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Abstract

Three-dimensional synchronous instabilities of two-dimension-
al time-periodic wake flows, such as the so-called modes A and
B of the circular cylinder wake, are now well-known. On the
other hand, quasi-periodic three-dimensional instabilities are
just as generic, but have as yet not received such wide-spread
recognition, partly as a consequence of the predominance ofat-
tention given to flows, such as the cylinder wake, in which the
synchronous modes happen to dominate at onset of three-di-
mensionality. Here we provide an introduction to the quasi-per-
iodic modes, which can manifest either as modulated standing
waves, or modulated travelling waves.

Introduction

Three-dimensional instabilities of flows with an underlying
two-dimensional time-periodic state became a topic for investi-
gation following experimental studies of secondary instabilities
of the circular cylinder wake (figure 1), see e.g. [7]. The follow-
ing analytical works, e.g. [1, 6] concentrated on Floquet stabil-
ity analysis of wake flows, particularly those of the circular and
square cylinders. The initial investigations dealt with the syn-
chronous three-dimensional modes, i.e. those for which thecrit-
ical Floquet multipliers pass through the unit circle atµ = +1,
along the positive real axis in the complex plane. For these wake
flows, there were two synchronous modes: long-wavelength
mode A, and short-wavelength mode B, as illustrated in figure2.
Modes A and B have different symmetry properties — mode A
preserves, while mode B breaks, the spatio-temporal symmetry
of the base flow — but these properties are the same across the
two flows. The onset Reynolds number for mode A (Rec = 188)
is lower than that of mode B (Rec = 259), but as Reynolds num-
bers increase, mode B becomes dominant, and a mixed-mode
model for this behaviour has appeared [2].

The Floquet analysis of Barkley & Henderson [1] suggested
the presence of another intermediate-wavelength Floquet mode
for the circular cylinder wake, but with complex-conjugate-pair
multipliers, and which would possibly bifurcate from the two-
dimensional basic state at Reynolds numbers above those for
either mode A or mode B. Addressing the wake of the square
cylinder, Robichaux et al. [6] also suggested the existenceof an
intermediate-wavelength mode, but this time subharmonic,i.e. a
mode for which the critical Floquet multiplier isµ= −1. Later
analysis [3] showed that for the square cylinder, this mode in
fact also had complex-conjugate-pair multipliers, therefore the
three-dimensional bifurcation scenarios for the wakes of the cir-
cular and square cylinder wakes are the same.

In general, we might expect that critical Floquet multipliers
could emerge anywhere around the unit circle, i.e. atµ = +1,
µ = −1, or µ = exp±iθ. The wake flows have only a sin-
gle control parameter (Reynolds number), and it happens that
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Figure 1: Computed locations of marker particles, illustrating
the spatio-temporal symmetry of a two-dimensional circular
cylinder wake forRe= 188.5 at timest0 and t0 + T/2 (t0 is
arbitrary,T is the Strouhal period).
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Figure 2: Vorticity isosurfaces for the synchronous wake modes
of the circular cylinder, shown for a 10D spanwise domain ex-
tent, and viewed from the cross-flow direction. Translucentiso-
surfaces are for spanwise vorticity component, solid surfaces
are for streamwise component.

the first modes to bifurcate from the two-dimensional basic
state are synchronous. However, many other flows share the
same symmetry group as the wake flows, and hence will have
instability modes with the same symmetries. The flow in
a rectangular cavity, infinite in spanwise extent, driven bya
wall in periodic tangential motion (as illustrated in figure3)
is such an example, and further, possesses two independent
control parameters; Reynolds and Stokes numbers. The Flo-
quet analysis for this flow was presented in [4], where it was
shown that within certain control-parameter regimes, either a
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Figure 3: (a) Schematic of the fluid domain for the periodi-
cally driven cavity flow, periodic in thez-direction and forced
in they-direction, with isosurfaces representing different values
of spanwise vorticity.(b) Two snapshots of velocity vectors of
the base flow, half a forcing period apart, illustrating its spatio-
temporal symmetry.

long-wavelength mode A, a short-wavelength mode B, or an
intermediate-wavelength mode QP would be the first to become
unstable. Interestingly, the symmetry properties of the syn-
chronous modes (A and B) for this non-autonomous flow are
the opposite to those of the same relative wavelengths for the
circular and square cylinder wakes.

More recently, the complete analysis for all codimension-1
(generic) bifurcations for these flows was presented [5]. An
important result of that work is that, if the base flows haveZ2
spatio-temporal symmetry (a time-shift ofT/2, combined with
a spatial reflection, regenerates the original flow, as in figures 1
and 3), then period-doubling bifurcations, while not suppressed,
become codimension-2, i.e. can only be produced by careful
simultaneous manipulation of two control parameters, and are
unlikely to be observed when only one parameter is varied.

Another outcome was a more complete exposition of the nature
of quasi-periodic modes. In general, there is no reason to expect
that the synchronous modes will be dominant in all flows or
parameter regimes, and it is just as likely that flows will arise in
which the quasi-periodic modes are dominant. In the remainder
of this paper, we give examples of these instability modes, and
describe their properties.

Symmetries of the Quasi-Periodic Modes

When the Floquet multipliers occur in complex-conjugate pairs,
then a new secondary period arises in the three-dimensional
state, and the solution is quasi-periodic. In the cases under dis-
cussion, this period is associated with spanwise motion of the
mode. In the physical domain, there are two ways that the qua-
si-periodic modes can manifest themselves, either as travelling
waves (TW), which are unsymmetric but bifurcate in reflection-
symmetric pairs, or as standing waves (SW), which have reflec-
tion symmetry but can be centred at arbitrary fixed spanwise
locations. It is important to realise that in the nonlinear case (in
DNS), the SW and TW evolve on distinct solution branches,
with separate stability characteristics. The possible stability
scenarios at a quasi-periodic bifurcation [5] are illustrated in
figure 4.

Since the basic states have a spanwise translation symmetry,
we use Fourier expansions in that direction to describe three-di-
mensional instabilities. The spanwise coordinate isz, the planar
coordinatesx andy, and the velocityu = (u,v,w)(x,y,z,t). Then
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Figure 4: Bifurcation diagrams corresponding to the six sce-
narios in the QP bifurcation. Solid (dashed) lines represent
stable (unstable) states, the horizontal line correspondsto the
T-periodic base state. The horizontal axis is the bifurcation pa-
rameter (Re), and the vertical axis is the amplitude squared of
the 3D components of the solution.
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Figure 5: Moduli of the Floquet multipliers,|µP |, for the three-
dimensional instability modes of the two-dimensional wakeof
a circular cylinder at (a) Re= 280 and (b) Re= 380. TheRe=
280 results are compared with those of [1] at the sameRe(open
squares). Multipliers for mode QP occur in complex-conjugate
pairs.

the following forms (which have a reflection symmetry inz)
pass unchanged through the Navier–Stokes equations:

u(x,y,z,t) = (ucosβz,vcosβz,wsinβz)(x,y,t) (1)

u(x,y,z,t) = (usinβz,vsinβz,wcosβz)(x,y,t), (2)

whereβ is a spanwise wavenumber:β = 2πD/λ, whereλ is a
spanwise wavelength andD a characteristic length scale. If the
Floquet multipliers are real, then it is sufficient to use oneof
either of these forms, or a fixed linear combination of the two,
to describe one of the infinite set of possible solutions. On the
other hand, if the multipliers occur in complex-conjugate pairs,
then restriction to any of these forms implies that the solutions
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Figure 6: Vorticity isosurfaces for the quasi-periodic wake
modes of the circular cylinder, shown for a 10D spanwise do-
main extent, and viewed from the cross-flow direction. Translu-
cent isosurfaces are for spanwise vorticity component, solid sur-
faces are for streamwise component.

Figure 7: Time-average kinetic energies in the first spanwise
Fourier mode of the TW and SW nonlinear solutions of the
wake of a circular cylinder, as functions of Reynolds number.
Solid (open) circles correspond to stable (unstable) solutions,
relative to each other. Dashed lines indicate the unstable seg-
ments of the two solution branches, taken individually.

Figure 8: Time series of kinetic energy in the first spanwise
Fourier mode for a quasi-periodic circular cylinder wake. Ini-
tially, the flow is in a SW state, in a subspace with spanwise
reflection symmetry. AttU∞/D = 200, it is perturbed with a
small amount of white noise, after which it evolves to a stable,
asymmetric, TW state.

are SWs (which can remain in that state unless perturbed), and
more generally we must consider non-symmetric expansion sets
to allow for TW-type solutions [3, 4].

Quasi-Periodic Modes of the Circular Cylinder Wake

In figure 5 we show results from Floquet analysis for the wake
of a circular cylinder, both atRe= 280, recreating results in
[1], and atRe= 380. AtRe= 280, the intermediate-wavelength
mode QP is subcritical, while atRe= 380, it has just bifurcated
from the basic state. At bifurcation, the complex-conjugate-pair
Floquet multipliers lie quite close to the negative real axis.
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Figure 9: Vorticity isosurfaces for the quasi-periodic wake
modes of the square cylinder atRe= 220, shown for a 10D
spanwise domain extent, and viewed from the cross-flow direc-
tion. Translucent isosurfaces are for spanwise vorticity compo-
nent, solid surfaces are for streamwise component.

Figure 10: Time-average kinetic energies in the first spanwise
Fourier mode of the TW and SW instability modes of the wake
of a square cylinder, as functions of Reynolds number. The
energy of the SW is smaller, and in accordance with the theory,
the SW flow is unstable to perturbations.

In figure 6, isosurfaces of vorticity fromRe= 400 DNS studies
of the SW and TW circular cylinder wake modes are displayed.
The TW shown is the downwards-travelling case. The visual
distinguishing characteristic of the TW is that the streamwise
vortices on opposite sides of the wake interlace one anotherby
λ/4, while in all other cases (A, B, SW) they are in-line. Apart
from that, in this flow they bear a number of visual similarities
to mode B, and probably arise from a similar physical mecha-
nism.

Growth and Relative Stability of the SW and TW Solutions

To highlight the point that the TW and SW solution branches are
distinct under nonlinear evolution, we show in figure 7 the time-
averaged energies in the first spanwise mode of the SW and TW
solutions as functions of the bifurcation parameter,Re. Both
bifurcations are subcritical, and the energy of the TW solutions
is always larger: we have bifurcation scenario 6 in figure 4.

Typically, solutions on at most one of the two branches (SW,
TW) are stablerelative to those on the other branch. This
means that if we slightly perturb a solution on the unstable
branch, it will evolve to a solution on the other branch. The
theory suggests that solutions on the lower-energy branch are
those which are relatively unstable. This is exactly what isob-
served if a solution on the SW branch is slightly perturbed, as
seen in figure 8, derived from a perturbation study atRe= 400.
At tU∞/D = 0, the solution is a SW, with long-period oscilla-
tions in the energy of the first spanwise mode (the long periodis
closely related to the imaginary part of the corresponding Flo-
quet multiplier). AttU∞/D = 200, a small [O(10−4)] perturba-
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Figure 11: Vorticity dynamics of modulated+z-traveling waves in the periodically driven cavity flow [4],shown in a spanwise (z)
domain extent of one wavelength, at (St= 100,Re= 1225). Solid isosurfaces are of the out-of-page (x) component of vorticity, positive
and negative of equal magnitude, while translucent isosurfaces represent thezcomponent of vorticity. The driven cavity wall lies further
into the page than the structures, and oscillates in the±y direction.

tion is administered to the real and imaginary parts of the first
spanwise mode. For a further∆tU∞/D ≈ 200, there is little ob-
servable change in the energy, but bytU∞/D = 500 the system
has settled down to a stable TW state, and the long-period fluc-
tuation in energy disappears. The TW is a three-dimensional
solution that translates in the spanwise direction with constant
kinetic energy (moduloT).

Quasi-Periodic Modes of the Square Cylinder Wake

The quasi-periodic bifurcation of the wake of a square cylinder
provides very similar behaviour [3]. In figure 9, instantaneous
vorticity isosurfaces for the SW and TW modes of this wake,
computed atRe= 220, are displayed. Again, the TW state
shown is a downwards-travelling wave, and, corresponding to
the fact that in this case the critical Floquet multipliers do not
lie so close to the negative real axis, the isosurfaces have amore
oblique character. Once again, for the TW the streamwise iso-
surfaces on opposite sides of the wake interlace each other by
λ/4.

The bifurcation diagram for the quasi-periodic modes of the
square cylinder wake are shown in figure 10. In this case, the
bifurcations are supercritical, and we have scenario 1 fromfig-
ure 4. As for the circular cylinder case, the SW solutions are
relatively unstable to the TW solutions.

TW Mode of the Driven Cavity

The vorticity dynamics of a spanwise-travelling mode can be
seen in an example drawn from the computational study of the
periodically driven cavity [3]. In figure 11 we see vorticityiso-
surfaces of the TW mode over one floor period, as seen from
above the cavity. The wave travels via successive merging of
braid vortices produced on opposite (±y) main rollers. As for
the wake flows, the braid vortices produced on opposite sides
of the cavity have an initialλ/4 interlacing. After periodT has
elapsed, the vortex structures are exactly the same as in theini-
tial frame, but translated in the+z-direction — by an amount
that can be derived from the secondary period, which in the TW
case is related to wave propagation speed.

Conclusions

Quasi-periodic instability modes of time-periodic two-dimen-
sional flows are just as generic as synchronous modes, and may
in fact already have been observed in existing flows. This is pos-
sible because (a) in general, there is no physical necessity, even
in single-parameter flows, that synchronous modes will be the

first to become unstable and (b) the initially bifurcating modes
do not necessarily remain dominant as the control parameter
is increased. We have pointed out some of the salient features
that enable TW modes to be discriminated from SW modes,
and synchronous modes. When considering the computation of
these flows, it is important to recognise that SW and TW modes
belong to separate solution branches in the nonlinear case,and
to check the relative stability of the two types of solution.
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