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Abstract

Three-dimensional synchronous instabilities of two-disien-

al time-periodic wake flows, such as the so-called modes A and
B of the circular cylinder wake, are now well-known. On the
other hand, quasi-periodic three-dimensional instabslitaire
just as generic, but have as yet not received such wideprea
recognition, partly as a consequence of the predominanae of
tention given to flows, such as the cylinder wake, in which the
synchronous modes happen to dominate at onset of three-di-
mensionality. Here we provide an introduction to the quosi-
iodic modes, which can manifest either as modulated stgndin
waves, or modulated travelling waves.

Introduction

Three-dimensional instabilities of flows with an undertyin
two-dimensional time-periodic state became a topic foestv
gation following experimental studies of secondary ingitéds

of the circular cylinder wake (figure 1), see e.g. [7]. Thédat

ing analytical works, e.g. [1, 6] concentrated on Floquabit

ity analysis of wake flows, particularly those of the ciraudad
square cylinders. The initial investigations dealt witke 8yn-
chronous three-dimensional modes, i.e. those for whichribe

ical Floquet multipliers pass through the unit circlguat +1,
along the positive real axis in the complex plane. For thesew
flows, there were two synchronous modes: long-wavelength
mode A, and short-wavelength mode B, as illustrated in figure
Modes A and B have different symmetry properties —mode A
preserves, while mode B breaks, the spatio-temporal syngmet
of the base flow — but these properties are the same across the
two flows. The onset Reynolds number for modeRie(= 188)

is lower than that of mode BRg. = 259), but as Reynolds num-
bers increase, mode B becomes dominant, and a mixed-mode
model for this behaviour has appeared [2].

The Floguet analysis of Barkley & Henderson [1] suggested
the presence of another intermediate-wavelength Floqodem
for the circular cylinder wake, but with complex-conjugguiar
multipliers, and which would possibly bifurcate from theotw
dimensional basic state at Reynolds numbers above those for
either mode A or mode B. Addressing the wake of the square
cylinder, Robichaux et al. [6] also suggested the existehes
intermediate-wavelength mode, but this time subharmaseica
mode for which the critical Floquet multiplier js= —1. Later
analysis [3] showed that for the square cylinder, this made i
fact also had complex-conjugate-pair multipliers, therefthe
three-dimensional bifurcation scenarios for the wakebetir-
cular and square cylinder wakes are the same.

In general, we might expect that critical Floquet multipdie
could emerge anywhere around the unit circle, i.q1at+1,

U= —1, or p = exp+iB. The wake flows have only a sin-
gle control parameter (Reynolds number), and it happerts tha
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Figure 1: Computed locations of marker particles, illuhig
the spatio-temporal symmetry of a two-dimensional cincula
cylinder wake forRe= 1885 at timestg andtg+ T /2 (to is
arbitrary, T is the Strouhal period).
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Figure 2: Vorticity isosurfaces for the synchronous wakele®
of the circular cylinder, shown for a DOspanwise domain ex-
tent, and viewed from the cross-flow direction. Transluceot
surfaces are for spanwise vorticity component, solid seda
are for streamwise component.

the first modes to bifurcate from the two-dimensional basic
state are synchronous. However, many other flows share the
same symmetry group as the wake flows, and hence will have
instability modes with the same symmetries. The flow in

a rectangular cavity, infinite in spanwise extent, drivengby
wall in periodic tangential motion (as illustrated in figusg

is such an example, and further, possesses two independent
control parameters; Reynolds and Stokes numbers. The Flo-
quet analysis for this flow was presented in [4], where it was
shown that within certain control-parameter regimes,egith
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Figure 3: (a) Schematic of the fluid domain for the periodi-
cally driven cavity flow, periodic in the-direction and forced
in they-direction, with isosurfaces representing different eslu
of spanwise vorticity.(b) Two snapshots of velocity vectors of
the base flow, half a forcing period apart, illustrating psitso-
temporal symmetry.

long-wavelength mode A, a short-wavelength mode B, or an
intermediate-wavelength mode QP would be the first to become
unstable. Interestingly, the symmetry properties of the- sy
chronous modes (A and B) for this non-autonomous flow are
the opposite to those of the same relative wavelengths ér th
circular and square cylinder wakes.

More recently, the complete analysis for all codimension-1
(generic) bifurcations for these flows was presented [5]. An
important result of that work is that, if the base flows h@ge
spatio-temporal symmetry (a time-shift /2, combined with

a spatial reflection, regenerates the original flow, as irréigd

and 3), then period-doubling bifurcations, while not ssed,
become codimension-2, i.e. can only be produced by careful
simultaneous manipulation of two control parameters, ard a
unlikely to be observed when only one parameter is varied.

Another outcome was a more complete exposition of the nature
of quasi-periodic modes. In general, there is no reasongdeax
that the synchronous modes will be dominant in all flows or
parameter regimes, and it is just as likely that flows wilsarin
which the quasi-periodic modes are dominant. In the reneaind
of this paper, we give examples of these instability moded, a
describe their properties.

Symmetries of the Quasi-Periodic Modes

When the Floquet multipliers occur in complex-conjugatiegya
then a new secondary period arises in the three-dimensional
state, and the solution is quasi-periodic. In the casesrutide
cussion, this period is associated with spanwise motiomef t
mode. In the physical domain, there are two ways that the qua-
si-periodic modes can manifest themselves, either aslliraye
waves (TW), which are unsymmetric but bifurcate in reflattio
symmetric pairs, or as standing waves (SW), which have reflec
tion symmetry but can be centred at arbitrary fixed spanwise
locations. It is important to realise that in the nonlinease (in
DNS), the SW and TW evolve on distinct solution branches,
with separate stability characteristics. The possibléikty
scenarios at a quasi-periodic bifurcation [5] are illustdain
figure 4.

Since the basic states have a spanwise translation symmetry
we use Fourier expansions in that direction to describestiie
mensional instabilities. The spanwise coordinate ke planar
coordinatex andy, and the velocity = (u,v,w)(X,y,zt). Then

T CTW sw ' SW
swo Y L JwWh
- N P ~ \
S © BN O NN
s “Sswo Tw \TW
TW \\ /, \SW\
- N P ~ \
S O BN O NN

Figure 4: Bifurcation diagrams corresponding to the six sce
narios in the QP bifurcation. Solid (dashed) lines represen
stable (unstable) states, the horizontal line correspomdie
T-periodic base state. The horizontal axis is the bifurcepia-
rameter Re), and the vertical axis is the amplitude squared of
the 3D components of the solution.
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Figure 5: Moduli of the Floquet multiplier$i, |, for the three-
dimensional instability modes of the two-dimensional wake
a circular cylinder atd) Re= 280 and [p) Re= 380. TheRe=
280 results are compared with those of [1] at the sBa@pen
squares). Multipliers for mode QP occur in complex-confaga
pairs.

the following forms (which have a reflection symmetryzn
pass unchanged through the Navier—Stokes equations:

u(x,y,zt) = (ucosfz vcosBz, wsinpz)(x,y,t)
u(x,y,zt) = (usinBzvsinfz,wcosBz)(x,y,t),

1)
)

wheref is a spanwise wavenumbeB:= 21D /A, whereA is a
spanwise wavelength ari?la characteristic length scale. If the
Floguet multipliers are real, then it is sufficient to use ofie
either of these forms, or a fixed linear combination of the,two
to describe one of the infinite set of possible solutions. I@n t
other hand, if the multipliers occur in complex-conjugasérg,
then restriction to any of these forms implies that the sohst
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Figure 6: \orticity isosurfaces for the quasi-periodic wak
modes of the circular cylinder, shown for all@panwise do-
main extent, and viewed from the cross-flow direction. Thans
centisosurfaces are for spanwise vorticity componenit sak-
faces are for streamwise component.
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Figure 7: Time-average kinetic energies in the first spamwis
Fourier mode of the TW and SW nonlinear solutions of the
wake of a circular cylinder, as functions of Reynolds number
Solid (open) circles correspond to stable (unstable) wolsf
relative to each other. Dashed lines indicate the unstage s
ments of the two solution branches, taken individually.
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Figure 8: Time series of kinetic energy in the first spanwise
Fourier mode for a quasi-periodic circular cylinder wakei- |
tially, the flow is in a SW state, in a subspace with spanwise
reflection symmetry. AtU./D = 200, it is perturbed with a
small amount of white noise, after which it evolves to a stabl
asymmetric, TW state.

are SWs (which can remain in that state unless perturbed), an
more generally we must consider non-symmetric expansisn se
to allow for TW-type solutions [3, 4].

Quasi-Periodic Modes of the Circular Cylinder Wake

In figure 5 we show results from Floquet analysis for the wake
of a circular cylinder, both aRe= 280, recreating results in
[1], and atRe= 380. AtRe= 280, the intermediate-wavelength
mode QP is subcritical, while &e= 380, it has just bifurcated
from the basic state. At bifurcation, the complex-conjeggair
Floquet multipliers lie quite close to the negative reakaxi
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Figure 9: \orticity isosurfaces for the quasi-periodic wak
modes of the square cylinder Be= 220, shown for a 1D
spanwise domain extent, and viewed from the cross-flow direc
tion. Translucent isosurfaces are for spanwise vortigitygo-
nent, solid surfaces are for streamwise component.
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Figure 10: Time-average kinetic energies in the first spaewi
Fourier mode of the TW and SW instability modes of the wake
of a square cylinder, as functions of Reynolds number. The
energy of the SW is smaller, and in accordance with the theory
the SW flow is unstable to perturbations.

In figure 6, isosurfaces of vorticity frofRe= 400 DNS studies

of the SW and TW circular cylinder wake modes are displayed.
The TW shown is the downwards-travelling case. The visual
distinguishing characteristic of the TW is that the streasew
vortices on opposite sides of the wake interlace one anather
A/4, while in all other cases (A, B, SW) they are in-line. Apart
from that, in this flow they bear a number of visual similadti

to mode B, and probably arise from a similar physical mecha-
nism.

Growth and Relative Stability of the SW and TW Solutions

To highlight the point that the TW and SW solution branches ar
distinct under nonlinear evolution, we show in figure 7 theeti
averaged energies in the first spanwise mode of the SW and TW
solutions as functions of the bifurcation paramefee, Both
bifurcations are subcritical, and the energy of the TW s$ohst

is always larger: we have bifurcation scenario 6 in figure 4.

Typically, solutions on at most one of the two branches (SW,
TW) are stablerelative tothose on the other branch. This
means that if we slightly perturb a solution on the unstable
branch, it will evolve to a solution on the other branch. The
theory suggests that solutions on the lower-energy brareh a
those which are relatively unstable. This is exactly whattis
served if a solution on the SW branch is slightly perturbexd, a
seen in figure 8, derived from a perturbation studiRet= 400.

At tU., /D = 0, the solution is a SW, with long-period oscilla-
tions in the energy of the first spanwise mode (the long pesiod
closely related to the imaginary part of the correspondilyg F
quet multiplier). AttUs, /D = 200, a smallQ(10~4)] perturba-
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Figure 11: Vorticity dynamics of modulategdz-traveling waves in the periodically driven cavity flow [4hown in a spanwisez(
domain extent of one wavelength, &£ 100,Re= 1225). Solid isosurfaces are of the out-of-pagedmponent of vorticity, positive
and negative of equal magnitude, while translucent isasad represent ttzzomponent of vorticity. The driven cavity wall lies further

into the page than the structures, and oscillates inHydirection.

tion is administered to the real and imaginary parts of tre fir
spanwise mode. For a furthAtU. /D ~ 200, there is little ob-
servable change in the energy, buttbly, /D = 500 the system
has settled down to a stable TW state, and the long-period fluc
tuation in energy disappears. The TW is a three-dimensional
solution that translates in the spanwise direction withstamt
kinetic energy (moduld@).

Quasi-Periodic Modes of the Square Cylinder Wake

The quasi-periodic bifurcation of the wake of a square dgin
provides very similar behaviour [3]. In figure 9, instantang
vorticity isosurfaces for the SW and TW modes of this wake,
computed atRe= 220, are displayed. Again, the TW state
shown is a downwards-travelling wave, and, corresponding t
the fact that in this case the critical Floquet multipliecs bt

lie so close to the negative real axis, the isosurfaces hma@a
oblique character. Once again, for the TW the streamwise iso
surfaces on opposite sides of the wake interlace each oyher b
A4

The bifurcation diagram for the quasi-periodic modes of the
square cylinder wake are shown in figure 10. In this case, the
bifurcations are supercritical, and we have scenario 1 figm

ure 4. As for the circular cylinder case, the SW solutions are
relatively unstable to the TW solutions.

TW Mode of the Driven Cavity

The vorticity dynamics of a spanwise-travelling mode can be
seen in an example drawn from the computational study of the
periodically driven cavity [3]. In figure 11 we see vorticigo-
surfaces of the TW mode over one floor period, as seen from
above the cavity. The wave travels via successive merging of
braid vortices produced on oppositey) main rollers. As for

the wake flows, the braid vortices produced on opposite sides
of the cavity have an initial /4 interlacing. After period” has
elapsed, the vortex structures are exactly the same as inithe
tial frame, but translated in thez-direction—by an amount
that can be derived from the secondary period, which in the TW
case is related to wave propagation speed.

Conclusions

Quasi-periodic instability modes of time-periodic twavdin-
sional flows are just as generic as synchronous modes, and may
in fact already have been observed in existing flows. Thisss p
sible becauses] in general, there is no physical necessity, even
in single-parameter flows, that synchronous modes will lee th

first to become unstable anb)the initially bifurcating modes

do not necessarily remain dominant as the control parameter
is increased. We have pointed out some of the salient feature
that enable TW modes to be discriminated from SW modes,
and synchronous modes. When considering the computation of
these flows, it is important to recognise that SW and TW modes
belong to separate solution branches in the nonlinear ease,

to check the relative stability of the two types of solution.
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