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ABSTRACT 
A new analytical solution for the load distribution 
along a fibre in a network has been used to 
investigate some aspects of paper tensile strength 
and elastic modulus.  The method uses a similar 
approximation to the shear-lag formulation but 
allows stress transfer at individual contacts, rather 
than specifying a single stress transfer function 
applying along the entire length of the fibre.  
Measured elastic modulus data, where the fibres 
only varied in length and not cross-section showed 
only a small effect of fibre length on modulus.  
This is consistent with a high overall stress transfer 
coefficient for each fibre-fibre contact, resulting in 
the contacts at the ends of the fibres being heavily 
loaded. The maximum force at the middle of the 
fibre was calculated as a function of the fibre-fibre 
shear bond strength.  The data showed that most 
literature values are too low to allow the fibre to 
break during paper fracture.  The simulation 
method was able to explain the reduction in sheet 
tensile strength with a reduction in density, but was 
unable to explain the reduction in sheet strength 
with reduced fibre length.  The assumption that a 
fibre-fibre bond fails completely once its breaking 
load is exceeded is believed to cause the 
discrepancy.  
 
INTRODUCTION 
Paper mechanical properties include strength, 
elastic modulus and stretch at break.  Strength and 
stiffness are very important for paper performance 
in many converting and end-use applications.   
 
Paper itself is a network of ligno-cellulosic fibres 
bonded together through hydrogen bonds. The 
fibres are positioned stochastically, that is with 
their centres randomly located, and with orientation 
determined according to an orientation distribution.  
Additional perturbing influences on fibre location 
are flocculation, where fibre clumping produces 
local areas of high grammage, with corresponding 
areas of low grammage elsewhere in the sheet. 
Acting in opposition to this tendency, fibres may 
also be more uniform than would be predicted from 
randomly located positions, since areas of low 
grammage will experience greater drainage during 
sheet formation, concentrating fibres at that point, a 
process known as self-healing.  The orientation and 
distribution of fibres in contact with any given fibre 

of interest are determined by the overall stochastic 
distribution as well as influences from flocculation 
and self-healing.  For a stochastic three 
dimensional network, distances between contacting 
fibres have been shown to be given by a Γ function 
(1), while experimental data (2) have been fitted by 
a two-parameter Weibull probability density 
function yielding similarly shaped distributions 
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where b  and c are constants, and , 0>b c , and 

1 0−− ≥n nx x .  Increasing paper non-uniformity, 
through increasing flocculation, reduces paper 
strength through fracture in low grammage areas 
(3, 4).   The effect of the non-uniformity of the 
structure at the fibre level on paper mechanical 
properties has never been investigated in detail.    
 
When a fibre network, such as paper, is elastically 
loaded, the total force developed at a given elastic 
strain can be summed from the components of the 
forces in the individual fibres in the stress 
direction.    These are controlled by the fibre elastic 
modulus and dimension, the fibre-fibre contacts 
and the stress transfer from the fibrous network 
through the contacting fibres into each individual 
fibre.  Our current understanding of stress-transfer 
within fibrous networks is incomplete and only 
limited measurements of fibre elastic modulus have 
been completed. 
 
As well as the factors controlling the elastic 
modulus, paper strength is also controlled by fibre 
strength and the fibre-fibre shear bond strength.  
Fibres surfaces are bonded together with hydrogen 
bonds. No theoretical prediction of bond strength is 
available.  Experimental measurements have been 
conducted using a wide variety of techniques to 
prepare the bonds.  Values have also been 
estimated by using the bond strength as a fitting 
parameter in the Page equation for paper strength 
(5, 6).  A review (7) of the available values found 
that measured and theoretically derived shear bond 
strengths ranged from 2 to 25 MPa.   It appears to 
be extremely difficult to prepare bonds 
representative of those found in a sheet as well as 
to prevent out of plane deformation and twisting 
while testing the bonds.  Some measurements of 
single fibre strength have been conducted, although 
the measurements are extremely tedious and so 
zero-span strength is preferred.   Zero-span strength 
is imperfect in that it is measured on the sheet and 
is an average only as well as being affected by 
sheet grammage (8).  The zero-span strength will 
fall with increasing grammage due to the stress 
transfer mechanism into the sample  (9).  Assuming 
that the density of the fibre wall is 1500 kg/m3, it 
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can be shown using Van den Akker’s result for an 
isotropic sheet (10) that fibre strength, σ f , is 

related to zero-span strength, Z, by 4σ =f Z , when 

σ f is expressed in MPa and zero-span strength is 
expressed as kNm/kg. 
 
One interesting aspect of the elastic modulus and 
strength of paper that has received relatively little 
attention is the dependence of these properties on 
fibre length.  According to data from Japanese 
researchers given in page 145 in Niskanen (11), 
elastic modulus depends only slightly on fibre 
length, provided all other cross-sectional 
dimensions are held constant, whereas paper 
strength depends strongly on fibre length.   This 
should be further investigated since theories of both 
elastic modulus and strength include fibre length. 
 
The first theory for the elastic modulus of paper is 
due to Cox (12), who treated paper as a fibre 
reinforced composite.  Cox showed that for a 
randomly oriented sheet of fibres with length, l, the 
elastic modulus of the sheet is a third of the 
component fibres.  If the fibres are finite in length 
then, assuming that the stress transferred into a 
fibre over an interval [x, dx] from the matrix is 
proportional to the displacement of position x 
relative to the overall strain the matrix, it was 
shown that the effective fibre modulus was reduced 
by ( ) ( )1 tanh / 2 / / 2l lβ β− , where l was the fibre 
length and β  was a constant related to the stress 
transfer efficiency into the fibre and the fibre 
elastic modulus and cross-sectional area.  The 
reduction in effective elastic modulus is due to the 
ends of the fibre being less heavily loaded than the 
middle of the fibre.  The shear-lag  model has been 
further extended to qualitatively include defects in 
fibres (13, 14) and found to accurately match the 
form of average stress distributions along fibres 
obtained from a finite element model of a thin 
network (15).  None of these models consider paper 
made from fibres with distributions of dimensions 
and mechanical properties.  Räisänen et al have 
further criticised the shear-lag model on the 
grounds that the direct stress transfer from fibres 
with low crossing angles is likely to be the 
dominant mode of transfer, rather than by shear of 
perpendicularly oriented fibres (16).    
 
Analytical models for paper strength include the 
Page equation (17), the Shallhorn Karnis model 
(18) based on theory of the failure of composites 
and one based on shear-lag theory by Carlsson and 
Lindström (19).    All models assume uniform, 
straight fibres.  Interestingly the stress transfer 
mechanism on all three models is quite different to 
the stress transfer for the shear-lag model of elastic 
modulus.  The shear-lag model for elastic modulus 

has the highest stress transfer into the fibre at ends, 
reducing towards the middle as the strain in the 
fibre approaches the network strain asymptotically.  
However the models for strength all assume a 
uniform increase to a sharp peak from the ends of 
the fibre to the mid-point.  This is justified 
explicitly in the work by Carlsson and Lindström as 
arising from complete yielding of the matrix along 
the length of the fibre, as proposed originally by 
Kelly and Tyson (20).  In the work of Page, this is 
stated without justification.    
 
There is still discussion as to what actually triggers 
the failure of paper.  When paper fails, a fibre 
crossing the fracture line can either break or pull-
out.  Microscopic examination of fractures lines 
shows that both pull-out and fracture occur in paper 
under normal conditions (21) and that bonds start to 
fail prior to the actual failure of the sample.  Page 
assumed that fibres that pull out have failed 
completely before final failure and thus carry no 
load at the point of fracture, hence it is the failure 
of the fibres which triggers final fracture.  Carlsson 
and Lindström appear to have assumed that both 
fibre failure and pull-out occur simultaneously.  
The issue is important as whether the fibres fracture 
or pull-out will control the subsequent evolution of 
the fracture zone and the stability of the fracture 
process.    
 
The preceding discussion has demonstrated that 
there are still a large number of outstanding issues 
in paper mechanics.  While progress has been made 
with theory, allowing us to qualitatively understand 
the influence of fibre and network properties on 
strength and modulus, it has not been possible to 
incorporate variability in fibre and structure or even 
to prove that it is not necessary to consider such 
variability.  It is the purpose of this paper to apply a 
recently published method (22) to examine some of 
the outstanding issues in paper mechanics.  The 
method considers paper as being composed of three 
components- a single fibre of interest, which is 
connected to a uniform matrix by a set of crossing 
fibres.  The model uses the shear-lag assumption of 
linear coupling between the force generated at a 
contact and the displacement of the contact relative 
to the uniform matrix.  However the model differs 
from the shear-lag in that the equations are solved 
for discrete contacts, each with independent stress 
transfer coefficient, rather than a single uniform 
stress transfer coefficient.  In this paper, I will use 
this model to examine what fibre-fibre bond 
strength is compatible with some fibres breaking 
upon sheet fracture, as is observed experimentally.  
I will also examine the effect of the variability in 
the number of contacts and positions caused by the 
stochastic fibre structure as well as investigating 
the reasons why elastic modulus has been reported 
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to be largely insensitive to fibre length, while 
tensile strength depends strongly on fibre length.   
 
THEORY 
What follows is a summary of the derivation given 
in (22), which should be consulted for further 
information.   The analysis starts with half a fibre, 
which is connected to an external fibre network by 
i contact points.  The fibre is assumed to be linear 
elastic. The centre of the fibre at 0 0=x  is set as 
the reference point and it is assumed that the force 
distribution is symmetric around the mid-point.  A 
strain of ε  in the direction of the fibre axis is 
applied to the external network  and force is 
transferred into the fibre by displacements of the 
contact points from their equilibrium position for 
the applied network strain.  The displacement of 
the jth  contact is designated jδ .  The forces that 
develop at the jth contact are assumed to linearly 
related to jδ  by a stress transfer coefficient, jβ , 
such that 

j j jF β δ=                        (2) 
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Figure 1.  Displacement of the first crossing point 
at position, 1x ,  from equilibrium position in the 
applied strain field, ε .   
 
The idea is illustrated in Figure 1, which shows 
segment 1 of the loaded fibre, running from the 
midpoint of the fibre at 0 0x =  to the position of 
the first contact, 1x .  This has a strain in the first 
segment of 1ε  which differs from the network 
strain, ε , displacing the crossing point from the 
equilibrium position by ( )( )1 1 1 0x xδ ε ε= − − .  
The force which has produced the strain 1ε  is the 
sum of the forces developed at all i crossing fibres 
and therefore 
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where 1E  and 1A  are the elastic modulus and 
cross-sectional area, respectively, of segment 1.  
Each segment is assumed to have a constant cross-
section and elastic modulus, but these can be set 
independently for each segment.  .  
 

The displacement at the second contact is the sum 
of the displacement in the first and second 
segments which gives 
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Extending this reasoning it can be shown that for 
the n-1th and  nth contacts that 
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Thus 1iδ − , can be written in terms of iδ ; 2iδ −  can 
be written in terms of 1iδ −  and thus in terms of iδ , 
and a similar chain can be developed such that each 
displacement can be expressed in terms of iδ , the 
displacement at the final crossing nearest the fibre 
end.  The displacements at all the fibre crossings 
can be expressed in terms of iδ  and as iδ  is given 
by 
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 then it is possible to solve this equation to 
determine iδ  and thus to uniquely determine the 
displacements at all crossings.  This solution will 
be exact under the specified assumptions.   
 
The advantages of this approach over the shear-lag 
approach, which is the starting point for the 
derivation of these equations, are that each contact 
position, and stress transfer coefficient can be 
independently specified. The cross-sectional area 
and elastic modulus of each segment can also be 
independently specified.  Thus the effect of the 
stochastic paper structure can be modelled by 
generating distances between contacts according to 
measured distributions.  Non-uniformities along a 
fibre, such as changes in cross-sectional 
dimensions or defects can also be modelled. The 
main disadvantage of the method is that it limited 
to linearly elastic fibres, while paper is elastic-
plastic and can show considerable plastic 
deformation at failure.   
 
In the work presented here I have not attempted to 
model the strength of paper. There are still a 
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number of issues that need to be resolved, before 
this can be completed.  In particular, real paper 
structures will have contacts that are a mixture of 
full contacts and partial contacts (2).  The partial 
contacts are produced when fibres become twisted 
during pulping and sheet manufacture.  One of the 
effects of wet-pressing is to untwist and flatten 
fibres (23).  These effects still need to be 
considered for incorporation into the model.   
Rather, the work here will demonstrate the utility 
of the method and provide insight into some of the 
major open questions in paper mechanics.   
 
 
EXPERIMENTAL DATA 
The experimental data were all collected as part of 
a PhD thesis investigating the factors affecting 
paper strength (24).  The starting material was an 
unbleached, never dried, laboratory cooked radiata 
pine kraft with a kappa number of 30, which is 
labelled L0.   This type of pulp is an important 
research tool because it produces fibres that are as 
straight and free from defects as possible.  The 
fibre length was altered by forming sheets from the 
starting stock, cutting them while still wet and then 
reslushing the sheets, before making fibres.  Three 
levels of cutting were used to create sheets denoted 
L1-L3.  The wet-cutting operation reduced the 
length of the fibres while preserving the cross-
sectional area and dimensions.  For each sample, 
isotropic 60 gsm sheets were made on a laboratory 
sheet former and pressed at five different pressing 
levels, in order to vary the level of bonding in the 
sheet, however only the sheets made at the middle 
pressing level (P3) are presented here.  Zero-span 
strength was measured on a Pulmac 
Troubleshooter.  Further details are available in 
(24). 
 
The fibre cross-sectional area and width was 
measured in the sheet using a combination of resin 
embedding and confocal microscopy (25).  Fibre 
width was estimated from the width of the smallest 
rectangular bounding box that could be fitted 
around the irregular shape of the fibre (25).  The 
dimensions of the bounding box are Dh and Dw. 
The summary data for the fibre dimensions for the 
samples used in the simulations presented here are 
shown in Table 1. 
 
Table 1 Fibre dimensions and sheet density for 
samples used in simulations 

 
Table 2 Weibull distribution parameters for fibre-
fibre contact distances, fraction of full contacts  and 
fibre breaking force calculated from the zero (Z) 
span tensile index, for samples used in the 
simulations.  

Sample 
name 

Weibull 
 b 

Weibull 
 c 

Frac 
full 
contacts 

Z-span 
index 
(Nm/g) 

Fibre 
break 
force 
(N) 

L0 P3 48.4 1.62 0.48 148.6 0.129 
L1 P3 53.4 1.58 0.53 151.9 0.138 
L2 P3 53.7 1.50 0.49 148.2 0.130 
L3 P3  N.A. N.A.  N.A. 155.8 0.136 

 
The fibre-fibre contacts on some samples were also 
measured by examining fibres sectioned 
longitudinally by the sheet cross-section (2) and 
directly counting fibres in contact.  Fibres in 
contact were either assigned as full or partial 
contacts, depending on whether contact was made 
across the full width of the contacting fibre or not.  
Partial contacts arise because the fibres become 
twisted during the sheet making process.  The 
distances between fibre contact centres were 
measured and fitted by a two-parameter Weibull 
probability density function (PDF), as given by 
equation 1.  The fibre contact data as well as the 
zero-span tensile index data are given in Table 2. 
Table 2 also gives the fibre breaking force 
estimated from the zero-span tensile strength, 
increased by 10% to account for non-linear stress 
transfer under the jaws (8).    
 
Since only the data from the third level of pressing 
(P3) was used, the shortcuts L0, L1 etc only are 
used, without the pressing level.  The fibre elastic 
modulus is a parameter required for simulations.  
This was assumed to be 30 GPa, based on literature 
data (26), as no data was available for the samples 
tested.    
 
RESULTS 
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Figure 2 Single calculated force curve along a fibre 
from sample L0 with sheet density 509 kg/m3. 
 
Figure 2 shows a single force distribution curve 
along half a fibre for sample L0.  This figure has 

Sample 

X-
sect. 
Area 
(μm2) 

Dw 
(μm) 

Dh 
(μm) 

Density 
(kg 
/m3) 

Fibre 
length 
(mm) 

L0 P3 198 30.7 12.3 509 3.14 
L1 P3 207 34.5 12.1 522 2.53 
L2 P3 199 33.1 11.5 434 2.10 
L3 P3 N.A. N.A. N.A.  470 1.79 
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been included to show the types of curves that the 
simulation generates.  The set of contacts has been 
randomly generated from the contact statistics 
given in Table 1.  A stress transfer coefficient β of 
15,000 and an external network strain of 0.2% were 
used.  The reasons for the selection of this stress 
transfer coefficient are discussed later.  Each point 
on this curve is a single contact point and the force 
at the contact point gives the load in the fibre 
segment to the left of the contact.  For a pair of 
adjacent points, subtracting the force on the RHS 
from that on the LHS gives the force applied at the 
RHS contact.  The general shape of the curve in 
Figure 2, with build up of stress at the ends of the 
fibre, approaching an asymptotic stress value at the 
middle is very similar to that predicted by shear-lag 
theory.  This is not surprising given that the same 
underlying mechanism of stress transfer applies in 
both cases. The difference between the two is that 
the shear lag equations give a smooth asymptotic 
approach to a limit, while the solution with discrete 
contacts does not.  The important data generated 
from this solution are the average force of 0.0107N, 
which is indicated by the solid line on the graph, 
the maximum force at the middle of the fibre of 
0.0119 and the force at each contact. The maximum 
force at a contact is at the last contact at the end of 
the fibre, which had a load of 0.0038N.  Providing 
the fibre orientation distribution and sheet 
grammage are held constant, the force in the 
network will be proportional to the average force 
along the fibre.  
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Figure 3 Three simulations for sample L0 with 
sheet density of 509 kg/m3 
 
Figure 3 shows three separate simulations for L0.  
The simulations produced 36, 37 and 38 contacts 
for each fibre.  The number of contacts is 
reasonably uniform because the sheet is reasonably 
dense, with a density of 509 kg/m3, and the Weibull 
distribution of fibre-fibre contact distances is 
compressed compared to a lower sheet density.  
The data all have the same final maximum force at 
the middle of the fibre.  However the development 
of force at the end of the fibre is different between 
the simulations.  This entirely reflects the density 
of fibre-fibre contacts, and their positions, at the 

end of the fibre.  It can be seen also that the force at 
the final contact at the end of the fibre is different 
between the simulations.   There were small 
differences between the average forces for the 
whole fibre for the three simulations.   That data 
shows that the local environment is important to the 
calculated force distribution.  It is not sufficient to 
only employ average contact distances, such as are 
incorporated into models of paper strength, since 
the force distribution will depend in a non-linear 
manner on the number of contacts for an individual 
fibre and their placement.  These simulations do 
not take into account any bond breakage, as the 
sample is stretched. Simulations with bond 
breakage are more sensitive (22) to the 
configuration of the crossing fibres. Therefore it is 
important to perform sufficient simulations to 
obtain representative results. For further 
simulations presented in this paper, 30 simulations 
were performed and the results averaged.  
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Figure 4 Tensile stiffness index versus density for 
samples L0-L3 
 
Figure 4 shows the data of tensile stiffness index.  
The figure shows that firstly that tensile stiffness 
index increases with increasing sheet density, 
consistent with many sets of literature data.  The 
figure also shows that fibre cutting has had a very 
small effect on the tensile stiffness, as had 
previously been found in the literature (11).  The 
data is somewhat scattered and so difficult to make 
a precise estimate.  For the purposes of the work 
here, the reduction in tensile stiffness from sample 
L0 to L2 is estimated to be 5% at constant sheet 
density.  It is important to make the comparison at 
constant sheet density as if the fibre cross-sectional 
dimensions are constant then sheet density will be 
proportional to the level of bonding in the sheet.  
This set of data is important as it helps select the 
stress transfer coefficient, β .   
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Figure 5 Effective elastic modulus versus β for L0-
L2 at the same pressing level 
 
Figure 5 shows the calculated effective elastic 
modulus.  This was calculated from the average of 
30 simulations by dividing the average stress in 
each fibre by the network strain applied.  As 
mentioned previously the assumed elastic modulus 
of the fibre was 30 GPa.  If the network strain was 
transferred through the end of the fibres and the 
transfer was perfectly efficient then the effective 
elastic modulus would match the fibre elastic 
modulus. The effective elastic modulus is always 
lower than the fibre elastic modulus as stress 
transfer is imperfect.  It takes some distance from 
the end of the fibre before the strain in the fibre 
begins to approach the network strain.  This figure 
shows that as β is reduced, then the effective 
elastic modulus in the fibre and thus the elastic 
modulus of the paper sample will also be reduced.  
The data also shows that the effect of fibre length 
becomes more important as the value of β is 
reduced.  Whereas for β =17,000, the data for L0, 
L1 and L2 are almost coincident, it can be seen that 
for β =600, L2 is around 30% lower than L0.   
 
The data here is an important, because by 
comparing with the tensile stiffness index data 
shown in Figure 4 we can estimate the value of β . 
The data in Figure 4 show that the tensile stiffness 
index of L0 is only around 5% higher than that of 
L2, at the same sheet apparent density.   From this 
it can be concluded that quite a high stress transfer 
coefficient of 15,000 is required to produce the 
observed small difference in tensile stiffness index 
between sheets made from the different length 
fibres.  This stress-transfer coefficient was used for 
all the simulations presented in this paper.  
 
In order to simulate the fracture of paper, it is also 
necessary to know the fibre-fibre shear bond 
strength.  As mentioned in the literature review, 
experimental values ranging over an order of 
magnitude have previously been obtained.  The 
simulation technique described here was to 
investigate the effect of bond strength on the peak 
load in the fibre and compare it to the maximum 

breaking load in the fibre estimated from the zero-
span tensile strength.  The value of β =15,000 
estimated from the elastic modulus data was used 
for the simulations.  For the simulations, contacting 
fibres were generated according to the Weibull 
distribution for distance between contacts for the 
sample.  The measurements also included the 
fraction of contacting fibres that were full contacts.  
Each contact was randomly selected to be a full or 
partial contact according to the measured data. The 
load distribution in the fibre was then calculated 
with a matrix strain of 0.002-0.005, depending on 
the bond strength chosen.  Following this the load 
at each contact was then compared to the breaking 
load of a contact, bF , which is given by 

2 / sinb b w avF f Dσ θ=          (8) 
where  bσ  is the fibre-fibre shear bond 
strength, wD  is the fibre width, sin avθ  is the 
average crossing angle for two fibres and f is a 
fraction that was randomly generated between 0 
and 1, if a contact was a partial contact, and was set 
to 1, if the contact was a full contact.  If the 
breaking load of any contact was exceeded then it 
was removed from the calculation and the load 
distribution in the fibre recalculated.  This process 
was repeated until the load at each contact was less 
than the breaking load of the bond.  The external 
matrix strain was then incremented by the value of 
the initial matrix strain and the procedure repeated.  
The calculated data are presented as the peak load 
at the middle of the fibre versus the network strain. 
Each data point was the average of 30 simulations.   
Simulations were conducted with shear bond 
strengths ranging from 5 to 30 MPa, in steps of 5 
MPa.  Fibre fracture was not included.  
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Figure 6 Peak load in the middle of the sample as a 
function of network strain for sample L0 
 
Figure 6 shows the results of the simulations. The 
initial slope of the curve is the same for all 
simulations, as the initial slope depends solely on 
fibre elastic modulus, β , and the density of fibre-
fibre contacts. The simulations are of interest, 
because they can be used to make some inferences 
about the fibre-fibre bond strength.  Recall from 
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Table 2 that the estimated fibre breaking load 
calculated from the zero-span strength is 0.129N, it 
can be seen that a minimum bond strength of 25 
MPa is required in order to achieve maximum loads 
in the middle of the sample sufficient to break the 
fibre, which observations of the fracture line show 
is occurring.  This suggests that most literature 
values are far too low and have probably been 
influenced more by shear and rotation in the joint 
rather than providing a true value of the shear-bond 
strength.  It is interesting that the highest estimates 
of bond strength from the literature were done by 
acid exposure measurements on sheets of paper and 
testing the sheets to infer a bond strength value of 
29 MPa (27), based on weakening the sheet to the 
point where the strength of a fibre is equal or less 
than the strength of a single fibre-fibre bond.  
Based on the data in Figure 6, a bond strength of 25 
MPa was then selected to calculate the average 
force along the fibre as a function of network strain  
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Figure 7 Tensile index versus sheet density for 
samples L0-L3 
 
Figure 7 shows a graph of strength versus density 
for L0-L3.  The data confirms previously measured 
trends in the literature that both fibre length and 
sheet density have an important effect on sheet 
strength.  The effect of cutting the fibre to reduce 
the length weighted fibre length to 1.79 mm for L3 
has been to reduce the sheet strength by around 
50%.  This shows quite a different trend to the 
elastic modulus data, which was almost 
independent of fibre length.  The question is then 
can we explain the differences in trend with fibre 
length for elastic modulus and strength from the 
simulations?  
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Figure 8.  Average force along a fibre as a function 
of network strain for LO-L2 
 
Figure 8 shows the average force as a function of 
network strain using a bond strength of 25 MPa. 
The simulations used the same methodology as was 
used for Figure 6, but calculating the average load 
along the whole fibre length, rather than the peak 
load in the middle of the fibre.  The results are 
shown in Figure 8 for L0-L2.  It can be seen that 
currently the differences between elastic modulus 
and strength cannot be explained through the 
simulations.  There are only relatively small 
differences between the curves for each of the fibre 
length.  The reason seems to be that with the high 
stress transfer coefficient, the maximum load is 
determined by the strength and concentration of the 
contact points at the end of the fibre.  These are 
very similar for L0-L2 as the sheet density and 
contact statistics given in Table 1 and 2 are similar. 
The result was surprising but was confirmed by 
artificially reducing the number of contacts by 
increasing the Weibull parameter, b, by 50% and 
100%, to decrease on average the number of 
contacts by 33 and 50%, respectively, while 
keeping all other factors constant and then 
repeating the simulations.  The results are shown in 
Figure 9 and clearly demonstrate the effect of 
reducing the density of the network, which is as 
expected and confirmed by the data in Figure 7.  
The reasons for the discrepancy between the 
theoretical and experimental effect of fibre length, 
probably lie in the assumption that when the force 
at a bond exceeds the breaking load, the bond will 
then completely fail. At a minimum, this 
assumption will ignore frictional effects from the 
dry bonds in contact with each other.  
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Figure 9 Effect of removing 33% and 50% of the 
contacts of the L0 sample on the average force as a 
function of network strain.  
 
CONCLUSION 
A new method to calculate the force distribution in 
a loaded fibre network has been described.  
Measured force distributions were compared 
against experimental data obtained by wet fibre 
cutting to reduce the fibre length.  The comparison 
of simulation and experimental data suggests that 
most literature values for fibre-fibre shear bond 
strength are too low. 
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