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3 Theory  

3.1 Introduction 

 

As was discussed in Chapter 2, to model the tensile strength of paper, the following 

questions must be answered.  What are the mechanisms by which the stress transferred 

from one fibre to other fibres bonded with it?  What initiates the macroscopic fracture of 

paper? 

 

Although numerous studies have been conducted to observe the fracture process of 

paper, no agreement has been reached as to what initiates the macroscopic fracture of 

paper.  The Page equation (Page 1969) and the KBP model (Kallmes 1977) made a 

common assumption that the fracture of paper is initiated by the failure of the fibres 

oriented in the direction of the applied load.  The Page equation linked the fibre strength 

to the zero-span tensile strength of paper by using the second ad hoc premise.  The KBP 

model calculated the sheet strength by making another assumption that paper fails when 

the sheet strain reaches the failure strain of the fibres.  It is clear that both models ignore 

the load distribution along the axis of a fibre in the sheet, as they used the average load 

in the fibre to predict the fracture of the paper under stress.  Other workers (Van Den 

Akker 1958; Niskanen 1998) have proposed that it is the failure of the bonds that 

triggers paper fracture. 

 

In fact, all of the previous analytical models for tensile strength of paper fail to predict 

the initiation of the fracture of paper.  They assumed that all bonds or segments reach 

the failure threshold simultaneously.  This is only true when the sheet is purely 

homogeneous.  In reality, however, the stresses in fibres are not uniform because of the 

stress transfer.  The stress distribution in a fibre in a network will also depend on the 

local structure of the network. 

 

In section 3.2 of this Chapter, a new simple analytical model for the tensile strength of 

paper is presented.  In the new model, an expression is developed relating paper strength 

to the stress distribution along the loaded fibres in the paper. This stress distribution 

function will obviously be determined by the local network structure, including the 
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positions and nature of the crossing fibres.  The new model adopts the assumption made 

by the Page equation and the KBP model that the fracture of paper is initiated by the 

failure of the fibres oriented in the direction of the applied load, but considers the load 

distribution in these fibres.  In other words, the local bonding structure of the paper is 

considered when calculating the paper strength. 

 

In Chapter 8, several attempts are made to fit the theory to the data using stress 

distributions along the fibre given by different shear lag models. One of the key inputs 

required in the shear lag models is the distance between the fibre-fibre contacts along 

the fibre.  In section 3.3 a new theory for the number of fibre-fibre contacts in a network 

will be presented.  This theory will be tested against the experimental data in Chapter 7 

as well as being used as input for the shear lag calculations in Chapter 8. 

 

3.2 Model for tensile strength of paper 

3.2.1 Fibre network model 

 

We consider here a random fibre network with reasonably high density and tensile 

strength.  The plasticity of the network is mainly caused by stretch of the fibres in it.  

When the fibre network is loaded, the stresses are transferred from one fibre to its 

adjacent fibres by the mechanism of the form predicted by the shear lag model. 

 

3.2.2 Criteria for fracture 

 

The tensile strength is the maximum load that occurs at the moment that macroscopic 

rupture begins.  Once the rupture has been initiated, it proceeds rapidly during the 

tensile testing.  Therefore, the initiation of the macroscopic fracture of the fibre network 

is critically important for the tensile strength of paper.  We assume that the macroscopic 

fracture of the fibre network is triggered by the fracture of the most stressed fibre 

segments in it.  The highest stressed fibre segments most likely exist in the fraction of 

fibres that are oriented in the direction of the applied load.  We assume that once the 

peak load in these fibres exceeds the strength of these fibres, they will break and trigger 
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the macroscopic fracture of the network.  This rupture, once initiated at a point in the 

sheet, is propagated rapidly in two directions. 

 

3.2.3 Theory 

 

We start with a cross-sectional slice through the sheet taken perpendicular to the stress-

direction (See Figure 3-1).  For a unit area of the sheet with apparent density, aρ , under 

some stress, σ , then the average stress in the fibre wall, avf ,σ  is  

σ
ρ
ρσ
a

avf =,          3. 1 

where ρ  is the density of the cell wall material.  This equation holds true not matter 

what the fibre orientation distribution is.  

 

 

Figure 3-1 Cross-sectional image of the fibre network 

Cox’s (Cox 1952) result is that for sheets with randomly orientated fibres, the stress in 

the fibres lying parallel to the loading direction is 3 times larger than if all of the fibres 

had been aligned with the stress direction.  As the fibres that are most heavily loaded are 

the ones that break first when fracture begins, we consider only the loads on the fibres 

in the 0o (parallel to applied stress) position.  If we denote these fibres with the 

superscript, o, then  

σ
ρ
ρσ
a

o
avf 3, =         3. 2 

Any fibre cutting a sheet cross-section will do so at a random place along the fibre.  

Accordingly, unless the stress is completely uniformly distributed along the fibre, the 

actual stress in the fibre at that point will differ from the average.  We define the 
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maximum stress in a fibre as being related to the average stress by a ratio where the 

value of r  will depend on the fibre length and the degree of bonding.  Accordingly 

σ
ρ
ρσ
a

o
f r3max, =         3. 3 

If we assume that the fracture of the sample begins when the fibres begin to break and 

we designate this stress as bσ , then this must be related to the breaking stress of the 

fibres, bf ,σ  by 

ρ
ρσ

σ
r

abf
b 3

,=          3. 4 

3.2.4 Estimation of fibre breaking stress 

 

There are two possible methods of measuring the fibre breaking stress- measuring single 

fibre strength or measuring the zero-span strength.  Measuring the zero-span strength is 

preferable as in the zero-span test the fibres are measured in the sheet.  This is not 

insignificant, as the mechanical properties of the fibres will depend on how they have 

been dried.  In other words we would not expect that the strength of fibres which have 

been allowed to freely dry to be the same as fibres which have been dried under restraint 

in the sheet.  The other advantage of the zero-span test is that it is affected by 

distributions in fibre strength (El-Hosseiny and Bennett 1985).  That is, the larger the 

distribution in fibre strength, the more the zero-span tensile strength will be reduced 

below the strength based on the expected average.  This is also likely to be true for 

paper tensile strength. 

 

From zero-span theory, for a randomly oriented sheet, the zero-span strength, zσ , will 

be 3/8 of the strength measured if all of the fibres had been oriented in the direction of 

applied stress (Van Den Akker 1958).  Therefore Equation 3.4 can be rewritten as: 

z
a

b r
σ

ρ
ρ

σ
9
81

=         3. 5 
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3.2.5 Estimation of r  

 

In the model for tensile strength, r  is defined as the ratio of the maximum load to the 

average load in the fibre. For any axial load distribution, an example of which is shown 

in Figure 3-2, r  is by definition: 

A
LF

r max=          3. 6 

Where maxF  is the peak axial load in the fibre, L  is the length of the fibre and A  is area 

under the load distribution curve that when divided by L  is equal to average load in the 

fibre. 

 

 

 

 

 

 

 

 

Figure 3-2 Axial force along length of fibre 

In general, the value of r  is believed to be a function of fibre length and number of 

fibre-fibre contacts.  In the model for tensile strength, Equation 3.5, r  describes the 

efficiency that the paper network uses the strength of the fibres in the paper.  Thus 

although there is no expression for bonded area and fibre length in the expression for 

the breaking strength of the paper, these will appear in the expression for r . 

 

The problem will be easily solved if the axial load distribution in the fibre is known. 

Simulation of a fibre network with Finite Element Method (FEM) is believed to be the 

best way to determine the axial load distribution in the fibre, provided the network is 

simulated in sufficient detail.  However, it is impossible to do such a simulation in this 

project due to the limited time range. 
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L 
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As a start for estimating the value of r , we will use the shear lag model to analyse the 

stress distribution along the axis of a fibre.  The shear lag model (Cox 1952), as 

discussed in Chapter 2, predicts that stress is transferred from each fibre to its adjacent 

fibres in the regions of the fibre ends.  The stress in a fibre is at its maximum at the 

center and diminishes to zero at the ends.  The application of the shear-lag model and 

other methods to determine r  is discussed in Chapter 8. 

 

3.3 Model for number of fibre-fibre contacts and expressions 

for relative bonded area (RBA ) 

 

As discussed above, a model for number of fibre-fibre contacts in paper is required for 

determination of the value of r  in the new model for tensile strength of paper (Equation 

3.5). 

 

Fibre-fibre contacts have long been an interesting topic in the study of paper physics 

with numerous attempts to develop analytical models for the number of fibre-fibre 

contacts.  Corte and Kallmes (Corte 1962) presented the first important model for 

number of fibre crossings in a three dimensional random fibre network.  An expression 

equivalent to this model was proposed some years later by Komori and Makishima 

(Komori and Makishima 1977).  Komori and Makishima’s model was later modified by 

Pan (Pan 1993) by allowing for the reduction in free fibre length due to existing 

contacts. Pan’s work was criticized and corrected by Komori and Itoh (Komori and Itoh 

1994).  Later a similar model was also derived independently by Dodson (Dodson 

1996).  More recently Dent (Dent 2001) showed that the ‘general gamma’ distribution 

can statistically describe ‘non-random’ as well as ‘random’ structures.  These models 

use statistical analysis to predict the possible number of fibre-fibre contacts that a 

certain number of fibres could make in a given volume.  They ignore the effects of fibre 

cross-sectional properties on the fibre-fibre contacts, so cannot model the effects of 

fibre collapse.  In fact, however, the fibre width, fibre height and the fibre collapse 

degree all affect the fibre-fibre contacts.  It is necessary to include these parameters in 

any model of fibre-fibre contacts. 
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Because the measurement of the number of fibre-fibre contacts is usually very difficult, 

it has always been problematic to obtain effective data to verify different models for the 

number of fibre-fibre contacts.  In this subsection, we first present a new analytical 

model for the number of fibre-fibre contacts, which relates the cross-sectional properties 

of the fibres in the sheet to the number of fibre-fibre contacts per unit length of fibre.  

The model is further used to derive expressions for the Relative Bonded Area (RBA) for 

the purpose of verifying the model for number of fibre-fibre contacts by using data of 

RBA. 

 

3.4 The new model for number of fibre-fibre contacts 

3.4.1 Model paper structure 

 

We start with the model fibre cross-section shown in Figure 3-3.  A fill factor, hf , is 

defined as the ratio of the fibre wall area, fA , to the area of the smallest rectangular 

bounding box, bA , that can completely enclose the irregular shape of the fibre and with 

its one side parallel to the paper plane.  Here hD  and wD  are the minimum dimensions 

of the rectangular bounding box. 

 

 

Dw

Dh 

Fibre wall area 

 

Figure 3-3 The bounding box surrounding a model fibre 
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Figure 3-4 Idealized cross-sectional matrix of fibres 

A paper sheet cross-section is then idealized as a regular matrix as shown in Figure 3-4, 

in which only the bounding boxes of the fibres are shown.  The factor, b , here is an 

angle factor and accounts for the fibres in general not cutting the zy −  plane at right 

angles.  In the situation depicted, z is the direction through the sheet thickness and the 

y axis can be selected to be any direction within the plane of the sheet.  The apparent 

density of the sheet, aρ , is (ignoring the effect of surfaces)  

( )( )wwhh

whh
a bDD

bDDf
αα

ρ
ρ

++
=        3. 7 

where ρ  is the density of the cell wall material, and hα  and wα  are the packing 

variables giving the spacing of the fibres within each layer and between the layers, 

respectively.  In this equation, hf , hD  and wD  can be relatively readily determined by 

confocal microscopy, leaving b , wα  and hα  to be estimated theoretically. 

 

3.4.2 Determination of b , wα  and hα  

 

To determine b , we need to determine the average angle that a fibre makes in crossing 

the y-axis.  If the distribution of fibre angle is random (as in a standard handsheet) then 

the average angle to any given plane perpendicular to the x-axis is: 

∫
∫

= 2/

0

2/

0

  cos    

  cos   
π

π

θθ

θθθ
θ

d

d
av        3. 8 



Chapter 3 Theory 

______________________________________________________________________ 

______________________________________________________________________ 53

Here the factor θcos  is the probability density function for the number of fibres having 

angle θ  to any given plane.  For a sheet with random fibre orientation, the theoretical 

value of avθ  given by Equation 3.8 is 12/ −π , or 32.7o.  Equation 3.8 could be made 

general for a machine made paper by replacing θcos  with a function )(θF , which 

would include the distribution information.  The value of b  is then given by 

avb θcos/1= . 

 

The idealized matrix presented in the previous section represents the fibres sitting in 

their idealized positions and not actually in contact with each other.  Letting Figure 3-5 

and Figure 3-6 depict the idealized x-y and x-z models, then L∆2  is the distance along 

the fibre axis between the fibre crossing midpoints and from geometry the following 

relationship can be derived. 

L
aDww

av ∆
+

=
2

sin
α

θ         3. 9 

The layer-layer separation is determined by hα . Figure 3-6 shows fibres within a single 

layer crossing each other.  As a strong theoretical basis for determining layer-layer 

separation is lacking, we assumed that hh Dβα = .  Here β  is a packing factor that will 

be determined experimentally. 
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Figure 3-5 Fibre-Fibre crossing within a layer (x-y Projection) 
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Figure 3-6 Side view of fibre-fibre contacts in one layer (x-z Projection) 

3.4.3 Apparent density and Number of fibre-fibre contacts 

 

Substituting the expressions for b , hα  and wα  into Equation 3.9, we obtain the 

following expression for the apparent density: 

av

wh
a 2L1

Df
θβ

ρ
ρ

sin)( ∆+
=        3. 10 

Now if we assume that an equal number of fibre-fibre contacts on a fibre come from the 

layers above and below a given layer then the number of fibre-fibre contacts per unit 

length of fibre, cN  is given by: 

w

av

h

a
c D

2
f2

13N
θ

ρ
ρβ sin)( +

=        3. 11 

There is very little data that can be used to check the validity of this expression.  One 

such set of data is the work of Elias (Elias 1967) in which data was obtained for the 

number of contacts per mm of fibre length for mats of glass fibres with a diameter of 

7.22 mµ and varying lengths, that were pressed at different pressures.  When this data 

was taken into Equation 3.11, β  was found to be –0.6, as shown in Table 2-1.  The 

value of β  is negative meaning that fibres from any given layer have deflected up and 

down into its neighbouring layers. 
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Table 3-1 Calculated value of ß by Equation 3.11 using Elias' data 

Fibre length 

(mm) 

Diameter (µm) Mean No. 

contacts per mm 

Solid fraction Calculated value 

of β 

2.26 7.22 3.2 0.0310 -0.57 

2.26 7.22 5.0 0.0488 -0.57 

2.26 7.22 5.6 0.0545 -0.57 

1.09 7.22 6 0.0739 -0.66 

4.55 7.22 4.7 0.0575 -0.66 

*For the cylindrical glass fibres, the fill factor, f , is given by 4/π . 

 

The fact that the calculated value of β  is approximately constant is an important 

indicator that Equation 3.11 could provide an accurate predictor of the number of 

fibre-fibre contacts. 

 

3.5 Expressions for RBA  

 

Equation 3.11 can be used to provide theoretical expressions for the RBA .  Two 

different expressions for the RBA  were given in consideration of the two different 

methods used for RBA  determination. 

If the RBA  is measured by nitrogen adsorption, then the total surface area of a unit 

length of fibre can be assumed to be ( )hw DD +2 .  If the area of each fibre contact is 

cA , then the Relative Bonded Area for nitrogen adsorption,
2NRBA , can be written as: 

( )hw

cc
N DD

ANRBA
+

=
22

        3. 12 

One critical assumption is that the sheets are thick enough so that the exclusion of the 

effect of the surfaces of the sheet from this calculation does not introduce significant 

error.  The second critical assumption is that if the fibres are purely ribbon-like, the 

projected area of each contact may be expressed as avwc DA θ2sin/2= .  However, in a real 

sheet, the actual area of each contact could differ from the idealized situation of two 

rectangles with width, wD , therefore a factor, R , should be taken into account for 
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calculating cA  i.e. ).2sin/( 2
avwc DRA θ=   When this is substituted in Equation 3.12 

together with the expression for cN  from Equation 3.11 then we obtain 

h

a
N f1

1
2
R

2
13RBA

2 ρ
ρ

δ
β

)(
)(

+
+

=       3. 13 

in which wh DD /=δ . 

For the RBA measured by scattering coefficient we assume that only the top and bottom 

surfaces contribute to the measured scattering coefficient, from which it can be shown 

that  

h

a
sc f2

R
2

13RBA
ρ
ρβ )( +

=        3. 14 

The model for number of fibre-fibre contacts presented in this chapter can be validated 

directly with data for number of fibre-fibre contacts measured in paper, and can also be 

validated indirectly with data for RBA  measured by nitrogen adsorption method and by 

scattering coefficient method.  Techniques for measuring the number of fibre-fibre 

contacts directly in paper and for measuring the RBA  are required.  A new microscopic 

technique for quantitative analysis of paper structure at the fibre level has been 

developed and validated and is presented in Chapter 6.  Based on this new technique, 

technique for measuring the fibre-fibre contacts directly in paper has also been 

developed.  This is discussed in Chapter 7.  These new techniques together with new 

techniques for measuring the RBA  that has been developed in this project are then used 

for obtaining data for validation of the new model for number of fibre-fibre contacts in 

paper.  This is discussed in Chapter 8. 

 

3.6 Summary 

 

This chapter has presented a new analytical model for tensile strength of paper based on 

the assumption that the macroscopic fracture of paper is trigger by the failure of fibres 

lying in the direction of the applied load.  The new model relates the tensile strength to 

the zero-span strength of the component fibres through a factor r .  The sheet density 

only comes in as the equation are derived for stresses and not as tensile index.  In other 

words it corrects for the void volume in the sheet.  The value of r  is the ratio of the 

peak load and the average load in the fibres, and r  is believed to be a function of 
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number of fibre-fibre contacts and fibre length.  It is the first analytical model that 

attempts to predict the start point of paper failure under load. 

 

A new model that relates the fibre cross-sectional dimensions and the apparent density 

of paper to the number of fibre-fibre contact per unit length of fibre has been presented 

in this chapter.  It is the first model that considers the effects of fibre cross-sections on 

the fibre-fibre contacts.  

 

The model for number of fibre-fibre contacts will be fully verified in Chapter 7.  The 

experimental verification for the model for tensile strength of paper will be presented in 

Chapter 8. 

 

 

 


