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Abstract 
This paper develops a method to analyse the load distribution along a half fibre in a 
non-woven or fibre composite where force is transferred into the fibre at any set of 
discrete contacts.  The force transferred at each contact is assumed to be proportional 
to the displacement of the contact relative to the applied strain field.  The constant of 
proportionality between displacement and force can be set independently for each 
contact.  The cross-sectional area and elastic modulus of each segment between 
contacts can also be set independently.  It was shown that the displacement, due to the 
applied strain, at each contact could be expressed in terms of the displacement at the 
last contact at the end of the fibre. As the displacement at the last contact was the sum 
of the previous contacts, each multiplied by a stress transfer coefficient, the stress 
distribution along the fibre could be solved analytically.  The debonding of fibres 
from a paper sheet under load was simulated. The fibre load-network strain curve was 
found to be highly sensitive to the configuration of the crossing points.  The method 
of analysis has application to nonwoven networks such as paper as well as nonwoven 
fibre composites.  
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Introduction 
An important factor affecting the mechanical properties of a fibre network or fibre 
composite under load is the stress distribution along fibres in the material.  This has 
been frequently modelled using the shear-lag theory (Nairn, 1997), due originally to 
Cox (Cox, 1952).  The shear-lag analysis starts by considering a fibre embedded in a 
matrix subject to a strain, ε , in the direction of the fibre.  It is assumed that the load, 
dF  transferred into the fibre from the matrix, over a distance, dx, at a position, x, 
along the fibre is linearly proportional to the displacement of x relative to the applied 
strain or / ( )f mdF dx δ δ∝ −  where fδ  and mδ  are the fibre and network 
displacement, respectively, relative to a reference point.   For a linearly elastic fibre 
this expression can be integrated (Cox, 1952; Raisanen et al., 1997) to give 

( ) ( )( )( ) 1 cosh / coshf x x Lε ε β β= − , where ( )f xε  is the strain at a position x  along 
a fibre of half length, L , elastic modulus, E  and cross-section, A,  and β  is the shear-
lag parameter giving the efficiency at which the matrix transfers stress into the fibre.  
The coordinate system is set with 0x =  at the centre of the fibre. 
 
The shear-lag model has found widespread application (see for example (Sridhar et 
al., 2003; Xia et al., 2002)) in research on fibre reinforced composites.   It has also 
been used to predict the elastic modulus (Astrom et al., 1994; Page and Seth, 1980) 
and strength (Carlsson and Lindstrom, 2005; Feldman et al., 1996) of nonwoven 
fibrous networks, such as paper, although the usefulness of the approach has been 
disputed (Raisanen et al., 1997).  Methods to calculate β  for a given matrix material 
and fibre dimensions have been the subject of continued research (Nairn, 1997).   
However, a shear lag type analysis is only fully valid if one single value of β  applies 
along the whole length of the fibre.  It is also likely to be a good approximation if the 
variation in β  is small.  There are many situations where a single value of β  cannot 
be applied.  Paper, for example, is a nonwoven network composed of naturally 
produced fibres with wide distributions of lengths, cross-sectional dimensions and 
mechanical properties.  Load is only transferred into a fibre at discrete points, where 
the fibre comes into contact with other fibres. For a given fibre, each crossing fibre’s 
dimensions, mechanical properties, position and crossing angle will be determined 
according to stochastic distributions.  A non-woven or woven fibre composite is 
another example, as the stress transferred into a fibre of interest will vary along the 
fibre, due to the different stress transfer characteristics of the fibre network and 
matrix.  Finally any fibre network or fibre composite (eg cellulosic composites made 
of flax or cotton fibres (Eichhorn and Young, 2003)) in which stress is transferred 
across the ends of the fibres will also not fulfil the classic shear-lag criterion, although 
some theoretical approaches have been developed to deal with such cases (Clyne, 
1989). 
 
The stress-distribution along a fibre has never been solved analytically for a network 
where load is transferred into a fibre at some set of discrete contact points, each with 
an individual value of β , although it is possible to calculate using finite element 
models.  The problem is difficult to analyse because any force transferred into the 
fibre both produces and is caused by displacement the contact point along the fibre, 
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relative to the applied strain.  The purpose of this paper is to present an analytical 
method to solve this problem. 
 
 
   
Theory  
 
Figure 1 shows half of a fibre, which is connected to an external fibre network by i  
contact points.  The contact points are shown in Figure 1 as fibres.  This is for 
convenience and in fact the analysis is valid for any form of stress transfer into the 
fibre that is linearly coupled to the network strain in the direction of the fibre.    
 
The fibre is assumed to be linear elastic. The centre of the fibre at 0 0x =  is set as the 
reference point and it is assumed that the force transferred into each half of the fibre is 
identical and so therefore only half the fibre needs to be considered for the purposes 
of this calculation.  A strain of ε  is applied to the external network in the direction of 
the fibre axis.  It is assumed that force is transferred into the fibre by displacements of 
the contact points from their equilibrium position for the applied network strain.  The 
displacement of the jth  contact is designated jδ .  The forces that develop at the jth 

contact are assumed to linearly related to jδ  by a stress transfer coefficient, jβ , such 
that 

j j jF β δ=           (1)  
 
The idea is illustrated in Fig. 2, which shows segment 1 of the loaded fibre from Fig. 
1.  This has a strain in the first segment of 1ε  which differs from the network strain, 
ε , displacing the crossing point from the equilibrium position by 

( )( )1 1 1 0x xδ ε ε= − − .  It should be noted here that the values of δ  are always 
negative.  That is the displacement at each point of the crossing fibre is always less 
than the displacement of the network, relative to the reference point.  Hence the stress 
transfer coefficients, β , are also negative so that the force on the fibre is in the 
positive direction, as indicated.    
 
The force which has produced the strain 1ε  is the sum of the forces developed at all i  
crossing fibres and therefore 

( ) ( )1
1 1

1 1 1

0
0

j i

j j
j

x
x

E A
δ β δ ε

=

=

−
= − −∑        (2) 

where 1E  and 1A  are the elastic modulus and cross-sectional area, respectively, of 
segment 1.  Each segment is assumed to have a constant cross-section and elastic 
modulus. However, one of the strengths of the method is that the elastic modulus and 
the cross-section can vary from segment to segment.  
 
The displacement at the second contact is the sum of the displacement in the first and 
second segments which gives 
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if 1 1 2 2E A E A=  then equation (3) simplifies to  
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It can be shown that for the 1n − th and  n th contacts that 
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and   
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Substitution of equation (5) in equation (6) yields 

( )1 1

j i

n n
j n

n n n n
n n

x x
E A

β δ
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which may be rewritten as  

( )1 1

j i

n n
j n

n n n n
n n

x x
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β δ
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Thus 1iδ − , can be written in terms of iδ ; 2iδ −  can be written in terms of 1iδ −  and 
thus in terms of iδ , and a similar chain can be developed such that each displacement 
can be expressed in terms of iδ , the displacement at the final crossing nearest the 
fibre end.  The displacements at all the fibre crossings can be expressed in terms of iδ  
and as iδ  is given by 

( ) ( ) ( )
1 1

1 1
1 1 2 1
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           (9) 
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which may be expressed in shortened form as 
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 then it is possible to solve this equation to determine iδ  and thus to uniquely 
determine the displacements at all crossings.  It is also worth noting that if EA  is 
constant along the length of the fibre, then equation (10) simplifies to  

1

1 j i

i j j j i
j

x x
EA

δ β δ ε
=

=

⎛ ⎞
⎜ ⎟= −
⎜ ⎟
⎝ ⎠
∑   (11) 

 
To illustrate the application of the method, the equations will now be given for the 
relatively simple case of three points of stress transfer for a half fibre with uniform 
elastic modulus, E ,  and cross-sectional area, A .  To simplify the expressions, the 
stress transfer coefficients will be normalised by the elastic modulus and cross 
sectional area such that 

/j j EAβ β′ =          (12) 
The three points for stress transfer are designated 1, 2 and 3, with point 3 being 
closest to the end of the fibre.  From equation (8) it can be shown that  

( )( )2 3 3 2 3 3x xδ δ ε β δ′= + − +       (13) 
and   

( )( ) ( ) ( )( )( )( )( )1 3 3 2 3 3 2 1 3 3 2 3 3 2 3 3+x x x x x xδ δ ε β δ ε β δ β δ ε β δ′ ′ ′ ′= + − + + − + + − +

          (14) 
And from equation (11) 3δ  is given by 

3 1 1 1 2 2 2 3 3 3 3x x x xδ β δ β δ β δ ε′ ′ ′= + + −

      

(15) 
Which upon substitution of equations (13) and (14) yields

 ( )( ) ( ) ( )( )( )( )( )( )
( )( )( )

1 1 3 3 2 3 3 2 1 3 3 2 3 3 2 3 3

2 2 3 3 2 3 3 3 3 3 3 3

0 +x x x x x x x

x x x x x

β δ ε β δ ε β δ β δ ε β δ

β δ ε β δ β δ ε δ

′ ′ ′ ′ ′= + − + + − + + − +

′ ′ ′+ + − + + − −

          (16) 
The factors in equation (16) can be rearranged in the form 30 a bδ= +  which then 
yields one unique solution for 3δ , which can then be substituted into equations (13) 
and (14) to yield 2δ  and 1δ , respectively.  Clearly the complexity of the analysis 
grows substantially with the addition of each crossing point.  However this system can 
be rapidly solved for a reasonable number of contacts using a mathematical package 
with symbolic analysis capability.  The calculation can be checked for consistency by 
summing the forces from all contacts and checking that those forces given by the 
calculated displacements also yield those displacements.  To see how this applies in 
practice, consider the following simple case of a half fibre of length, L =1000 μm and 
a network strain, ε , of 0.03.   Stress is transferred into the half fibre at 3 contacts at 
( )1 2 3, ,x x x = ( )300μm,600μm,900μm  and the normalised stress transfer coefficients 
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are 1 2 10,000β β β′ ′ ′= = = .  Substitution of these values in equation (16) and solving 
yields 3 216 / 91δ = − μm, from which 2 45 / 91δ = −  μm and 1 9 / 91δ = −  μm can be 
obtained.   The correctness of the solution can be shown by substituting these values 

into equation (2) which yields 6
1 1

216 45 910,000 10 0.03
91

xδ −⎛ + + ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
  which is 

0.09890−  μm or -9/91 μm.    
The correctness of the solution is proven as equation (2) was not used as part of the 
derivation of equation (16). 
 
Applications 
There are three major applications for the method.  The first application is in 
calculating the load distribution in a fibre when the stress transfer varies along the 
length of the fibre.  This will occur in any nonwoven or nonwoven composite.  It will 
also occur in composites where stress transfer occurs across the ends of the fibres.  
The second application is to model the evolution of the stress development as loading 
progresses towards failure and the bonds transferring the load begin to fail. The third 
application is to model stress transfer in non-uniform fibres, where elastic modulus 
and cross-sectional area vary along the fibre.   
 
To demonstrate the first application, a system is considered with a half fibre of 
1000μm length with 20 contacts, at 50μm, 100μm, 150μm…1000μm.  Instead of 
β ′=10,000 used in the previous example, β ′  has been generated as a random number 
either between 0 and 5,000 (fibres 1-3) or between 0 and 1000 (fibres 4-6).   The 
results are shown in Figure 3 as the ratio of the local strain along the fibre to the 
network strain.  All strain distributions are similar in shape to the classic shear-lag 
distribution as they are approximately constant towards the middle of the fibre at 

0=x  and fall at an increasing rapid rate towards the end of the fibre.  The strain at 
0x =  for fibres 1-3 is essentially the same as the network strain, while fibres 4-6 with 

the lower stress transfer coefficient have a maximum strain of around 0.9 of the 
network strain.  The random distribution of β ′  along a fibre can be observed as the 
fall in strain moving towards the fibre end is neither uniform, nor identical from fibre 
to fibre.  The figure shows that strain distribution is much less dependent on the 
values of β ′  when the values of β ′  are higher on average.   
 
To demonstrate the second application, the debonding of a fibre from a loaded 
nonwoven structure will be simulated.  The non-woven taken as an example is a paper 
sample that comes from an investigation into factors affecting the strength of paper 
(He, 2005).  The starting material was a never bleached, undried, laboratory cooked 
radiata pine kraft with a kappa number of 30.   This pulp was prepared from the 
starting stock by double fractionation in a hydrocyclone, which altered the fibre cross-
sectional shape, while keeping the fibre length essentially constant.  The fibre shape 
was measured in the sheet using a combination of resin embedding and confocal 
microscopy (He et al., 2003).  The fibre shape was then characterised by measuring 
the cross-sectional area of the irregular fibre shape and from the dimensions of the 
smallest rectangular bounding box that could be fitted around the fibre (He et al., 
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2003).  The summary data for the sample are shown in Table 1.  The fibre cross-
sectional area was assumed to be constant along the length of the fibre.  
 
The fibre-fibre contacts in the structure were also measured by examining fibres 
sectioned longitudinally by the sheet cross-section (He et al., 2004) and directly 
counting fibres in contact.  The distances between fibre contact centres, 1n nx x −− , 
were measured and shown to be fitted by a two-parameter Weibull probability density 
function (PDF), as given by equation (17),  

( ) ( )( )( )1
1 1 1( ) / ) exp( / cc

n n n n n n
cf x x x x b x x b
b

−
− − −− = − − −  (17) 

where b  and c  are constants, and , 0b c > , and 1 0n nx x −− ≥ .  For the sample 
simulated here, the fitted parameters were  86.1b = µm and 1.43c = . Each contact 
was assigned to be either a full or a partial contact, depending on whether the entire 
width of the fibre was in touch with the fibre of interest or not.  Partial contacts arise 
because the fibres become twisted during the sheet making process.  For the sample 
simulated here only 24% of the measured contacts were classified as full contacts.  
The contact positions for each fibre were randomly generated from the probability 
density function given in equation (17).  The distance to the first contact from 0x =  
was generated from half the value generated by initial application of equation (17), as 
the calculation assumes that the fibre contacts are distributed symmetrically around 
the middle of the fibre.  The distance to the second contact was then generated from 
equation (17) and added to the position of the first contact.  Contacts were generated 
in this manner until the end of the fibre was reached.    
 
The simulations presented here examined the effect of the randomly assigned 
configuration of the crossing fibres.   To do this, it was assumed that the stress 
transfer coefficient was the same for all fibre contacts at 1000jβ ′ = .  The orientation 
distribution of the crossing fibres was also neglected.  Instead it was assumed that 
each fibre crossed at the average crossing angle of / 2 1avθ π= −  (He et al., 2003).  
Each contact was randomly assigned to be either a full contact or a partial contact, 
according to the measured statistics.  The area of each full contact was then assumed 
to be 2 / sinw avD θ , where wD  is the fibre width shown in Table 1.  The area of each 
partial contact was randomly assigned a fraction, λ , between 0 and 1 of the area of a 
full contact.  For the purposes of this analysis, the shear bond strength of the contacts 
was assumed to be 10bσ = MPa such that the breaking load of an individual partial 

contact was 2 / sinb w avDλσ θ .  The possible fracture of the fibres was ignored.   The 
elastic modulus of the fibres was assumed to be 30 GPa.   
 
For the simulations the network strain was started at 0 and then increased in steps of 
0.002 to a final strain of 0.046.  For each network strain, the stress distribution along 
the fibre and the load at each contact was calculated.  The load at an individual 
contact was then compared with the breaking load of the contact.  If the breaking load 
of the contact was exceeded, then the contact was removed from the simulation and 
the stress distribution and load at each contact was recalculated.  This cycle was 
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repeated until the load at each contact was less than the breaking load of the contact, 
after which the network strain was then incremented by 0.002 and the cycle repeated.   
 
The results of the simulation are shown in detail for two fibres in Figures 4 and 5.  To 
simplify the presentation of the figures only the simulations at strains at intervals of 
0.006 have been shown.  Fibre 1 (Figure 4) and fibre 2 (Figure 5) have 14 and 25 
contacts, respectively.  Such a wide distribution of contacts is solely due to the 
distribution of distances between contacts given in equation (17).   The measured load 
distributions along the length of the fibres show similar patterns for both simulations. 
No bond breakage occurred for network strains of 0.006, 0.012 and 0.18 for fibre 1.  If 
there are no bond breakages, then the load distributions will scale with the network 
strain, as the fibre is assumed to be linearly elastic.  This is observed in Figure 4, in 
that the load, at any given position, calculated at a network strain of 0.18 is three 
times the load calculated at a network strain of 0.006.  In contrast the first bond for 
fibre 2 was calculated as breaking at a network strain of only 0.08, despite the 
increased number of contacts transferring stress into the fibre.  This is due to the area 
of this individual contact being particularly small.    
 
It is also interesting to note that the maximum load developed at the middle of fibre 1 
at a network strain of 0.006 was 0.0189N, while the corresponding maximum load for 
fibre 2 at the same network strain was 0.0248N.  The difference between the two was 
entirely because the fibre 2 has far more contacts transferring load.    
 
For fibre 1, 1 bond broke at a network strain of 0.02 and a further five bonds broke at 
a network strain of 0.022 and the fibre began to debond from the network, so that only 
the section of the half fibre between 0 and 600µm was under load at a network strain 
of 0.036.   This debonding process was accompanied by a sharp drop in the maximum 
load on the fibre.  For fibre two, five bonds had already broken at a network strain of 
0.02 and a further five bonds broke when the network strain was increased to 0.022 
and this fibre also began to debond from the network at the end.   
 
Figure 6 shows the fibre average load for six fibres as a function of network strain, as 
well as the average of the six fibres.  Figures 4 and 5 show the load distribution along 
fibres 1 and 2, respectively, from which the fibre average loads were calculated.  The 
individual fibres, as well as the average curve, all display an initial linear region.  
Except for fibre 5, all fibre load-strain curves also display a yield point, occurring 
before the point of maximum load.  This yield point corresponds to the first bond 
failure.  The six fibres display wide variability in the maximum load attained and the 
strain at the point of maximum load, despite the fact that the individual fibres all have 
the same elastic modulus and cross-sectional area and the stress transfer coefficient at 
each point of contact is identical.  This variability is due only to the distributions in 
the number and area of the contact points.   
 
This type of analysis can be used to simulate the failure of paper and other 
nonwovens.  This is because the failure of paper and other nonwovens is generally 
triggered by the failure either by fracture or by debonding of those fibres aligned with 
the stress direction.  A number of additional factors would need to be considered in 
order to do develop an accurate simulation.   
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For nonwovens made of natural wood pulp fibres, variation between and along the 
fibres must be taken into account.  Elastic modulus in wood pulp fibres varies 
systematically with position in the tree (Long et al., 2000) controlled by the 
orientation of the cellulose microfibrils with respect to the long axis of the fibre (Page 
et al., 1972).   Random defects introduced in the pulping process also reduce the 
overall elastic modulus measured from single fibre tests (Page et al., 1972), as well as 
the elastic modulus at the location of the defect.  Further defects are introduced at 
fibre-fibre contacts due to differential shrinkage as the fibres dry after the sheet is 
formed from fibres in suspension (Page and Tydeman, 1966), producing an area of 
lower elastic modulus with low yield stress.  Individual wood fibres also have a cross-
sectional area that is approximately constant in the middle of the fibre but tapers to a 
point at the fibre’s ends (Cote, 1980).  It is not known if local elastic modulus 
correlates in any way with local cross-sectional area.   
 
The tapering of the cross-sectional area and variation, from segment to segment, of 
elastic modulus along a fibre can be readily modelled using the approach presented 
here, as both elastic modulus and cross-sectional area can be set independently for 
each segment.  The method is also rapid enough to make sufficient simulations for 
averages of fibre properties.    
 
One limitation of the method is that it is restricted to linear elastic fibres and the 
accuracy of the simulation would need to be carefully considered if significant plastic 
deformation of the fibres is expected.  
 
 
Conclusions 
A new method has been developed to calculate the force distribution on a fibre in a 
loaded network where force is transferred into the fibre at discrete points. The method 
allows for any distribution of contact points and for each contact point to have its own 
stress transfer coefficient.  The method show great promise in analysing the failure of 
nonwovens and nonwoven composites.  
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Figure 1 Unstrained half fibre of length, L , with i  crossing fibres.   
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Figure 2.  Displacement of the first crossing point from equilibrium position in the 
applied strain field, ε .   
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Figure 3.  Calculated stress distributions for six fibres. Fibres 1-3 have jβ ′  for each 

contact having a random value between 0 and 10,000.  Fibres 4-6 have jβ ′  for each 
contact having a random value between 0 and 1,000.   
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Figure 4.  Load distribution along fibre 1 with 1000jβ ′ =  and fibre and fibre network 
statistics given in Table 1. The legend indicates the overall network strain along the 
length of the fibre.  
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Figure 5.  Load distribution along fibre 2 with 1000jβ ′ =  and fibre and fibre network 
statistics given in Table 1.  The legend indicates the overall network strain along the 
length of the fibre.  
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Figure 6. Simulations of average force along the fibre versus network strain for six 
fibres.  
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Table 1  Fibre and sheet parameters for the material used in the simulations. 
Pulp Hydrocyclone Fraction Sheet Pressing level 

Radiata pine, Kappa 
number of 30 Reject 0 MPa 

Fibre height (μm) Fibre width (μm) Fibre wall area (μm2) 
16.45± 0.93 30.19± 1.35 192± 10 

Fibre length No. of full contacts per fibre 
(average) 

No. of partial contacts per 
fibre (average) 

3.34 mm 10.6 32.9 
Sheet apparent 
 density (kg/m3) 

Length weighted Fibre 
length (mm) 

218 3.14 
 


