.

7. Discussion
Just as the most significant visual features of the stenotic pulsatile base flows in

this study are found to be vortex rings and extended separated shear layers, so also
are the instabilities found to be those of vortex rings and separated shear layers. It
is worth remarking that these can be regarded as walled-bounded flow counterparts
of previously recorded unbounded flow instabilities. The period-doubling ring-tilting
mode seems closely related to the phenomenon of bifurcation of pulsed jet flows (see
e.g. Reynolds et al. 2003), while the wavy-core mode appears closely related to the
short-wavelength instability of isolated vortex rings (see e.g. Widnall et al. 1974). The
local convective instability of (steady jet) shear layers has received extensive analytical
treatment (see e.g. Monkewitz & Huerre 1982; Huerre & Rossi 1998).

7.1. Pulsatile flows

For the simple single-harmonic base flows, each flow pulse creates a single vortex ring.
Over the range of reduced velocity considered, these rings travel at approximately
the same initial speed, 3ūm, independent of pulse period, as shown in figure 4. Since
the speed of an isolated vortex ring is proportional to its circulation (Saffman 1992,
chap. 10), this carries the likely implication that the circulation of the vortex rings
is also approximately independent of pulse period, even though the pulse-integral
vorticity flux must increase with pulse period and hence reduced velocity. At larger
reduced velocities, an extended separated shear layer trails in the wake of each ring;
this shear layer should contain the remaining vorticity not rolled into the vortex ring,
and so becomes longer as reduced velocities increase. We have noted the apparent
similarity of this behaviour to that which is observed in the formation of single vortex
rings (Gharib et al. 1998), where there is a universal ‘formation number’ that describes
the maximum amount of circulation that will be carried by a vortex ring produced
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Figure 23. Summary curves of marginal Reynolds numbers for Floquet instabilities plotted
as functions of (a) reduced velocity and (b) Womersley number.

by a translating piston, regardless of stroke above some minimum value; any excess
vorticity trails behind the ring in an extended shear layer. We would expect that at
sufficiently low pulse periods, vortex ring circulation and initial speed will fall, but
see no evidence of this for reduced velocities as low as Ured = ūmT /D = 0.5.

The overall flow behaviour for complicated base flow pulsatility with many temporal
harmonics is not yet known; however, it is likely that the basic features will be
dominated by consideration of vortex rings and extended shear layers. In our earlier
work, we considered a base flow with two harmonics (Sherwin & Blackburn 2005,
§§ 6.1.2, 6.4.3). In that case, two vortex rings were formed per pulse period, with the
stronger of the two overtaking and coalescing with the weaker ring some distance
downstream of the stenosis, and, in the process, trailing an extended thin shear
layer.

7.2. Floquet instability and transition

The two primary types of global instability modes that we have found are both
associated with the vortex rings generated during each pulsatile cycle and also
represent the largest length flow scales in the problem. Figure 23 (a) shows a
compilation of the marginal-Re stability curves for the wavy and period-doubling
Floquet instability modes, plotted as functions of reduced velocity. At low reduced
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velocities, short wavelength vortex core instabilities dominate, and the connection
to the analysis and experiments of Widnall et al. (1974) for similar instabilities of
isolated and unbounded vortex rings was demonstrated in § 5.1. The associated length
scales are those of the vortex ring diameter and core size. At larger reduced velocities,
an alternating, or period-doubling vortex-tilting type instability dominates. In this
case, the more relevant length scales are likely to be the ring diameter and axial
separation of successive rings. Similar instabilities, including both bifurcating and
blooming pulsatile jets, have been recorded, but not as far as we know analysed, for
unbounded flows. By definition, period-doubling cannot arise for an isolated vortex
ring, but tilting, producing a divergence of path, is certainly possible.

The axial locations of peak Floquet mode energy vary with reduced velocity, but a
common feature underlying all these instabilities appears to be a competition between
an instability that grows with distance downstream of the stenosis (i.e. with time),
while the energy in the vortex rings that feed the instability dissipates as they move
downstream. Both the wavy and the ring-tilting instability modes have an ‘optimal’
reduced velocity at which the critical Reynolds number reaches a minimum; this
value is Ured ≈ 0.875 for both the k = 3 and k = 4 wavy modes, and Ured ≈ 3.25 for
the k = 1 tilting mode. For both types of instability, the optimum coincides with the
location of peak Floquet mode energy reaching its most upstream point (see figures 7
and 14).

We suggest that the existence of a minimum critical Reynolds number at an
‘optimal’ reduced velocity is, for both the vortex-tilting and wavy modes, the outcome
of a competition between two opposing effects. The first effect stems from the fact
that, at a fixed Reynolds number, vortex rings of the base flow survive for a greater
time at higher reduced velocities (see figure 4). Since the Floquet instabilities derive
their energy from these vortex rings, we may reasonably expect the Reynolds number
required for marginal stability to fall with the increased vortex-ring lifetimes that
occur as the reduced velocity of the base flow rises. The second effect comes about
because the spacing between successive rings increases approximately linearly with
reduced velocity. This increased spacing reduces the strength of cooperative coupling
which we have noted for both kinds of Floquet instability. As a result, we may expect
that the Reynolds number required for marginal stability would rise as reduced
velocity increases. A balance between these two effects determines the location of the
optimal reduced velocity. We note that for both the wavy and tilting modes, there is
an approximately linear relationship between Ured and Rec in the high-Ured limits.

As pointed out in § 1, the experimental observations and our previous numerical
study are broadly consistent in predicting that when Reynolds numbers are high
enough for transition to occur, this is manifested as pulse-locked turbulent bursts
that are located some diameters downstream of the stenosis, and the flow then will
apparently relaminarize further downstream. The present results support and extend
those findings by showing a pulse-period dependence of the axial location of these
turbulent bursts, brought about by self-destruction of vortex rings through either
period-doubling or wavy instabilities. It is evident from an examination of figures 9
and 16 that the location of turbulent breakdowns in the asymptotic states moves
downstream as reduced velocity, or equivalently pulse period, is increased. In fact,
we might expect there to be a simple linear relationship between this location and
the reduced velocity. In figure 24, we plot the axial location of the centroid of the
distribution of q ′ (taken when the total turbulent kinetic energy is a maximum at one
of the eight phase points) against reduced velocity, and it is seen that, indeed, such
an approximately linear relationship exists.
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Figure 24. Axial location of the centroid of maximum turbulent energy (conditioned by phase
averaging) in asymptotic states in the absence of high-frequency inflow perturbation (•). The
dashed line has a slope of unity. At Ured = 10, the single isolated datum (◦) shows the result
when high-frequency perturbation is added to the inflow.

7.3. Convective shear-layer instability

Extended shear layers that may be present in these flows at large pulse periods
are susceptible to convective instabilities which can grow and die within a single
pulse, even though driven continuously. Pulsatile flows of higher reduced velocity
are more receptive to this type of instability simply because the shear layers become
longer as pulse periods increase, as discussed in § 7.1. The shear layer of steady
stenotic flow is susceptible to convective instability at Reynolds numbers below the
first critical global instability Reynolds number. We note again that the quantitative
results obtained will be dependent on the nature and amplitude of the forcing used
to drive the convective instability. In our essentially nonlinear (DNS-based) studies,
the amplitude of high-frequency harmonic inflow forcing was maintained at 0.001ūm.

There is little evidence that the convective instability will interact with the Floquet
instability at the optimal reduced velocities for the onset of the instability (i.e. 0.875
and 3.25), principally because the trailing shear layers are less pronounced at these
low values. However, there was a substantial destabilizing effect found at Ured = 10,
with the Floquet multiplier at Re = 600 increasing in size from µ = −1.18 to −12.7
when the convective instability received low-level high-frequency driving. Even though
the Floquet instability for Ured = 10 was excited by the convective instability, it still
maintained its essential period-doubling nature.

When high-frequency perturbative forcing was added to the inflow of DNS of
transitional flow at (Ured = 10, Re = 600), the effect was to reduce the axial distance
downstream from the stenosis at which turbulent breakdown occurs as compared
to the unperturbed case. A demonstration of this change is shown in figure 24,
where at Ured = 10 the axial downstream length to turbulent breakdown has been
approximately halved by the presence of the high-frequency perturbation.

In any physical experiment or application, inevitably some uncontrolled noise or
high-frequency component will be present, and for pulsatile flows with extended shear
layers, this may have a substantial influence on the observed results. However, we
suggest that, at least for low-amplitude noise, the fundamental natures of large-scale
instabilities, which are associated primarily with distortions and instabilities of vortex
rings, are likely to survive.
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7.4. Physiological application and relevance

Figure 23 (b) re-presents the same data as figure 23 (a), but with the Womersley number
as the independent variable, rather than reduced velocity. In the larger arterial vessels
of the human cardiovascular system, physiologically reasonable parameters can be
argued to be in the range 100 � Re � 600 and 4 � α � 25 in rest conditions (see e.g.
McDonald 1974; Nichols & O’Rourke 1998). Since for a given pulse rate and blood
viscosity, α increases directly with vessel diameter, large Womersley numbers are
associated with the larger vessels. Although conditions may change with pathology
or with exertion, an examination of figure 23 (b) suggests that the instability modes
examined here are directly relevant to human arterial flows where significant stenosis
is present.

The flow rate waveforms observed in the human body cannot typically be
represented by a single Fourier harmonic, but may instead contain between eight
and sixteen significantly energetic harmonics. One or more of these may well be able
to excite either or both of the two Floquet instability modes. In §§ 6.2.2 and 6.2.3, we
have also highlighted that a high-frequency low-amplitude inflow perturbation to a
base flow of relatively high reduced velocity can significantly influence the response of
the primary instability, although the fundamental nature of the instability is typically
maintained. In the case we have studied at Ured = 10, the most receptive perturbation
frequency was a fiftieth harmonic which is higher than the typical frequency content
of a physiological waveform. However, at increased reduced velocity and Reynolds
number, there was a significant broadening of the frequecy band that can lead to
shear-layer oscillations (see figure 19). Therefore, even a perturbation at the sixteenth
harmonic where the perturbation reduced velocity would be Ured (ε) = 10/16 = 0.625
is likely to promote a similar interaction. Our present results for the susceptibility
to shear-layer instability, together with our earlier study of shear-layer instability
in a two-harmonic pulsatile flow (Sherwin & Blackburn 2005, § 6.4.3), and in vitro
flow visualizations (Cassanova & Giddens 1978; Khalifa & Giddens 1981; Ahmed &
Giddens 1983; Ojha et al. 1989), suggest that shear-layer oscillations may be common.
Since shear-layer instabilities are convective in nature and hence dependent on the
magnitude and frequency content of any imposed disturbance (owing, for example, to
vessel wall movement, upstream flow separation, respiratory or external body motion)
it is very difficult to comment further on their physiological importance relative to
the vortex-ring instability mechanisms without significant additional information.

It is not uncommon for atherosclerotic stenoses to be found not as isolated instances,
but serially along an arterial branch (Goldstein et al. 2000; Dodds & Phillips 2003).
We may speculate that this pathology is somehow related to our observations of
localized turbulent bursts downstream of a stenotic contraction, with associated high
temporal and spatial gradients of shear stress on endothelial cells, while the magnitude
of stress would be lower than that existing in the stenosis throat itself. If such a linkage
exists, one might expect that multiple inline stenoses are created serially in time, too,
with each successive stenosis helping to create fluid-mechanical conditions conducive
to growth of a downstream plaque.

8. Conclusions
Through a systematic parametric variation of a dimensionless pulse period for a

simple pulsatile stenotic flow, we have shown that there are at least two kinds of
global instability mode, both associated with vortex rings produced by flow pulsatility:
a period-doubling mode that dominates at high reduced velocity, and a set of wavy
modes that dominate at low reduced velocity. In addition, for steady flow, and a
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specific pulsatile flow considered, the separated shear layer is susceptible to convective
instability at still lower reduced velocities. When the base flow reduced velocity is large
enough to allow an extended shear-layer region behind the primary vortex ring, we
have observed that high-frequency low-amplitude perturbations greatly enhance the
rate of growth of the primary Floquet instability. This interaction of the convective
instability with the Floquet mode may be relevant to physiological flows which may
possess significant energy up to the sixteenth harmonic of the fundamental pulse
frequency.

If Reynolds numbers are sufficiently high, there will be a region of localized turbu-
lent breakdown downstream of a stenotic contraction, followed by relaminarization.
Even though the location of greatest Floquet mode energy can be far downstream of
the stenosis, the turbulent breakdown always eventually settles much further upstream,
where more energy can be extracted from the pulsatile flow. Further, when introducing
high-frequency perturbations to a case with higher base flow reduced velocity, the tur-
bulent breakdown occurs significantly closer to the stenotic region as compared to the
unperturbed case. In our original problem definition, we mentioned that adoption of a
75 % stenosis is motivated by the observation that, in clinical practice, a blockage can
be readily identified through medical imaging as it corresponds to a 50 % reduction in
arterial diameter. The current investigation has further determined that for this degree
of stenosis, transitional flow leading to a turbulent breakdown is possible at physiolo-
gically relevant values of Reynolds number and non-dimensional pulse period.

In real physiological flows, geometric imperfections such as stenosis asymmetry and
vessel curvature, along with vessel distensibility, will also play a role in determining
the nature of transition. The present work does not examine these aspects, but we
hope that it may help to provide a frame of reference for such studies.
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