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Abstract

A primitive-variable formulation for simulation of time-dependent incompressible flows in cylindrical coordinates is

developed. Spectral elements are used to discretise the meridional semi-plane, coupled with Fourier expansions in

azimuth. Unlike previous formulations where special distributions of nodal points have been used in the radial di-

rection, the current work adopts standard Gauss–Lobatto–Legendre nodal-based expansions in both the radial and

axial directions. Using a Galerkin projection of the symmetrised cylindrical Navier–Stokes equations, all geometric

singularities are removed as a consequence of either the Fourier-mode dependence of axial boundary conditions or the

shape of the weight function applied in the Galerkin projection. This observation implies that in a numerical imple-

mentation, geometrically singular terms can be naively treated by explicitly zeroing their contributions on the axis in

integral expressions without recourse to special treatments such as l’Hopital’s rule. Exponential convergence of the

method both in the meridional semi-plane and in azimuth is demonstrated through application to a three-dimensional

analytical solution of the Navier–Stokes equations in which flow crosses the axis.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Spectral element–Fourier discretisations [1,2,12] are well suited to direct numerical simulation of

flows where the geometry exhibits arbitrary complexity in a sectional plane but is infinite or periodic in

an orthogonal direction. A number of inter-related simulation technologies have been developed for the

spectral element component of these discretisations [6,14]. An obvious extension is to cylindrical
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coordinate systems, where Fourier expansions can be used in the azimuthal coordinate, while arbitrary

complexity can again be accommodated in the meridional semi-plane through use of spectral

elements.
Spectral element-based formulations have been proposed for the axisymmetric Stokes problem [7] and

the three-dimensional Navier–Stokes system [8,23]. A common feature of these formulations is the use, on

elements that touch the cylindrical axis, of Jacobi-polynomial-based expansions in the radial direction. The

specialisation of elements that touch the coordinate axis leads (in conforming-element implementations) to

undesirable topological constraints on the mesh layout [7]. Besides the obvious specialisation required by

the use of a non-standard expansion basis in some elements, these Jacobi polynomials require that some

indeterminate axial terms in elliptic equations be evaluated through l’Hopital’s rule [7,23], further com-

plicating treatment on the axis.
In the semi-discrete system, the use of Fourier expansions in the azimuthal coordinate brings about a

number of requirements on axial boundary conditions [4,17,23]. By exploiting these in the weak (Galerkin)

form of the elliptic equations in the velocity-correction scheme employed in this paper [13], it can be

demonstrated that the use of specialised elements and l’Hopital’s rule can both be avoided, and that the

resulting method, with Gauss–Lobatto–Legendre nodal expansions in all elements, preserves exponential

convergence in the meridional semi-plane. The method is not specific to the spectral nodal element–Fourier

discretisation, or the time-stepping scheme, but is also applicable to other treatments (e.g. finite element–

Fourier, p-type element–Fourier) that employ Galerkin discretisations in the meridional semi-plane in
conjunction with expansion functions that have a natural boundary–interior decomposition. Thus, unlike

methods developed in previous work, this formulation demonstrates that the same spectral element or p-
type finite element treatments commonly used in Cartesian coordinates can be employed in cylindrical

coordinates without recourse to basis modification.

Many previous discussions and assessments of cylindrical-coordinate formulations for the incompress-

ible Navier–Stokes system have lacked application to a convenient non-axisymmetric test problem with an

analytical solution. Here, we have used the planar Kovasznay flow [15] described in terms of cylindrical

coordinates. In this case the problem becomes a three-dimensional, three-component flow, and by ap-
propriate misalignment of the problem and coordinate axes, it can be ensured that all the axial terms in the

Navier–Stokes equations are exercised.

In this paper, we give a complete exposition of the formulation, its application within a velocity-

correction time-integration scheme, and demonstrate that the method preserves the underlying (here,

exponential) convergence properties of the spatial discretisation. Further, we demonstrate that the

geometrically singular terms arising in the cylindrical description of the Navier–Stokes equations do not

contribute to the integral terms of the Galerkin formulation and so can be effectively ignored (or zeroed) in

a numerical implementation. While some of the parts of the development can be found elsewhere in the
literature, they are not available in a single presentation. To our knowledge, this is the first exposition of a

three-dimensional spectral element–Fourier scheme for the Navier–Stokes equations that uniformly

employs standard expansion functions in all elements, and for which exponential three-dimensional spatial

convergence is demonstrated.

The paper is organised as follows. We start our formulation in Section 2 by defining the continuum

equations and boundary conditions in cylindrical coordinates. In this section, we also introduce the

common practice of diagonalising and symmetrising the equations. In Section 3, we discuss the numerical

discretisation of the Navier–Stokes equations. First, we detail the Galerkin formulation and spectral/hp
element discretisation adopted in the current work and illustrate how these components of the formulation

remove the effect of the geometric singularities in the problem. We then introduce a temporal discretisation

using a velocity-correction scheme which gives rise to a pressure Poisson equations. In Section 4, we apply

the discrete formulation to a non-axisymmetric solution of the Kovasznay problem expressed in terms of

cylindrical coordinates. In Section 5, we summarise the important steps of the formulation, and discuss
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various ways in which a naive treatment of the forcing function in the pressure Poisson equation can

compromise convergence.
2. Continuum equations and axial boundary conditions

Starting with the incompressible unsteady Navier–Stokes equations

otuþNðuÞ ¼ � 1

q
rp þ mr2u; ð1Þ
r � u ¼ 0; ð2Þ

and taking the coordinates z, r, h to indicate, respectively, the axial, radial and azimuthal directions in a

cylindrical system, we use u ¼ uðz; r; h; tÞ ¼ ðu; v;wÞðtÞ to represent the velocity components and NðuÞ to

represent non-linear advection terms. In addition, we have the pressure p, density q and kinematic viscosity

m. We will take NðuÞ either in their cylindrical-coordinate non-conservative (material-derivative) form

u � ru ¼ uozu
�

þ voruþ
1

r
½wohu�; ð3Þ

uozvþ vorvþ
1

r
½wohv� ww�; ð4Þ

uozwþ vorwþ 1

r
½wohwþ vw�

�
; ð5Þ

or skew-symmetric form

ðu � ruþr � uuÞ=2 ¼ uozu
�

þ voruþ ozðuuÞ þ orðvuÞ þ
1

r
½wohuþ ohðwuÞ þ vu�; ð6Þ

uozvþ vorvþ ozðuvÞ þ orðvvÞ þ
1

r
½wohvþ ohðwvÞ þ vv� 2ww�; ð7Þ

uozwþ vorwþ ozðuwÞ þ orðvwÞ þ
1

r
½wohwþ ohðwwÞ þ 3vw�

��
2: ð8Þ

(To consider the above as a Stokes problem, we set NðuÞ ¼ 0.)

The velocity must be 2p-periodic in h, hence the velocity field can be projected exactly onto a set of two-

dimensional complex Fourier modes

ûkðz; r; tÞ ¼
1

2p

Z 2p

0

uðz; r; h; tÞ expð�ikhÞdh; ð9Þ

where k is an integer wavenumber. The velocity field can be recovered from these complex modes through

Fourier series reconstruction

uðz; r; h; tÞ ¼
X1
k¼�1

ûkðz; r; tÞ expðikhÞ: ð10Þ

In practice, only a finite number of modes are retained in the calculation, and the conjugate-symmetric

property of the Fourier transforms of real variables [5] is exploited, so that the negative-k modes are not

required.
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The cylindrical-coordinate forms for the gradient and Laplacian of a complex scalar mode are

rk ¼ ozð Þ; orð Þ;
ik
r
ð Þ

� �
; r2

k ¼ o2z ð Þ þ
1

r
orrorð Þ �

k2

r2
ð Þ; ð11Þ

while for the divergence of a complex vector mode

r � ð Þk ¼ ozð Þ þ
1

r
orrð Þ þ

ik
r
ð Þ: ð12Þ

The components of the Fourier transformed momentum equations (1) can now be written

otûk þ NðuÞz
� �^

k
¼ � 1

q
ozp̂k þ m o2z

�
þ 1

r
orror �

k2

r2

�
ûk; ð13Þ
ot v̂k þ NðuÞr
� �^

k
¼ � 1

q
orp̂k þ m o2z

�
þ 1

r
orror �

k2 þ 1

r2

�
v̂k � m

2ik
r2

ŵk; ð14Þ
otŵk þ NðuÞh
� �^

k
¼ � ik

qr
p̂k þ m o2z

�
þ 1

r
orror �

k2 þ 1

r2

�
ŵk þ m

2ik
r2

v̂k; ð15Þ

where ½NðuÞz�^k , etc. represent mode-k components of the transformed non-linear terms.
2.1. Diagonalisation

Note the coupling of v̂k and ŵk in the viscous terms of Eqs. (14) and (15), which arises through taking the

divergence of the viscous stress tensor in cylindrical coordinates. The change of variables

~vk ¼ v̂k þ iŵk; ~wk ¼ v̂k � iŵk; ð16Þ

can be introduced to diagonalise these linear terms [19], giving:

otûk þ NðuÞz
� �^

k
¼ � 1

q
ozp̂k þ m o2z

�
þ 1

r
orror �

k2

r2

�
ûk; ð17Þ
ot~vk þ NðuÞr
� �~

k
¼ � 1

q
or

�
� k

r

�
p̂k þ m o2z

 
þ 1

r
orror �

k þ 1½ �2

r2

!
~vk; ð18Þ
ot~wk þ NðuÞh
� �~

k
¼ � 1

q
or

�
þ k

r

�
p̂k þ m o2z

 
þ 1

r
orror �

k � 1½ �2

r2

!
~wk; ð19Þ
ozûk þ
1

r
orrv̂k þ

ik
r
ŵk ¼ 0; ð20Þ

where also ½NðuÞr�~k ¼ ½NðuÞr�^k þ i½NðuÞh�^k and ½NðuÞh�~k ¼ ½NðuÞr�^k � i½NðuÞh�^k . While the equation set

contains geometric singularities at r ¼ 0, we expect on physical grounds that all terms remain finite, since

the same equations, expressed in Cartesian coordinates, contain none. Nevertheless, we are concerned with

the numerical implications and treatment of these geometric singular terms which can still lead to numerical
complications.
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2.2. Symmetrisation

Following standard practice, the whole set of equations can be symmetrised by premultiplication of Eqs.
(17)–(20) by r, leading to:

otrûk þ r NðuÞz
� �^

k
¼ � 1

q
rozp̂k þ m ozroz

�
þ orror �

k2

r

�
ûk; ð21Þ
otr~vk þ r NðuÞr
� �~

k
¼ � 1

q
rorð � kÞp̂k þ m ozroz

 
þ orror �

k þ 1½ �2

r

!
~vk; ð22Þ
otr~wk þ r NðuÞh
� �~

k
¼ � 1

q
rorð þ kÞp̂k þ m ozroz

 
þ orror �

k � 1½ �2

r

!
~wk; ð23Þ
ozrûk þ orrv̂k þ ikŵk ¼ 0; ð24Þ

where the fact that ozr ¼ 0 has been used. Note that as a result of this operation all geometric singularities

on the left-hand sides of this set of equations are removed, while on the right-hand sides they are, at worst,
of type 1=r.

2.3. Axis boundary conditions

Appropriate conditions to be applied at the axis are derived from solvability requirements and kinematic

constraints on scalar and velocity fields at the origin [3,21,23]. In principle, regularity conditions at the axis

impose constraints on successively higher radial derivatives of the Fourier transformed variables with in-

creasing mode number [24]. However, in practice we only apply the essential boundary conditions to solve
the variational equations of the Fourier transformed pressures and velocities, augmented by a minimal

subset of radial parity requirements [17]. The required smoothness of the solution is therefore achieved

asymptotically as spatial resolution is increased. These considerations lead to the following modal de-

pendence of boundary conditions at r ¼ 0:

k ¼ 0 : orû0 ¼ ~vy0 ¼ ~w0 ¼ orp̂0 ¼ 0;

k ¼ 1 : ûy1 ¼ ~vy1 ¼ or~w1 ¼ p̂y1 ¼ 0;

k > 1 : ûyk ¼ ~vyk ¼ ~wy
k ¼ p̂yk ¼ 0:

ð25Þ

Here, the essential boundary conditions are marked by the superscript y and the remaining terms derive

from parity requirements. Note are that it is the non-zero values of ~w1 permitted by its boundary condition

that allows flow to cross the axis.
2.4. Structure of the Fourier-transformed non-linear terms at the axis

The axial velocity boundary conditions given by Eq. (25) allow us to determine the radial structure of the

Fourier-transformed non-linear terms at the axis. We note from the boundary conditions given in Eq. (25)
that all velocity components which have a zero value at the axis must at least have a linear radial decay as

they approach the axis. Similarly, the two Neumann velocity boundary conditions, orû0 ¼ or~w1 ¼ 0, imply

these Fourier velocity variables may have a finite value at the axis. Therefore, we note that the only possible
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non-zero velocity modes at the axis are û0, v̂1 ¼ ~w1=2 and ŵ1 ¼ i~w1=2, where we have applied the inverse of

relationship (16) to get the last two conditions.

Considering the velocity components which may be finite at the axis, we proceed by noting that through
the Fourier convolution theorem (see e.g. [5]),

ĉk ¼ cabk ¼
X
pþq¼k

âpb̂q; k; p; q 2 I;

only modes k ¼ 0, k ¼ 1 and k ¼ 2 (and negative-k conjugates) of any quadratic non-linear terms, Eqs. (3)–

(5) and (6)–(8), can have non-zero values at r ¼ 0. Explicitly, we note that for k ¼ 0 we have ðp; qÞ ¼ ð0; 0Þ,
ð�1; 1Þ and ð1;�1Þ; for k ¼ 1: ðp; qÞ ¼ ð0; 1Þ and ð1; 0Þ; and for k ¼ 2: ðp; qÞ ¼ ð1; 1Þ.

In determining the radial behaviour of the non-linear terms at the axis, we shall first consider the geo-

metrically singular terms arising in Eqs. (3)–(5) and (6)–(8) as a consequence of the 1=r factors. We will then

discuss the contributions of the remaining terms. The first observation we can make is that all the bracketed

non-linear terms premultiplied by 1=r in Eqs. (3)–(5) evaluate to zero at r ¼ 0. This is to be expected, since we

know that even when multiplied by 1=r, they must remain finite. The point can be demonstrated by noting

that either the terms are individually zero as a direct consequence of the boundary conditions (25), or a

summation of terms exactly cancel. For example, when r ¼ 0 a contribution to the k ¼ 2 Fourier-trans-

formed square-bracketed term in Eq. (4) will arise from ŵ1ohv̂1 � ŵ1ŵ1, which could potentially have a finite
axial contribution. However, upon insertion of the relationship that v̂1 ¼ ~w1=2 and ŵ1 ¼ i~w1=2 and using

Fourier differentiation with respect to h it will be found that ŵ1ohv̂1 � ŵ1ŵ1 sums to zero.

Even though the square-bracketed terms in Eqs. (3)–(5) evaluate or sum to zero, we still need to know

the radial decay of these terms as they approach the axis, since when multiplied by the 1=r factor the

product may still have a finite limit. We therefore examine how these Fourier-transformed (bracketed)

terms approach zero as as function of r. The three possibilities after application of boundary conditions

(25) and using the convolution and differentiation theorems are: (i) linear decay, as the product of zero and

a finite term; (ii) quadratic decay, either directly as the product of two zero terms or the difference of
(asymptotically) equal linear terms; and (iii) quartic decay, as the difference of equal quadratic terms. Of

these, only the linear terms will, when premultiplied by 1=r, have a finite analytical limit at the axis which

could be determined, if required, using l’Hopital’s rule. The outcome of the analysis for the square-

bracketed terms is as follows:

k ¼ 0 k ¼ 1 k ¼ 2 k > 2

NðuÞz
� �^

k r¼0 :j quadratic linear linear quadratic;

NðuÞr
� �^

k r¼0 :j quadratic quadratic quartic quadratic;

NðuÞh
� �^

k r¼0 :j quadratic linear quartic quadratic:

ð26Þ

Note that for k ¼ 0, none of the terms in question is (when premultiplied by 1=r) non-zero at r ¼ 0.

Finally, we consider the axial form of the remaining terms of the Fourier-transformed non-linear terms.
We will only consider the non-conservative forms (3)–(5), but the conclusions for the radial structure of the

skew-symmetric forms are the same. By considering which Fourier modes contribute to the Fourier-

transformed non-linear terms and using the fact that only û0 and ~w1 can be non-zero at the axis we obtain

that the limit of the Fourier-transformed non-linear terms are:

k ¼ 0 k ¼ 1 k ¼ 2 k > 2

NðuÞz
� �^

k r¼0 :j 0 ~w1orû0 0 0;

NðuÞr
� �^

k r¼0 :j Reð~w1or~w1Þ=2 û0oz~w1=2 ~w1or~w1=4 0;

NðuÞh
� �^

k r¼0 :j 0 iû0oz~w1=2 i~w1or~w1=4 0:

ð27Þ
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For what follows, the most important feature in the above result is that for k ¼ 0, the radial component of

the non-linear terms can be non-zero at r ¼ 0 as a consequence of the non-linear contribution from the

coupled-velocity-component variable ~w1 associated with cross-axial flow.
3. Discretisation

3.1. Galerkin treatment of elliptic operators

After the symmetrisation, all elliptic scalar operators in the (Navier–)Stokes problem are of type

ozrozĉk þ orrorĉk �
r2

r
ĉk ¼ rf̂k; ð28Þ

where ĉk, f̂k, are complex scalar variables and r2 is a Fourier-mode constant, e.g. r2 ¼ ðk þ 1Þ2 in Eq. (22).

These equations are converted to their weak form in conjunction with a projection [11,22]; they are mul-
tiplied by a weight function / (defined to be zero on all Dirichlet boundaries), and integrated by parts over

the solution domain X, boundary C ¼ CD þ CNZ
X
roz/ozĉk þ ror/orĉk þ

r2

r
/ĉk dX ¼ �

Z
X
r/f̂k dXþ

Z
CN

r/hdC; ð29Þ

where h represent non-essential (e.g. Neumann, onĉk) boundary conditions on boundary partition CN.

We impose all Dirichlet boundary conditions using a strong enforcement and maintaining the sym-

metry of the problem. Mathematically this requires that the Dirichlet boundary conditions are ‘lifted’

into the interior of the domain by some known function. This known lifted solution then modifies the

right-hand side of the original problem leaving a problem with homogeneous boundary conditions to be
solved. In practice the numerical solution is decomposed into a known, Dirichlet-boundary-condition-

satisfying contribution and an unknown contribution with homogeneous Dirichlet boundary conditions.

This is always possible since the elliptic operator is linear [11,14]. The argument that follows is not

necessarily true for weak enforcement of the Dirichlet boundary conditions, e.g. through a penalty

method.

We note that for cases where zero-Neumann conditions are imposed at the axis, the Fourier constants

r2 ¼ 0 and thus the potentially singular terms in operators of the form (29) do not need further

consideration.
Clearly, in order to reduce the r2=r singularities when r2 6¼ 0 at least one of ĉk, / in the third term of

Eq. (29) must be zero at r ¼ 0, while the other may be either zero or remain finite. If the numerator of

the term r2/ĉk=r contains one factor of r then the finite limit of this expression can be evaluated using

l’Hopital’s rule. If both ĉk and / are zero at r ¼ 0, then evaluation using l’Hopital’s rule is not required,

since the numerator of r2/ĉk=r will (at worst) contain a r2 factor and so the quotient will necessarily be

zero at r ¼ 0. By inspection of Eqs. (21)–(23) and (25) it can be seen that for all cases when the Fourier

constant r2 6¼ 0, we impose the Dirichlet boundary condition ĉk ¼ 0 at the axis. Further, due to the

strong enforcement of Dirichlet boundary conditions in the Galerkin formulation, /ðr ¼ 0Þ ¼ 0 also.
This simple observation is the key to the present formulation. The practical implication of this obser-

vation is that even if we independently construct geometrically singular terms of the form ĉk=r, we do not

need to evaluate the indeterminate limit (for example using l’Hopital’s rule) since in the Galerkin for-

mulation they are only required as a product of the form r2/ĉk=r. Therefore, we are free to naively set

the indeterminate limit of ĉk=r to zero (or any non-infinite value) without loss of generality in the

Galerkin approximation.
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3.2. Expansion bases

We now need to discuss the form of the expansion bases for ĉk, /. Ideally, expansion bases are required
which are zero at the axis for some variables and modes, but which also have support along the axis

whenever r2 ¼ 0. If global (e.g. Chebychev, Legendre) expansions are employed, then special combinations

of the underlying expansions can be made in order to ensure the functions satisfy these conditions, mode-

by-mode and variable-by-variable [24]. On the other hand, sets of expansion bases that allow a boundary–

interior decomposition – sets which have interior basis functions with zero support on the boundary and

boundary basis functions that have support on the boundary of the region (see Fig. 1) – automatically

satisfy this requirement. For these expansion sets, basis functions that are non-zero at the axis can be

partitioned out of the problem as required, and the remaining functions will satisfy the homogeneous es-
sential boundary conditions.

Typical bases designed for C0 continuity meet the requirements; suitable candidates are provided by h-
and p-type finite elements [18], nodal- and hierarchical spectral element expansions [6,14] and B-splines [16].

The present implementation has employed standard, Gauss–Lobatta–Legendre-nodal-based spectral ele-

ments, but any of the above alternatives could have been chosen. The partitioning of basis functions in

order to strongly satisfy essential boundary conditions is standard practice in finite element and spectral

element methodology.

3.3. Temporal discretisation

The Galerkin formulation using the boundary-interior decomposed basis has been sufficient to remove

the geometric singularities in the symmetrised form of the governing equations. In principle, any Navier–

Stokes time discretisation scheme based on this primitive formulation will therefore correctly deal with the

geometric singularities arising as a consequence of the cylindrical coordinate system. Nevertheless, many

commonly used discretisations, including the one adopted in this paper, employ a pressure Poisson

equation. Since this equation is constructed by taking the divergence of the momentum equation (1), it is
possible for geometrically singular terms to contribute to the domain-integral forcing term in the Galerkin

projection of this equation. Before elaborating on this point in Section 3.4, we first outline the temporal

discretisation adopted in this paper.

3.3.1. Velocity-correction time integration scheme

The temporal discretisation used is a projection scheme, based on backwards differencing in time. As

originally described [13], this was characterised as an operator-splitting scheme, but more recently [10] it has

been shown that the method is one of a class of velocity-correction projection schemes, which is how it will
be referred to here. For completeness, and as a guide to the cylindrical-coordinate treatment to follow, the

scheme will be briefly presented in its semi-discrete form.
Fig. 1. Shape of expansion bases for a fourth-order polynomial expansion using nodal spectral elements (left) and p-type hierarchical
expansion (right). Note that in both cases the basis functions can be decomposed into boundary contributions which have support on

the boundary and interior contributions which are identically zero on the boundary.
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The projection scheme requires the solution of a pressure Poisson equation to (approximately) maintain

solenoidality of the velocity, a point that was not directly addressed in Section 2. The treatment of this

elliptic operator at r ¼ 0 carries with it the same considerations as outlined in Section 3.1 (the Fourier mode
constant and the axial boundary conditions for p̂k are the same as for ûk), however, it will transpire in

Sections 3.3.2 and 3.4 that careful examination is required of the domain- and boundary-integral forcing

terms in this equation.

Backwards time differencing is used to approximate a derivative at the new time level ðnþ 1Þ through

otð Þðnþ1Þ ¼ 1

Dt

XJ
q¼0

aqð Þðn�qþ1Þ þOðDtÞJþ1
; ð30Þ

and in addition, a method is needed to explicitly extrapolate previous terms to the new time level, which is

achieved through polynomial approximation

ð Þðnþ1Þ ¼
XJ�1

q¼0

bqð Þ
ðn�qÞ þOðDtÞJ : ð31Þ

The discrete weights aq, bq, for schemes of order up to J ¼ 3 appear, e.g. in [13,14].

The time-step for the velocity-correction scheme commences with solution of a pressure Poisson

equation, followed by a pressure-gradient update

ru� ¼ �
XJ
q¼1

aqruðn�qÞ � Dt
XJ�1

q¼0

bqrNðuðn�qÞÞ; ð32Þ
rr2pðnþ1Þ ¼ q
Dt

rr � u�; ð33Þ

with

ronpðnþ1Þ ¼ �rqn �
XJ�1

q¼0

bq Nðuðn�qÞÞ
�

þ mr�r� uðn�qÞ þ otu
ðn�qÞ�; ð34Þ
ru�� ¼ ru� � Dt
q
rrpðnþ1Þ; ð35Þ

where n is the domain unit outward normal, and Eq. (34) is used to estimate a Neumann pressure boundary

condition on (e.g. far-field, solid) boundaries where no other condition is explicitly set. The enforcement of

the solenoidality of r2uðn�qÞ ¼ rr � uðn�qÞ � r �r� uðn�qÞ in forming Eq. (34) is essential to the time-

accuracy of the scheme [13]. The step is completed by applying a viscous correction through solution of a

Helmholtz (elliptic) equation for uðnþ1Þ

rr2uðnþ1Þ � ra0
mDt

uðnþ1Þ ¼ � ru��

mDt
; ð36Þ

(actually, a set of scalar Helmholtz equations) together with appropriate velocity boundary conditions at

time ðnþ 1ÞDt.
When it comes to applying this scheme to Eqs. (21)–(24), the first substep, Eqs. (32)–(35), may conve-

niently be applied to the primitive variables (ûk; v̂k; ŵk; p̂k), while the second substep, Eq. (36), may be

applied to the diagonalising variables (ûk;~vk; ~wk; p̂k).
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The use of higher derivatives in computing the rotational forms used in the pressure boundary condi-

tions implies the use of a high-order spatial discretisation in the algorithm of [13], but other forms of the

velocity-correction schemes do not carry this restriction, as pointed out in [10]. We will not pursue this issue
further here, and will employ a high-order spatial discretisation, but note that this does not imply a lim-

itation on our central conclusions.

3.3.2. Solution algorithm

We now write the full solution algorithm for a single timestep, and defer further discussion of axial

singularities to Section 3.4.

The component form for the pressure Poisson equation (33), exploiting the fact that ozr ¼ 0, is

ozroz

�
þ orror �

k2

r

�
p̂ðnþ1Þ
k ¼ q

Dt
ozrû�k
�

þ orrv̂�k þ ikŵ�
k

	
; ð37Þ

where each component appearing in the right-hand side divergence is:

rû�k ¼ �
XJ
q¼1

aqrûðn�qÞ � Dt
XJ�1

q¼0

bqr Nðuðn�qÞÞz
� �^

k
; ð38Þ
rv̂�k ¼ �
XJ
q¼1

aqrv̂ðn�qÞ � Dt
XJ�1

q¼0

bqr Nðuðn�qÞÞr
� �^

k
; ð39Þ
ŵ�
k ¼ �

XJ
q¼1

aqŵðn�qÞ � Dt
XJ�1

q¼0

bq Nðuðn�qÞÞh
� �^

k
: ð40Þ

Note that since orrv̂�k ¼ rorv̂�k þ v̂�k , there are components in the second and third terms of the right-hand

side of Eq. (37) that do not directly contain a factor of r. Eq. (37) is augmented with the boundary
conditions

ronp̂
ðnþ1Þ
k ¼ � rq

XJ�1

q¼0

nz bq Nðuðn�qÞÞ
��

þ mr�r� uðn�qÞ þ otu
ðn�qÞ�

z

�^
k

þ nr bq Nðuðn�qÞÞ
��

þ mr�r� uðn�qÞ þ otu
ðn�qÞ�

r

�^
k
; ð41Þ

on the non-axial segment of CN for p̂k, and solved using the Galerkin formulation outlined in Section 3.1.

For p̂0 we have orp̂0 ¼ 0 on the axial segment of CN, while the axis is a location of p̂k ¼ 0 essential boundary

conditions for all other modes. Note that terms multiplying nh are not required as the domain is axisym-
metric. The real and imaginary contributions to the mode-k rotational boundary terms are, with

f̂k ¼ ozv̂k � orûk:

Re r ðr
��

�r� uÞz
�^
k

	
¼ ð1þ rorÞReðf̂kÞ � kozImðŵkÞ þ

k2

r
ReðûkÞ; ð42Þ
Im r ðr
��

�r� uÞz
�^
k

	
¼ ð1þ rorÞImðf̂kÞ þ kozReðŵkÞ þ

k2

r
ImðûkÞ; ð43Þ
Re r ðr
��

�r� uÞr
�^
k

	
¼ �rozReðf̂kÞ �

k
r

�
þ kor

�
ImðŵkÞ þ

k2

r
Reðv̂kÞ; ð44Þ
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Im r ðr
��

�r� uÞr
�^
k

	
¼ �rozImðf̂kÞ þ

k
r

�
þ kor

�
ReðŵkÞ þ

k2

r
Imðv̂kÞ: ð45Þ

To complete the projection step, we initially determine ru�� as:

rû��k ¼ rû�k � Dt rozp̂
ðnþ1Þ
k ; ð46Þ
rv̂��k ¼ rv̂�k � Dt rorp̂
ðnþ1Þ
k ; ð47Þ
rŵ��
k ¼ rŵ�

k � Dt ikp̂ðnþ1Þ
k ; ð48Þ

where we note the factor of r now applied to ŵ�
k in (48). The correction step is constructed by applying the

change of variables required to diagonalise the viscous terms, i.e.

r~v��k ¼ rv̂��k þ irŵ��
k ; r~w��

k ¼ rv̂��k � irŵ��
k ; ð49Þ

and the Helmholtz equation for each velocity component then becomes:

ozroz

�
þ orror �

k2

r
� ra0
mDt

�
ûðnþ1Þ
k ¼ � r

mDt
û��k ; ð50Þ
ozroz

 
þ orror �

ðk þ 1Þ2

r
� ra0
mDt

!
~vðnþ1Þ
k ¼ � r

mDt
~v��k ; ð51Þ
ozroz

 
þ orror �

ðk � 1Þ2

r
� ra0
mDt

!
~wðnþ1Þ
k ¼ � r

mDt
~w��
k ; ð52Þ

which are solved by Galerkin projection. Finally, the Fourier-transformed radial and azimuthal velocities

v̂ðnþ1Þ
k ¼ ~vðnþ1Þ

k

�
þ ~wðnþ1Þ

k

	.
2; ŵðnþ1Þ

k ¼ i ~wðnþ1Þ
k

�
� ~vðnþ1Þ

k

	.
2; ð53Þ

are recomputed to complete the time step.

In the Helmholtz equations (50)–(52), we now have an extra term on the left-hand side, compared to the

canonical form (28), but the treatment of the axial terms on the left-hand sides of the equations is not

altered and all the previous conclusions regarding geometrically singular terms still hold. The Galerkin

projections of (50)–(52) are of the formZ
X
roz/ozĉk þ ror/orĉk þ

r2

r
/ĉk þ rc2/ĉk dX ¼ �

Z
X
r/f̂k dXþ

Z
CN

r/hdC; ð54Þ

where c2 ¼ a0=mt is a Helmholtz constant multiplying the new term.
3.4. Geometrically singular terms in the pressure Poisson equation

To recap, we recall that all geometrically singular terms arising in the Helmholtz equations (50)–(52) do

not contribute to the integrals in the weak Galerkin projection of the discrete problems. The right-hand

sides of these equations are all multiplied by a factor of r, which zeros any contribution made by the in-

determinate, but finite, parts of the geometrically singular non-linear terms (Section 2.4) implicit in the
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definition of ~u��k . The left-hand side terms do not contribute through a combination of factors: firstly, for

certain terms where there are Neumann boundary conditions on the axis, the Fourier-mode constant, r2, is

zero. Secondly, the strong imposition of Dirichlet boundary conditions (given in (25)) means that both the
variable and the weight function are zero at the axis, which in turn implies that the numerators of the

singular expressions approach zero faster than the denominators.

Now if we consider the pressure Poisson equation (37), a similar argument holds for the left-hand side

geometrically singular terms as we above applied to the Helmholtz equations. However, the right-hand side

of Eq. (37) is of a slightly different form to those for the Helmholtz equations, owing to the divergence

operator involved in evaluating this term (see Eq. (33)). To appreciate this point we can rewrite the right-

hand side of Eq. (37) as

q
Dt

ozrû�k
�

þ orrv̂�k þ ikŵ�
k

	
¼ q

Dt
ozrû�k
�

þ rorv̂�k þ v̂�k þ ikŵ�
k

	
: ð55Þ

The intermediate velocity field û�k is constructed as sum of factors of the (past) velocities and non-linear

terms, as shown in Eqs. (32) and (38)–(40). We know from the analysis of Section 2.4 that there are in-

determinate, but finite, non-linear terms at the axis for k ¼ 1; 2. However, for these pressure modes, our

strong enforcement of the zero-Dirichlet axial boundary condition means that /ðr ¼ 0Þ ¼ 0, hence those

indeterminate forms do not require evaluation in the Galerkin projection. For k ¼ 0, all the axial contri-

butions to v̂�0 are determinate and explicitly computable. We shall discuss other (incorrect) ways of dealing

with these pressure forcing terms in Section 5.

Having dealt with the area-integral forcing terms on the right of Eq. (37), we finally consider the geo-
metrically singular terms of r�r� u in Eqs. (42)–(45). Obviously, these only need attention for k > 0,

and they can only make a contribution where a non-axial segment of CN touches the axis, since along the

axis itself, the pressure boundary conditions are supplied. Again, all the terms are indeterminate and finite,

rather than singular: ûk ¼ 0 at the axis, k > 0, which accounts for the geometrically singular terms in (42)

and (43), v̂k ¼ 0, ŵk ¼ 0 at the axis, k > 1, while at k ¼ 1 the geometrically singular terms in (44) and (45)

evaluate to the real and imaginary parts of ~v1, which are both zero at the axis. Thus for k > 0, all the 1=r-
premultiplied terms are indeterminate but finite, however, again the pressure test function /ðr ¼ 0Þ ¼ 0 in

these cases, meaning their evaluation is never required.
In summary, all the geometrically singular terms in the elliptic equations either evaluate to zero, or are

finite but never require evaluation as a consequence of the Galerkin projection formulation and the modal

structure of the axis boundary conditions.
4. Test case

The test case we have considered is the Kovasznay flow [15], an analytical two-dimensional steady so-
lution to the incompressible Navier–Stokes equations. In Cartesian (x; y) coordinates, this is defined as:

u ¼ 1� expðkxÞ cosð2pyÞ;
v ¼ ð2pÞ�1k expðkxÞ sinð2pyÞ;
p ¼ ð1� exp kxÞ=2;

where k ¼ Re=2� ðRe2=4þ 4p2Þ1=2, Re � 1=m. While this is a steady flow, we seek only to examine the
spatial convergence properties of the numerical scheme, as temporal convergence is already established [13].

Streamlines of the flow, for Re ¼ 40, are shown in Fig. 2.
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Fig. 2. Streamlines of the Kovasznay flow for Re ¼ 40, illustrated in Cartesian coordinates.
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In cylindrical coordinates (with z now labelling the axial direction, r the radial direction and h the az-

imuthal), and allowing an arbitrary rotation H of the solution coordinates about the Cartesian x-axis and
an arbitrary displacement �D of the Cartesian x-axis from the cylindrical z-axis, this becomes:

u ¼ 1� expðkzÞ cos 2p½r cosðhð þHÞ þ D�Þ;
v ¼ ð2pÞ�1k expðkzÞ sin 2p½r cosðhð þHÞ þ D�Þ cosðhþHÞ;
w ¼ �ð2pÞ�1k expðkzÞ sin 2p½r cosðhð þHÞ þ D�Þ sinðhþHÞ;
p ¼ ð1� exp kzÞ=2:

As shown in Fig. 3, the displacement D ensures that flow crosses the cylindrical-coordinate axis, which with

H a non-rational multiple of p, ensures that all the axial terms in the Navier–Stokes equations are exercised,

for real and imaginary parts of all modes.
Fig. 3. With offset D 6¼ 0, Kovasznay flow crosses the cylindrical coordinate axis, while an angular tilt H can be used to ensure that

both the real and imaginary parts of all modes in the cylindrical formulation are exercised. The effect of these transformations is il-

lustrated in this examination of streamlines and the Cartesian (y; z)-projection of velocity vectors at x ¼ zcyl ¼ �0:25, when D ¼ 0:1 and

H ¼ 0:75.



772 H.M. Blackburn, S.J. Sherwin / Journal of Computational Physics 197 (2004) 759–778
Two spectral element meshes for the meridional semi-plane are used in convergence testing of the for-

mulation and are shown in Fig. 4; the internal mesh nodes are illustrated for tensor-product interpolants

which with polynomial-order Np ¼ 11 in each direction. The element geometries for the mesh in Fig. 4(b)
were chosen to ensure that some elements are non-orthogonal, and in particular, are not orthogonal to the

axis, a factor that was shown to be an issue for a different formulation [7].

When computing the convergence tests, a constant number of Fourier modes, Nk ¼ 24, was maintained

in the azimuthal direction: as we show below, this number ensures that the errors were dominated by the

spectral element discretisation in the meridional semi-plane. The Reynolds number Re ¼ 40 for all tests. At

each interpolation order, Np, the exact velocity field was supplied as initial condition, and also as Dirichlet

boundary condition on all exterior (non-axial) domain nodes. This initial value problem was then inte-

grated forwards in time to steady state, after which the pointwise maximum deviation from the exact so-
lution was found for each velocity component (i.e. jju� uexactjj1, on a component-by-component basis). As

the tests here were designed to examine the spatial convergence of a steady solution, first-order (backwards-

Euler, J ¼ 1) time-integration was employed. At the small timestep, Dt ¼ 0:0025, employed during testing

(chosen for the CFL-stability limit on the finest mesh), the results were almost independent of timestep.

The outcomes of the tests, for the two meshes in Fig. 4, are illustrated for the u (axial) velocity com-

ponent in Fig. 5 – results for the other two velocity components are very similar. It is clear that in both
(b)(a)

Fig. 4. Spectral element meshes used in the meridional semi-plane for convergence testing (shown at Np ¼ 11).

(b)(a)

Fig. 5. Results of convergence testing on the meshes shown in Fig. 4, with H ¼ 0:75 and D ¼ 0:1, number of azimuthal Fourier modes

Nk ¼ 24. Np is the order of spectral element Lagrange polynomial interpolants. Non-conservative formulation of non-linear terms, d;

skew-symmetric form, s.



Fig. 6. Results of azimuthal (Fourier) convergence testing on the mesh of Fig. 4 (a), with H ¼ 0:75 and D ¼ 0:1, Np ¼ 11. Nk is the

number of azimuthal Fourier modes. These computations employed the non-conservative formulation of the non-linear terms.

H.M. Blackburn, S.J. Sherwin / Journal of Computational Physics 197 (2004) 759–778 773
cases, a very good approximation to exponential convergence is achieved, until the limit of accuracy in

double-precision calculations is approached [logðu� uexactÞ � �13]. An interesting point is that the

non-conservative formulation of the non-linear terms provides a faster convergence rate than the skew-

symmetric form, in agreement with Cartesian-coordinate computations for this flow [20].

To demonstrate that azimuthal convergence is also exponential (as should be the case for Fourier ex-

pansions), we show in Fig. 6 the maximum error in u as the number of Fourier modes Nk is increased, for

fixed Np ¼ 11. Exponential convergence sets in at Nk � 8, and saturates (in these double precision calcu-

lations) at Nk � 18. All test results presented here were computed with de-aliasing implemented in the
azimuth direction, using the 3/2 rule, however, as expected, the asymptotic convergence rate was not

signficantly affected if de-aliasing was not employed.
5. Discussion and conclusions

In summary, the key formulation steps that we have adopted in our solution strategy for the Fourier-

transformed Navier–Stokes equations in cylindrical coordinates are:
1. Diagonalisation, to decouple the linear viscous terms using the transformation suggested by Orzsag and

Patera [19] (see Section 2.1).

2. Symmetrisation, by multiplying the governing equation set by r (see Section 2.2).

3. Applying a Galerkin projection onto a discrete basis with a boundary–interior decomposition, such as

finite element, spectral element and p-type element discretisations (see Section 3.1).

These formulation steps can be applied regardless of the time discretisation employed. Further, for the

primitive equations and the pressure Poisson equation all the geometric singularities at the axis of the

cylindrical coordinate system do not contribute to the integral formulation. This last observation is a direct
consequence of the integrands of the inner products that involve singular terms having numerators that go

to zero faster than the denominators. From an implementation point of view this conveniently implies that

all singular terms at the axis can be zeroed without loss of generality.
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A variation on the approach we have described here would be to discretely multiply all quadrature

weights by appropriate values of r. As demonstrated in Appendix A, this manipulation is analogous to

using a Gayss–Radau–Jacobi (0,1) quadrature rule. From an implementation standpoint this treatment is
superficially attractive since no further evaluation of the radial term is required when evaluating integrals.

All geometrically singular terms in the primitive equations (and all quadratures on the left-hand sides of the

Galerkin projections for either the Poisson or Helmholtz operators) are not affected by this manipulation.

However, problems can arise if a velocity (or pressure) correction scheme is employed in which a pressure

Poisson equation must be solved. Following the discussion in Section 3.4, if the symmetrisation factor r is
absorbed into the quadrature weights when forming the right-hand side of the pressure Poisson equation,

then the integrand for the k ¼ 0 Fourier mode will now be singular at the axis. On the left-hand side there

would be no problem in this particular case because the mode-constant r2 ¼ k2 ¼ 0. If the singular inte-
grand on the right-hand side is arbitrarily set to zero at r ¼ 0, then we have incomplete quadrature of a

singular integral, which, as shown in Appendix A, reduces the convergence rate from exponential to al-

gebraic. The variation just outlined was adopted in the numerical method used in the non-axisymmetric

simulations of [4] (and the reduced convergence rate was noted therein), although for that problem the

reduced convergence was not an issue, as flow at the axis retained axisymmetry. It is interesting that the

reduced convergence arises through non-linear interactions, with the k ¼ 1 cross-axial flow contaminating

the pressure solution for the axisymmetric mode. Thus, it would not compromise the accuracy of either a

Stokes solution, an axisymmetric Navier–Stokes solution, or a linear stability analysis.
To properly evaluate the cylindrical coordinate implementation it is therefore necessary to have a fully

three-dimensional, axis-crossing validation problem to exercise all terms in the Navier–Stokes equations.

As we have shown in Section 4, such a problem can be constructed by considering the offset Kovasznay

problem. To our knowledge no other paper has demonstrated the spectral convergence of a three-di-

mensional non-axisymmetric test case.

A popular alternative to velocity (or pressure) correction schemes is to directly invert the Stokes operator

which is a mixed-type problem and typically requires a PN–PN�2 discretisation for velocity and pressure,

respectively [6,7]. In thesemethods, the decoupling of the pressure and velocity is done at the discrete level and
so no pressure boundary conditions are required. In the case of the cylindrical coordinate system which has

been symmetrised by a factor of r there can be a degeneracy in the pressure of the global system, as discussed by

Gerritsma and Phillips [7], if Gauss–Lobatto–Legendre quadrature is employed in elements that touch the

axis. In the work of [7], the issue was addressed by using a spectral element discretisation and quadrature rule

with nodal points in the radial direction based on the zeros of the (0,1) Jacobi polynomials and absorbing the

factor of r into the quadrature weights (see Appendix A for definition of (0,1) quadrature rules).

The use of different quadrature rules can also be considered in the context of the velocity correction

schemes employed in this paper. Indeed in [7,8,23], within elements that were adjacent to the axis, radial
Lagrange nodal interpolants with nodes based in Gauss–Lobatto–Jacobi quadrature were employed. More

specifically, the internal nodes of the special bases were related to zeros of (0,1) Jacobi polynomials. An

advantage of the Gauss–Lobatto–Jacobi (0,1) quadrature is that a scaled radial weight function is directly

absorbed into the quadrature weights while maintaining the accuracy of the integration: this should provide

a slightly higher asymptotic convergence rate, since the polynomial order of the integrand is lowered. This

is in contrast to discretely multiplying the Gauss–Lobatto–Legendre weights by the radius, where the ac-

curacy of the integration is reduced by one order. In the Gauss–Lobatto–Jacobi (0,1) approach, all the

indeterminate forms on the left-hand sides of Eqs. (37) and (50)–(52) can be evaluated through l’Hopital’s
rule and at the same time the symmetry of the system of equations is retained. As we have demonstrated,

however, it is not necessary to explicitly evaluate these terms if one uses the standard Gauss–Lobatto–

Legendre nodal expansions. We also note that in hierarchical spectral/hp-type element methods [14], the

quadrature order is typically defined independently of the expansion polynomial order, and so the inte-

grand can be evaluated consistently, without potential loss of accuracy.
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A subtle feature of choosing a Gauss–Lobatto–Jacobi (0,1) quadrature rule emerges if solution of a

pressure Poisson equation is required. All the terms on the left-hand side of the equation can be correctly

evaluated, but again, in order to avoid a singular integral on the right-hand side terms, the radius must not
be incorporated into the quadrature weights, but directly distributed into the right-hand side divergence

operator. The implication in the spectral element setting is that the quadratures on the right-hand side of

the pressure Poisson equation should always be performed using Gauss–Lobatto–Legendre quadrature,

after the integrands have been projected (if necessary) onto the Gauss–Lobatto–Legendre mesh points,

rather than through Gauss–Lobatto–Jacobi (0,1) quadrature.
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Appendix A. Incomplete quadrature evaluation of the integral
R R

0
½gðrÞ=r�rdr when limrfi0 gðrÞ 6¼ 0

In our discussion of the treatment of geometric singularities that arise in the cylindrical coordinates

description of the pressure Poisson equation, we are interested in treating integrals of the form

I ¼
Z R

0

gðrÞ
r

� �
rdr ¼

Z 1

�1

gðnÞ
1þ n

� �
R
2
ð1þ nÞdn; ðA:1Þ

where rðnÞ ¼ ð1þ nÞR=2 and limr!0 gðrÞ 6¼ 0. This can occur in the orrv̂�0 term on the right-hand side of (37),

if r is subsumed into the quadrature weights, which then generates an integral which has the one-dimen-

sional equivalent of typeZ R

0

v̂�0
r

 !
rdr;

where v̂�0jr¼0 6¼ 0, in general (see Section 3.4). From inspection of Eq. (A.1), the most straightforward way of

handling this integral is through analytically cancelling the factors of r and directly integrating gðrÞ.
However, in a numerical implementation, the construction of terms such as gðrÞ=r may be performed in-

dependently of the integration with respect to r over the interval ½�1; 1�. To understand the consequence of

separating the integrand into gðrÞ=r multiplied by r, we first need to review some details of Gaussian
quadrature.

Consider the function gðnÞ approximated by a Lagrange polynomial, hqðnÞ defined through a set of

points nq for 06 q6Q, i.e.

g1ðnÞ ¼
XQ
q¼0

gðnqÞhqðnÞ þ �hðnÞ; ðA:2Þ

where �hðnÞ is the approximation error. We can derive a general quadrature rule by integrating Eq. (A.2)

over the interval n 2 ½�1; 1� with respect to the weighting function ð1� nÞað1þ nÞb to obtainZ 1

�1

ð1� nÞað1þ nÞbgðnÞdn ¼
XQ
q¼0

g1ðna;bq Þwa;b
q þ �I; ðA:3Þ
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where

wa;b
q ¼

Z 1

�1

ð1� nÞað1þ nÞbhqðnÞdn; �I ¼
Z 1

�1

�hðnÞdn:

The Gauss–Lobatto–Legendre quadrature rule

Z 1

�1

gðnÞdn ¼
XQ
q¼0

g1ðn0;0q Þw0;0
q þ �I; ðA:4Þ

is defined by the choice of the Legendre weights, a ¼ 0, b ¼ 0 and defining the zeros, n0;0q , to be Qþ 1 roots

of the polynomial ð1� nÞð1þ nÞP 1;1
Q�1ðnÞ where P

1;1
Q�1ðnÞ is the ð1; 1Þ Jacobi polynomial of degree Q� 1. The

choice of the zeros is pertinent since this makes the integration exact for integrands which are in the
polynomial space P2Q�1 [9,14].

The Gauss–Radau–Jacobi (0,1) quadrature rule

Z 1

�1

ð1þ nÞgðnÞdn ¼
XQ
q¼1

g1ðn0;1q Þw0;1
q þ �I; ðA:5Þ

(note that the summation starts from q ¼ 1) is defined by choosing the weights a ¼ 0, b ¼ 1 and defining the

zeros, n0;1q to be the roots of the polynomial ð1þ nÞP 1;1
Q�1ðnÞ. This rule contains a zero only at end point n ¼ 1

and is exact for integrands which are in the polynomial space P2Q�2.

From the definition above the zeros of the two rules are the same for 16 q6Q, i.e.

n0;0q ¼ n0;1q for q ¼ 1; . . . ;Q: ðA:6Þ

To determine the connection between the weights w0;0
q and w0;1

q , we first note that for 16 q6Q they are

defined in terms of the Lagrange polynomials as

w0;0
q ¼

Z 1

�1

h0;0q ðnÞdn; w0;1
q ¼

Z 1

�1

ð1þ nÞh0;1q ðnÞdn; ðA:7Þ

where the superscript Lagrange polynomials can be defined as

h0;0q ðnÞ ¼ ð1�nÞð1þnÞP1;1
Q ðnÞ

½ð1�nÞð1þnÞP1;1
Q ðnÞ�0x¼xq ðn�nqÞ

;

h0;1q ðnÞ ¼ ð1�nÞP 1;1
Q ðnÞ

½ð1�nÞP 1;1
Q ðnÞ�0x¼xq ðn�nqÞ

:
ðA:8Þ

Insertion of (A.8) into the definitions (A.7) and comparison leads us to the fact that w0;0
q ¼ w0;1

q =ð1þ nqÞ.
Returning to the issue of evaluating integral (A.1) by splitting the evaluation of the integrand into gðrÞ=r

multiplied by r. In this case if gðrÞ=r is evaluated at r ¼ 0 (owing to the presence of a quadrature point at
this location) then we have to determine an appropriate value for our implementation. Had limr!0 gðrÞ ¼ 0,

then setting gðrÞ=r ¼ 0 would not have caused a error in the integral (A.1), as this assumption would have

been consistent with the multiplication by r in the numerator of the integrand. This situation arises for most

of the geometric singular terms in the cylindrical coordinate system. Nevertheless, even in the case where

limr!0 gðrÞ 6¼ 0 it is possible to demonstrate that setting gðrÞ=rjr¼0 ¼ 0 still leads to a consistent approxi-

mation of the integral I , although such an implementation destroys the exponential convergence rate of

approximation.



(b)(a)

Fig. 7. Error in numerical approximation to the integral
R 1

�1
ð1þ nÞ cosðnÞ=ð1þ nÞdn using Gauss–Lobatto–Legendre quadrature, IL

and Gauss–Radau–Jacobi (0,1), IR quadrature on semi-log and log–log axis.
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To demonstrate this, we start with the Gauss–Lobatto–Legendre representation of integral (A.1), which

is

IL ¼
XQ
q¼0

ð1þ n0;0q Þ
gðn0;0q Þ
1þ n0;0q

 !
R
2
w0;0

q : ðA:9Þ

If gðn0;00 Þ=ð1þ n0;00 Þ ¼ 0, we can write expression (A.9) using Eqs. (A.6) and (A.7) as

IR ¼
XQ
q¼1

gðn0;1q Þ
1þ n0;1q

 !
R
2
w0;1

q : ðA:10Þ

So although enforcing the condition that gðn0;00 Þ=ð1þ n0;00 Þ ¼ 0 would initially appear to make Eq. (A.9) an

inconsistent approximation to the integral Eq. (A.1), we observe from Eq. (A.10) that zeroing this term is

equivalent to approximating the integral (A.1) with a consistent Gauss–Radau–Jacobi (0,1) quadrature

rule. Nevertheless, the continuous integrand of the Gauss–Radau–Jacobi (0,1) rule is the function

gðnÞ=ð1þ nÞ which is singular at n ¼ �1 and so the numerical approximation of this integral will not

demonstrate exponential convergence as a function of quadrature order Q. This point is illustrated in Fig. 7
where we show the error in evaluating the integral

R 1

�1
ð1þ nÞ½cosðnÞ=ð1þ nÞ�dn [i.e. gðnÞ ¼ cosðnÞ] using

Gauss–Lobatto–Legendre quadrature as in Eq. (A.9) and Gauss–Radau–Jacobi (0,1) quadrature as in Eq.

(A.10). For this case we see that the convergence rate using IL is exponential in quadrature order Q whereas

when evaluating IR the convergence rate is only algebraic and is of OðQ2Þ.
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