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Chapter 1

Introduction

Prediction is very difficult, especially about the future.

Niels Bohr. (1885 - 1962)

Danish physicist

1.1 Motivation

In everyday life we encounter a large number of classification problems. Many

of them are solved intuitively, i.e. without an explicit method or algorithm,

such as: what type of person is “this”?, which is the gender of this film?,

where do I place (classify) this new dish I tested today? (with all its sub-

types). We generally carry out these classification processes subconsciously,

based on previous experience. This “previous experience” translates into

training data in machine learning. The main objective then is to recognize

complex patterns on these data in order to make intelligent decisions.

The term database is defined as “a structured set of data held in a com-

puter, especially one that is accessible in various ways” according to the

Oxford English dictionary1. With the permanent increase of hardware capa-

bilities and improvement of network technologies, the size and performance

of databases have steady grown at exponential rate. Although the task of

data mining to provide a clean and proper database is not trivial, in this the-

1http://www.oed.com/
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1. INTRODUCTION

sis we assume we have this available to perform the classification task, except

for the need to pre-process the databases with filters for discretization, treat-

ment of missing values or useless attributes. For our purposes, “only” the

content of the database organised in m instances with n attributes per in-

stance plus the class (which must be discrete)1 is needed. This is generally

called a dataset, a term we use from now on to refer to the group of instances

(also referred to as examples or records) treated in the classification process.

Nevertheless, these data may have different characteristics to consider

prior to the application of a particular classification algorithm. The alterna-

tives are massive and depend on the problem to deal with.

There are multiple paradigms for classification to begin with, such as:

Bayesian networks (BNs), decision trees, rule induction, artificial neural net-

works, genetic programming, support vector machines, etc. In this thesis we

focus on the first of these, which might be seen as a combination of statis-

tical techniques and graphical models. BNs provide several advantages to

the classification task. The most important is the fact that the networks

store information about existing dependencies among the variables involved.

This makes them capable of providing a visual representation of the relation-

ships between variables, and at the same time to deal with uncertainty, very

frequently present in real world.

In this dissertation we particularly focus on efficient Bayesian network

classifiers (BNCs), that either do not perform structural learning or it is

very simple. Learning the structure of a network can take a long time and

effort, especially in the case of datasets of high dimensionality. That is why it

is often convenient to consider a partially or totally pre-fixed structure from

which the conditional probability tables are learnt. The most simple of these

structures is the one used by the naive Bayes (NB) classifier [Duda & Hart,

1973], which assumes all the attributes are independent given the class. In

spite of its naive assumption, it performs surprisingly well in certain domains.

Hence, numerous techniques have been proposed to improve the accuracy

of NB by alleviating the attribute interdependence problem. We refer to

1Note that we are referring here to a finite set of labels, if the class to predict is of a
continuous type it becomes a problem of regression, which is out of the scope of this work.
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them as semi-naive BNCs, a term introduced by Kononenko [1991]. Among

these proposals, the Averaged One-Dependence Classifier (AODE) [Webb

et al., 2005] has proved to be significantly better in terms of error reduction

compared to many other semi-naive techniques, maintaining under control

its time and space complexity in training and classification time [Zheng &

Webb, 2005].

For the particular case of AODE, computational needs in terms of me-

mory storage and classification time (which is quadratic in the number of

attributes) may be too large for some databases. In this thesis a new classi-

fier (derived from AODE) is proposed to tackle some of these inconvenients.

Since the natural domain of AODE and many others BNCs consists on

discrete variables, we find interesting to study the different alternatives for

handling numeric attributes, commonly present in real databases. Among

these options the discretization pre-processing step and the use of distribu-

tion functions, such as the Gaussian distribution, or mixtures of truncated

exponentials (MTEs), will be studied in depth in Section 2.2 and Chapters

4 to 7 of this dissertation.

We have noticed that all the alternatives we propose may be beneficial for

a large group of databases, but not for all. Hence, we consider to find out in

advance, according to the characteristics of a particular dataset, which clas-

sifier among the BNCs is the most suitable in each case. To this purpose we

study the domain of competence for several semi-naive classifiers according

to different complexity measures [Ho & Basu, 2002].

1.2 Organisation of the dissertation

This dissertation is structured in five parts.

Part I comprises Chapters 1 and 2. The first chapter includes the in-

troduction and draws the structure of the thesis (that you are reading at

the moment). The second chapter includes three sections with information

of the state-of-the-art on the three main subtopics that form this thesis:

1) overview in supervised classification and literature review of semi-naive

BNCs; 2) options to handle continuous variables when applying BNCs; and
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1. INTRODUCTION

finally, 3) complexity measures for determining the domain of competence of

a classifier.

Parts II, III and IV include the following contributions of the thesis:

- Part II is divided in Chapters 3, 4 and 5, and contains the description

and results of new classifiers, derived from AODE to overcome its limita-

tions. First of all, Chapter 3 presents the Hidden One-Dependence Classifier

(HODE). This classifier estimates a new mixture variable with the aim of cap-

turing the significant interdependencies among variables included in AODE

throughout the different models, so that both space needs and classification

time are reduced. Chapter 4 introduces GAODE and HAODE, two classifiers

designed to handle numeric variables in a more direct way than AODE. For

this purpose, GAODE uses conditional Gaussian networks (CGNs) whereas

HAODE discretizes a numeric attribute exclusively when it plays the role

of superparent. In order to avoid the Gaussian assumption, in Chapter 5,

we resort to more general probability distributions, in particular, the use

of Mixture of Truncated Exponentials (MTEs) through the proposal of the

MTE-AODE classifier.

- Part III is divided in Chapters 6 and 7, and deals with discretization

techniques in semi-naive BNCs. Chapter 6 shows an study on the effect of dif-

ferent traditional supervised and non-supervised discretization techniques on

NB, AODE, tree augmented naive Bayes (TAN) and k-dependence Bayesian

classifier (KDB). Although not significant difference is found when using dis-

joint discretization techniques, i.e. where the intervals do not overlap. It

is indeed, as far as AODE and HAODE is concerned, when a non-disjoint

technique is applied, as shown in Chapter 7.

- Part IV (Chapter 8) shows the study oriented to find the domains of

competence of different semi-naive BNCs both for continuous and discrete

domains.

- Part V (Chapter 9) contains the main conclusions of this dissertation

and future work is delineated. It also contains the list of publications this

thesis has contributed to the existing literature.
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Chapter 2

Preliminaries and notation

To be uncertain is to be uncomfortable, but to be certain is to be ridiculous.

Chinese Proverb.

2.1 Bayesian network classifiers

Supervised classification is one of the most popular and, hence, important

tasks in data mining. In this context, the basic classification task involves

learning a model (or generalization) from a set of labelled data, in order

to assign one label to every new example. The model learning phase can

be more or less complex, to such a degree that most of the work might be

carried out in the inference phase (as in lazy classifiers), often simply called

classification phase. Note that as the world is not deterministic, we will have

to manage with uncertainty in classification in most of the cases.

Formally, a model is learnt from a dataset with m examples and n at-

tributes, all of them with known labels for a special attribute called class,

C. Hence, it is also often referred to as supervised classification in contrast

to unsupervised classification or clustering, where the labels are not known

a priori. For every example of the type ~e = {a1, a2, . . . , an}, where each ai

is the value for the attribute Ai, a typical classifier would assign a label ci

from a finite set, Ωc, of possible labels. Note that we are referring here to a

finite set of labels, if the class to predict is of a continuous type it becomes

7



2. PRELIMINARIES AND NOTATION

a problem of regression (numerical prediction), which is out of the scope of

this thesis.

As indicated in Chapter 1, there exist multiple paradigms for classifica-

tion. In this study we focus on BNs, which might be seen as a combination of

statistical techniques and graphical models. Quoted from Russell & Norvig

[2009]:

The Bayesian network formalism was invented to allow efficient

representation of, and rigorous reasoning with, uncertain knowl-

edge. This approach largely overcomes many problems of the

probabilistic reasoning systems of the 1960s and 1970s; it now

dominates artificial intelligence research on uncertain reasoning

and expert systems. The approach allows for learning from expe-

rience, and it combines the best of classical artificial intelligence

and neural nets.

Bayesian technology has become popular and well-established, as demon-

strated by the numerous companies specialising in this formalism. Just to

give a few examples: Hugin1, Agenarisk2, BayesiaLab3 or Bayesian Intelli-

gence4. The commercial interest on BNs suggests they are useful in practical

applications. Some domains where BN classifiers have been successfully ap-

plied are the following:

Computing and Robotics: It is quite logical and natural that BNCs, de-

veloped by computing researchers, were firstly applied to solve certain

tasks related to computers such as: e-mail services [Sahami et al., 1998],

web/text classification [Jiang et al., 2005] and artificial vision [Rehg

et al., 1999]. We can even find a chess player, BayesChess [Fernández

& Salmerón, 2008a]. BNCs have also been successfully applied to fault

detection in networking systems, with similar aims as those applied in

medicine or bioinformatics [Armañanzas, 2009].

1http://www.hugin.com/
2http://www.agenarisk.com/
3http://www.bayesia.com/
4http://www.bayesian-intelligence.com/
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BNCs have been so broadly used in spam filters that many of the

commercial-use programs are based in this technology. We can there-

fore speak about an outstanding family called Bayesian spam filtering.

These filters can be integrated into the mail client or separately in-

stalled in a filtering software package, for instance SpamAssassin1 and

SpamBayes2.

Medicine and health care: BNCs have proved to be very useful in many

areas of medicine, including heart diseases [Qazi et al., 2007], cancer

diagnosis [Antal et al., 2003], gene identification [Armañanzas et al.,

2008] and human biology [Morales et al., 2008].

Economy, finance and banking : BNCs have been applied to assess risk

in financial operations such as credit approval or deciding whether to

invest in a particular area or enterprise. Pavlenko & Chernyak [2010]

worked with data from a private mid-sized bank in Ukraine with the

aim to design a credit risk model in which a particular role of the related

borrowers exposure can be analysed as a risk-aggregating factor. TAN

and KDB classifiers are initially constructed with the collaboration of

experts. Afterwards, they are also validated and updated according

to the results of the assessment process. In Korb & Nicholson [2010,

Chapter 7] other examples of credit risk assessment with BNs are re-

viewed.

Environmental Science: It is another area where BNCs have been success-

fully applied in the past, and its interest in these Bayesian structures

has increased enormously during the last five years. Reviewing the

recent literature we can find relevant works in ecology, microbiology

[Wang et al., 2007], fish recruitment [Fernandes et al., 2010], fish clas-

sification [Axelson et al., 2009], meteorology [Hruschka-Jr. et al., 2005],

habitat characterization and conservation planning [Aguilera et al.,

2010], Geographical Information Systems and mapping [Porwal et al.,

2006] or agriculture [Bressan et al., 2009], among many others.

1http://spamassassin.apache.org/
2http://spambayes.sourceforge.net/
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2. PRELIMINARIES AND NOTATION

BNs provide several advantages to the classification task:

• The networks store information about existing dependencies among the

variables involved, which provide a graphical representation capable of

inherently dealing with uncertainty, encoded through the probability

theory underneath.

• The graphical representation through the BN facilitates the interpre-

tation and formulation of conclusions about the domain of study.

• In addition, BNCs can combine causal relationships with probabilistic

logic, which helps to incorporate expert knowledge into the model.

Thus, one of the greatest advantages of the BNs is that they can repre-

sent both the qualitative and the quantitative aspect of the problem. The

former is encoded in a directed acyclic graph (DAG), whereas the latter in-

volves storing a probability distribution for every node conditioned on its

parents. Even though the conditional probability distribution can be repre-

sented in several ways, the most common representation is the use of tables,

i.e. conditional probability tables (CPTs).

In a DAG, each node represents a variable; an arc represents a direct

dependence between the pair of nodes connected. If there is a directed arc

from X to Y , it means that X is the parent of Y and Y is child of X .

Furthermore, if there exists a directed path from X to Z, it implies that X

is an ancestor of Z, while Z is a descendant of X .

Through the local Markov property, which states that a node is condition-

ally independent of its non-descendant given its parents, we can represent the

joint probability distribution of a BN by the product of the CPTs associated

with each of its nodes.

In classification, we want to obtain p(c|~e) ∀c ∈ Ωc, i.e. the conditional

probability for C given ~e. The accurate estimation of the probabilities a

posteriori for every combination of the class labels and the values of the

attributes is infeasible in practice, as it requires a large amount of training

data even with a moderate number of attributes. That is why it is convenient
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to resort to the Bayes theorem:

p(c|~e) = p(~e|c)p(c)
p(~e)

. (2.1)

When the probabilities a posteriori are compared for the different class

labels, the denominator is constant and can be ignored. The search for the

label c∗ that maximizes these probabilities is called maximum a posteriori

(MAP) rule:

c∗ = argmaxc∈ΩC
p(c|~e) = argmaxc∈ΩC

p(c)p(~e|c). (2.2)

The prior probability p(c) can be easily estimated from training data

by calculating the fraction of examples that belong to each class. Different

approximations can be used in order to estimate the probabilities conditioned

to the class, p(~e|c), and depend on the structure of the DAG learnt.

The MAP rule, in this case, is equivalent to the 0/1 loss function, defined

as: argminc∈ΩC

∑

c′∈Ω L(c, c′)p(c′|~e), where L(c, c′) = 0, if c = c′; and 1,

otherwise.

In this thesis we don’t cover general BN structure learning. Learning the

structure of a network can take a long time and effort, especially for datasets

of high dimensionality. That is why it is often convenient to consider a par-

tially or totally pre-fixed structure from which the CPTs are learnt. The

most simple of these structures is the one used by NB, that assumes all the

attributes are independent given the class. In spite of its naive assumption,

it performs surprisingly well in some domains. As indicated above, many

techniques improve the accuracy of NB by alleviating the attribute interde-

pendence problem. All these techniques, known as semi-naive BNCs, do not

perform structural search or this search is very simple.

The natural domain of BNs are the discrete variables, hence, we will

assume this property for all the variables in the dataset except in Chapters 4

to 7 of this dissertation. It is also often the presence of missing values in data,

and even if there exist several methods to replace these values (imputation

of single or multiple values, via mean substitution or linear interpolation

11



2. PRELIMINARIES AND NOTATION

for example), the direct way to proceed in a BNC is ignoring the affected

counting in every CPT where the attribute whose value is missing appears,

which is called available-case analysis. Note that this is not the same as

ignoring the whole instance (aka complete-case analysis). There are several

other options, and it is not clear which is the best way to proceed; it partially

depends on the number of samples and proportion of cases with missing data.

For more information on how to deal with missing values please refer to Zhang

& Lu [2002].

2.1.1 Naive Bayes

NB [Duda & Hart, 1973] estimates the class conditional probability assuming

that all attributes are conditionally independent given the value of the class,

and this implies the following factorization: ∀c ∈ ΩC p(~e|c) =
∏n

i=1 p(ai|c)
(see Figure 2.1 (a)). This approach is more feasible, as a large training set is

not required to obtain an acceptable probability estimation. Here, the MAP

hypothesis is used to classify as follows:

c∗ = argmaxc∈ΩC
p(c|~e) = argmaxc∈ΩC

(

p(c)

n
∏

i=1

p(ai|c)
)

. (2.3)

At training time, NB has a time complexity O(mn), where m is the num-

ber of training examples. The space complexity is O(cnv) where v is the

average number of values per attribute and c the number of classes. The

resulting time complexity at classification time is O(cn), while the space

complexity is O(cnv).

2.1.2 Averaged One-Dependence Estimators

AODE [Webb et al., 2005] is considered an improvement on NB and an

interesting alternative to other attempts such as Lazy Bayesian Rules (LBR)

[Zheng & Webb, 2000] and Super-Parent TAN (SP-TAN) [Keogh & Pazzani,

1999], since they offer similar accuracy values, but AODE is significantly more
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(a) Naive Bayes (b) SPODE (c) TAN/KDB1

Figure 2.1: Examples of network structures with 4 predictive attributes for
the following BN classifiers: NB, SPODE (e.g. AODE) and TAN or KDB1
(k = 1).

efficient at classification time compared with the first one and at training

time compared with the second. In order to maintain efficiency, AODE is

restricted to exclusively use 1-dependence estimators. Specifically, AODE

can be considered as an ensemble of SPODEs (Superparent One-Dependence

Estimators), because every attribute depends on the class and another shared

attribute, designated as superparent.

Graphically, every SPODE model used in AODE has a structure such

as the one depicted in Figure 2.1 (b), where AODE combines all possible

classifiers with this pattern structure. Hence, AODE computes the average

of the n possible SPODE classifiers (one for each attribute in the database):

c∗ = argmaxc∈ΩC





n
∑

j=1,N(aj)>q

p(c, aj)
n
∏

i=1,i 6=j

p(ai|c, aj)



 , (2.4)

where the condition N(aj) > q is used as a threshold to avoid making pre-

dictions from attributes with few observations1.

At training time, AODE has a O(mn2) time complexity, whereas the space

complexity is O(c(nv)2). The resulting time complexity at classification time

is O(cn2), while the space complexity is O(c(nv)2).

AODE offers an attractive alternative to other approaches that aim to

improve NB maintaining its efficiency, as it provides competitive error rates

with an efficient profile [Zheng & Webb, 2005].

1In all of our experiments in the following chapters, this q value has been set to 1,
which is the default value in WEKA [Hall et al., 2009; Witten & Frank, 2005].
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2. PRELIMINARIES AND NOTATION

In Cerquides & de Mántaras [2005], two algorithms based on expectation

maximization and on constrained optimization for learning maximum a pos-

teriori weights for the different SPODEs are proposed. These two proposals

improve over uniform aggregation and Bayesian model averaging [Hoeting

et al., 1999, 2000]. Another simple and efficient way of weighting AODE is

known as weightily averaged one-dependence estimators (WAODE) [Jiang

& Zhang, 2006], where the different models are weighted according to the

mutual information between the superparent and the class.

2.1.3 Other semi-naive Bayesian classifiers

2.1.3.1 Tree augmented naive Bayes (TAN)

The TAN model [Friedman et al., 1997] relaxes the conditional independence

restriction without a large increase in the complexity of the construction pro-

cess. The idea behind TAN entails learning a maximum weighted spanning

tree [Chow & Liu, 1968] based on the conditional mutual information be-

tween two attributes given the class label, choosing a variable as root and

completing the model by adding a link from the class to each attribute. This

procedure is described in more detail in Algorithm 2.1.

The mutual information between two discrete variables: Ai and Aj con-

ditioned on the class C can be defined as:

MI(Ai, Aj;C) =
∑

i=1

∑

j=1

∑

r=1

p(ai, aj, cr)
log p(ai, aj, cr)

p(ai|cr)p(aj|cr)
. (2.5)

Friedman et al. [1997] guarantee that the tree learned from the training

data is the optimal one, i.e., it is the best possible probabilistic representation

from the available data as a tree. TAN becomes a structural augmentation

of NB where every attribute has the class variable and at most one other

attribute as its parents, see Figure 2.1 (c). It is considered a fair trade-off

between model complexity and model accuracy.

At training time, TAN generates a three-dimensional table, with a space

complexity O(c(nv)2). The time complexity of forming the three-dimensional

probability table is O(mn2) and O(cn2v2) of creating the parent function. A
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Algorithm 2.1: The TAN algorithm

Input: Dataset with variables A1, . . . , An, C.
Output: TAN model.
Construct a complete undirected graph (UG), U, with nodes1

A1, . . . , An.
Label each arc (Ai, Aj) with the conditional mutual information2

between Ai and Aj given C, i.e., MI(Ai, Aj;C).
Maximum Weight Spanning Tree Algorithm:3

begin4

Let G be an empty UG with nodes A1, . . . , An.5

while Number of arcs in G is ≤ n− 1 do6

Add the arc with maximum weight if not cycle in G.7

end8

end9

Transform G into a directed graph (DG), T, selecting a root.10

Complete T by adding C and arcs (C,Ai) ∀i.11

Compute the CPTs.12

Let TAN be a BN with structure T and probability distributions in13

CPTs.
return TAN14

maximal spanning tree is then generated, with time complexity O(n2 logn).

At classification time, TAN only needs to store the probability tables, with

space complexity O(cnv2). The time complexity of classifying a single exam-

ple is O(cn).

In fact, the TAN classifier can be considered a particular case of the forest

augmented naive Bayes (FAN) [Lucas, 2004]. This classifier aims to alleviate

TAN’s limitation that comes from the fact that some arcs may imply the

insertion of noise, as the number of arcs in the tree has to be n− 1 (where n

is the number of attributes). In FAN, a maximum spanning forest is learnt,

which implies to form a forest of trees with a disjoint set of attributes. The

number of arcs to include must be previously specified so that it is possible

to ignore certain arcs, hence becoming a more flexible model than TAN.

2.1.3.2 k-dependence Bayesian classifier (KDB)

Sahami [1996] introduced the notion of k-dependence estimators, from which
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the probability of each attribute value is conditioned by the class and, at

most, k other attributes. Throughout the KDB algorithm (shown below)

it is possible to construct classifiers across the whole spectrum, from the

NB structure to the full BN structure, by varying the value of k, i.e. the

maximum number of parents that every attribute can have.

Algorithm 2.2: The KDB algorithm

Input: Dataset with variables A1, . . . , An, C and k.
Output: KDB model.
Calculate MI(Ai;C) for all attributes.1

Calculate MI(Ai, Aj;C) for each pair of attributes (i 6= j).2

Let the used variable list be U = ∅.3

Let G be a graph G = (V,E), in which V is a set of vertices and E is a4

set of links.
V = {C}5

E = ∅6

while (∃Ai /∈ U) do7

Amax = maxi{MI(Ai;C)}, ∀Ai /∈ U8

V = V ∪ Amax9

E = E ∪ (C,Amax)10

vk = min(|U |, k)11

Let the auxiliary variable list be Q = ∅12

while (vk > 0) do13

Amax2 = maxj{MI(Amax;Aj|c)}, ∀Aj ∈ U ∧ Aj /∈ Q14

E = E ∪ (Amax2, Amax)15

Q = Q ∪Amax216

vk = vk − 117

end18

U = U ∪Amax19

end20

Compute the CPTs.21

Let KDB be a BN with structure G and probability distributions in22

CPTs.
return KDB23

The advantage of this type of classifiers compared with TAN is their

flexibility. In TAN, a variable can have at most one other variable for its

parent. This restriction on the number of parents strongly constrains the
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dependencies that can be modelled between the group of features.

Computing the actual network structure with the KDB algorithm requires

O(n2mcv2) and calculating the CPTs within the network takes O(n(m+v2)),

where v here is the maximum number of values that an attribute may take.

Classification time would require O(nck).

Apart from the classifiers mentioned above, there exist other not-so-well-

known approaches that should also be taken into account. We indicate some

of them in the following subsections.

2.1.3.3 Hidden naive Bayes (HNB)

[Zhang et al., 2005] This classifier creates a hidden parent for each attribute

that combines the influences from all other attributes by considering the

following classification rule:

c∗ = argmaxc∈ΩC

(

p(c)

n
∏

i=1

n
∏

i=1,i 6=j

Wijp(ai|aj , c)
)

, (2.6)

where Wij =
MI(Ai,Aj;C)∑n

j=1,j 6=i MI(Ai,Aj;C)
. The HNB is similar in idea to AODE, but

it has higher training time O(mn2 + kv2n2).

2.1.3.4 Full Bayesian network classifier (FBNC)

[Su & Zhang, 2006] This Bayesian classifier assumes a full BN and learns

a decision tree for each CPT, with a novel and more efficient algorithm.

The authors claim that it is quadratic in training time O(tn2), and linear

in classification time O(n), providing competitive results with other state-of-

the-art learning algorithms.

2.1.3.5 Bayesian network augmented naive-Bayes (BAN)

[Friedman et al., 1997] The BAN classifier further relaxes the independence

assumption as it creates a BN among the attributes, while it maintains the

class variable as a parent of each attribute. The posterior probability of this
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classifier is formulated as:

c∗ = argmaxc∈ΩC

(

p(c)

n
∏

i=1

p(ai|pa(ai), c)
)

, (2.7)

where p(ai) are the parents of every Ai. It is the empty set for NB, it is a set

with one single parent for TAN, and it is an unlimited parent set for BAN.

2.1.3.6 Multinet classifier based on dependency networks (Mul-

tiDN)

In Gámez et al. [2008], the authors propose the use of dependency networks

for classification with methods for reusing calculations across mixture com-

ponents. This classifier obtains a competitive trade-off between accuracy and

learning time when dealing with data sparse classes.

2.2 Alternatives for continuous variables

So far, we have simply considered that all the attributes in the dataset of

interest are of discrete (nominal) type. However, in many real applications

the input data are of continuous nature. At the moment of writing, there

is not a clear guideline on the best way to handle these numeric attributes

when learning a Bayesian model.

In general, Bayesian methods make use of multinomial distributions,

which assume all the variables are discrete. Hence, the direct way to proceed

to be able to treat these numeric attributes is discretization. Even though it

entails an unavoidable loss of information, it can be a good (or even the best)

alternative in many domains. Other techniques to directly deal with the orig-

inal numeric values implies assuming that these attributes follow a known

parametric distribution, such as Gaussian, kernel or mixture of truncated

exponentials.

There exist other alternatives, and it is not always clear which the best

option is. The first question raised is whether discretization is suitable for our

purposes or we should directly assume our samples follow a known parametric
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distribution. But even if it was clear that discretization is the best option,

the type of discretization along with its configuration values should be set.

On the other hand, if no discretization is performed, one or more probability

distributions must be selected. The best choice is not always clear, that is

why in the following sections we pretend to provide an overview of the most

common procedures in Bayesian classifiers: discretization techniques, kernel

and Gaussian distributions. In addition, MTEs are included, as it is gaining

popularity as a flexible modelling framework for hybrid domains.

2.2.1 Discretization techniques

Every discretization process involves the transformation of continuous do-

mains into discrete counterparts. It implies an unavoidable loss of informa-

tion, since from the infinite number of continuous values provided as original

input, only a finite set of values is kept. In this context, we consider dis-

cretization as a data pre-processing technique that transforms a quantitative

attribute into a qualitative one. In practice, the discretization process can

be viewed as a method for reducing data dimensionality, as input data are

transformed from a huge range of continuous values into a much smaller sub-

set of discrete ones. Although we can find a considerable variation in the

terminology used to refer to this these types of attributes [Yang, 2003], in

this chapter we will refer to attributes for which no arithmetic operations can

be applied as discrete, and the rest as continuous or numeric indistinctly.

The necessity of applying discretization on the input data can be due

to different reasons. Firstly, many powerful classification and modelling al-

gorithms only operate on categorical or nominal data, and therefore dis-

cretization is a prerequisite if we wish to apply these algorithms (e.g. certain

Bayesian network methods). In other cases, discretization improves the run

time for the given algorithms, such as decision trees, as the number of possi-

ble partitions to be evaluated is drastically decreased. Also, discrete values

for a variable may on many occasions provide a higher interpretability of

the models. Finally, there are cases where discretization is simply a pre-

processing step with the aim of obtaining a reduction in the value set and,
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thus, a reduction in the noise, generally present in the data.

Many different taxonomies for dividing and organizing the various dis-

cretization techniques can be found in the literature [Liu et al., 2002]. The

most commonly used being the one which distinguishes between unsuper-

vised (e.g. equal frequency or width, k-means) and supervised (such as

those based on entropy [Fayyad & Irani, 1993], Hellinger divergence-based

[Lee, 2007], 1R algorithm) methods. This distinction is made depending on

whether or not the method takes class information into account in order to

find proper intervals. Traditionally, supervised discretization techniques have

been believed to be especially suitable for classification tasks, although the

results included in this thesis, in relation to this, do not entirely agree.

Another way of categorizing discretization methods is by considering

whether variables are discretized independently, known as univariate (and

also as local); or if not, we encounter the multivariate methods (also re-

ferred to as global, although we prefer the former nomenclature to avoid

ambiguity), which take into consideration the relationships among attributes

during discretization. It has been proven that multivariate techniques can

produce better discretizations, since the joint information measures are much

more powerful [Chmielewski & Jerzy, 1996].

Also, optimization methods, such as evolutionary computation tech-

niques, can be used in this multivariate scheme [Flores et al., 2007]. However,

these methods cannot be considered under time restrictions, and their com-

plexity increases dramatically with the number of attributes. Thus, the main

drawback is that they are much more costly in resource consumption than

classical approaches. This fact makes them less attractive for the semi-naive

family of BNCs considered in this chapter.

Furthermore, for a particular classifier (or family of classifiers) it is possi-

ble to construct ad hoc discretization methods, which could be categorized

as tailored methods. In this category, we could place two discretization tech-

niques proposed in Yang &Webb [2009] and the more recent hybrid approach

by Wong [2012], in principle designed to fit NB’s needs.

Nonetheless, all the discretization techniques taken into account so far

form non-overlapping intervals for numeric attributes. A novel type of dis-
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cretization is proposed for NB in Yang & Webb [2002], called non-disjoint

discretization (NDD), which creates bins that overlap, providing a good per-

formance for NB. In this thesis we focus on this latter distinction, as we

believe it is critical to differentiate between these two to show significant

improvement in some of the most well-known semi-naive Bayesian classifiers.

Following this division, we are including next, descriptions of some of the

most popular disjoint discretization methods, and detailed notation on NDD

compared with the traditional disjoint discretization techniques.

2.2.1.1 Most popular disjoint discretization methods

Equal-width discretization [Dougherty et al., 1995]

This is a technique for unsupervised discretization, since the class value

is not considered when the interval limits are selected, and is proba-

bly the simplest method for discretizing data. Equal-width divides the

range of the attribute into b bins of the same width, where b is a pa-

rameter supplied by the user. If an attribute A is observed to have

values bounded by amin and amax, then this method computes the bin

width by:

δ =
amax − amin

b
. (2.8)

Hence, the bin boundaries are set at amin + iδ, where i = 1, . . . , b− 1.

It is quite usual to set this value to 5 or 10 bins, although the optimum

value for b depends on, among other factors, the dataset size.

The software tool WEKA [Hall et al., 2009; Witten & Frank, 2005]

provides the utility of searching for the most appropriate value of b by

means of a filter method which minimizes the partition entropy.

Its time complexity is O(m), m being the number of instances.

Equal-depth (or frequency) discretization [Dougherty et al., 1995]

In this unsupervised technique the values are ordered and divided into

b bins so that each one contains approximately the same number of

training instances.
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Therefore, every bin contains m/b instances with adjacent values. This

type of discretization method provides a more balanced discretization

in the different bins and usually a more intuitive solution.

As a group of values with identical values must be placed in the same

bin, it is not always possible to generate b intervals with exactly the

same number of values.

Time complexity for this technique is O(m logm), as it is necessary to

perform an ordering of the data.

Minimum-entropy-based discretization by Fayyad & Irani [1993]

This refers to a supervised technique which evaluates, for cut-off point

candidates, those points between every pair of values (usually mean

points) which are contiguous in the ordered data and whose class la-

bels change. When evaluating every candidate, data are divided into

two intervals and the entropy for each class is computed. A binary

discretization is performed at that candidate cut-off point which min-

imizes the entropy. This process is repeated in a recursive way by

applying the Minimum Description Length (MDL) criterion to decide

when to stop. Following similar notation to Fayyad & Irani [1993], the

specific algorithm is detailed in Algorithm 2.3. Its time complexity is

O(cm logm).

This method and the two others described above are applied to each

continuous attribute independently, and hence are considered univari-

ate discretization techniques.

2.2.1.2 Disjoint vs non-disjoint discretization

Formally, given the numeric attribute values xi, xj ∈ R, any disjoint dis-

cretization method would create a unique interval (a, b] ∋ xi and (d, e] ∋ xj

for every value so that AODE’s statistics, p(Xj = xj , C = c) and p(Xi =

xi|C = c,Xj = xj) would be estimated by

p(Xj = xj , C = c) ≈ p(d < Xj ≤ e, C = c), (2.9)
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Algorithm 2.3: Fayyad and Irani’s discretization method

Input: Set of instances S for feature A.
Output: The cut points in which to discretize A.
Sort S by increasing value of A.1

Let T be a candidate cut point.2

repeat3

Select all T such that there exist two examples: e1, e2 ∈ S with4

different classes where A(e1) < T < A(e2); and there exists no
other example e′ for which A(e1) < A(e′) < A(e2) (usually the
mean points), where A(e) is the value of A in the instance e.
Let S1 ⊂ S where A-values ≤ T and S2 = S − S1.5

∀T compute E(A, T ;S) = S1

S
Ent(S1) +

S2

S
Ent(S2), where6

Ent(Si) = −
∑

c∈Ω(pc log2(pc)).
Select Tmin as miniE(A, Ti;S).7

Threshold = log2 (t−1)
t

+ ∆(A,Tmin;S)
t

.8

Gain(A, Tmin;Si) = Ent(Si)− E(A, Tmin;Si).9

Recursively perform binary discretization in S = Sj.10

until11

Gain(A, Tmin;S1) ≤ Threshold or Gain(A, Tmin;S2) ≤ Threshold ;
return All the Tmin obtained as cut points.12

p(Xi = xi|C = c,Xj = xj) ≈ p(a < Xi ≤ b|C = c, d < Xj ≤ e). (2.10)

In disjoint discretization techniques (e.g. equal frequency or equal width

division, MDL, etc.) every numeric sample belongs to a single interval. I.e.,

considering xi < xj , if a 6= d (they do not fall in the same interval) then d ≥ b.

This implies that for those cases where the original numeric value falls around

the centre of the interval assigned, we could expect more distinguishing in-

formation than when it falls near one of the boundaries of the interval. In

the latter situation, it is more questionable to substitute p(Xj = xj , C = c)

by p(d < Xj ≤ e, C = c) for example.

In contrast, NDD creates bins that overlap. Then, numeric values are

always located toward the middle of the interval to which they belong. The

idea justifies since the test instances are independent of each other, and so

it is not required to form a uniform set of disjoint intervals for a numeric
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attribute. Instead, it should form an appropriate interval to the single value

offered by a particular test instance.

Lazy discretization [Hsu et al., 2000] also places a value in the middle of

an interval. However, it has a low computational efficiency, given its lazy

methodology. NDD, in contrast, is more efficient as it creates the intervals

at training time.

Non-Disjoint Discretization [Yang & Webb, 2002]

NDD is an unsupervised technique that forms t atomic intervals B1 =

[a′1, b
′
1], B2 = (a′2, b

′
2], . . . , Bt = (a′t, b

′
t] (where b′i = a′i+1, ∀i), with equal

frequency. In its definition for NB [Yang & Webb, 2002], one opera-

tional interval or label is formed then for each set of three consecutive

atomic intervals, such that the rth (1 ≤ r ≤ t − 2) interval (ar, br]

satisfies ar = a′r and br = b′r+2. Each numeric value x is assigned to

interval (a′i−1, b
′
i+1] where i is the index of the atomic interval (a′i, b

′
i]

such that a′i < x ≤ b′i, except when i = 1 in which it is assigned to

interval [a′1, b
′
3] and when i = t that it is assigned to interval (a′t−2, b

′
t].

Here t and the number of instances per atomic interval s are selected

proportionally to the number of training instances, following the idea

of proportional k-interval discretization [Yang & Webb, 2001]. That

is, t = s ≈ ⌊√m⌋, each operational interval then having 3s samples.

Figure 2.2 shows a graphical example of the partition.

a′1 a′2 a′3 a′4 a′5 a′ta′t−1a′t−2a′t−3

b′1 b′2 b′3 b′4 b′tb′t−1b′t−2b′t−3b′t−4

a1 b1

a2 b2 at−3 bt−3

at−2 bt−2

· · ·

· · ·

Figure 2.2: Example of NDD discretization for NB.

NDD is dominated by sorting as well, and hence, its complexity is also

O(m logm).
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2.2.2 Conditional Gaussian networks

Continuous variables in a BN can be modelled by a Gaussian distribution

function (also called normal distribution). Any Gaussian distribution may

be defined by two parameters, location and scale: the mean (“average”, µ)

and variance (standard deviation squared, σ2) respectively. Likewise, every

continuous node can have a Gaussian distribution for every configuration

of its discrete parents. If a continuous node has one or more continuous

nodes as parents, the mean can be linearly dependent over the states of

these continuous parents. This is the basic idea underlying CGNs [Lauritzen

& Jensen, 2001]. Note that discrete nodes are not allowed to have continuous

parents though.

In this case, a parametrical learning process is carried out, where the esti-

mation of the parameters is made from data. These parameters are modelled

by the dependency relationships between variables, represented by the struc-

ture of the corresponding classifier or BN. A noteworthy property of CGNs is

that they offer a frame where exactitude in inference is guaranteed. Another

advantage of Gaussian networks is that they only need O(n2) parameters to

model a complete graph.

In general, every node stores a local density function (linear regression

model) where the distribution for a continuous variable X with discrete par-

ents Y and continuous parents Z = {Z1, . . . , Zs} (with s the number of con-

tinuous parents) is a one-dimensional Gaussian distribution over the states

of its parents [DeGroot, 1970]:

f(X|Y = y,Z = z; Θ) = N(x : µX(y) +
s
∑

j=1

bXZj
(y)(zj − µZj

(y)), σ2
X|Z(y)),

(2.11)

where:

• µX(y) is the mean of X with the configuration Y = y of its discrete

parents.

• µZj
(y) is the mean of Zj with the configuration Y = y of its discrete

parents.
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• σ2
X|Z(y) is the conditional variance of X over its continuous parents Z

and also according to the configuration Y = y of its discrete parents.

• bXZj
(y) is a regression term that individually measures the strength of

the connection between X and every continuous parent (it will be equal to

0 if there is not an edge between them).

The local parameters are given by Θ = (µX(y), bX(y), σ
2
X|Z(y)), where

bX(y) = (bXZ1(y), . . . , bXZs(y))
t is a column vector.

Then, if we focus on the bivariate case, where the X variable is only con-

ditioned by one continuous variable Z and the discrete variables mentioned,

the conditional variance and the regression term would be easily obtained as

shown in Equations 2.12 and 2.131:

σ2
X|Z(y) = σ2

X(y)− b2XZ(y)σ
2
Z(y), (2.12)

bXZ(y) =
σXZ(y)

σ2
Z(y)

. (2.13)

Figure 2.3 shows an example of factorization of the density function in

a SPODE structure, as in the model depicted on the left. Following the

former notation, in this case bX(y) = bXZ(y), as there is just one continuous

variable.

Equation 2.11 has been obtained following the guidelines in Larrañaga

et al. [1999] and Neapolitan [2003]. However, in the Hugin tool [Andersen

et al., 1989], the estimation of the Gaussian distribution of interest, is carried

out in a slightly different way. In the estimation of the final mean for the

CGN, Hugin does not take into account the means of the continuous parents,

and the variance is constant for every configuration state of the discrete

parents. Hence, the corresponding equation according to Hugin principles

1The estimate in Equations 2.12 and 2.13 has been obtained by working out the value
of σ2

X|Z(y) and bXZ(y) when the inverse of the precision matrix (W−1) and the covariance

matrix (Σ) from the Gaussian network are matched:

W−1 =

(

σ2

Z(y) bXZ(y)σ
2

Z(y)
bXZ(y)σ

2

Z(y) σ2

X|Z(y) + b2XZ(y)σ
2

Z(y)

)

=

(

σ2

Z(y) σXZ(y)
σXZ(y) σ2

X(y)

)

= Σ
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Structure

C Aj

A1
. . . Ai

. . . An

Local densities

Θc = (CPT ) fC  P (C)

Θj = (µj(c),−, σj(c)) fAj |C=c  N(µj(c), σj(c))

Θ1 = (µ1(c), b1(c), σ1|j(c)) fA1|C=c,Aj=aj
 N(µ1(c)+

+ b1j(c)(aj − µj(c))), σ1|j(c))

Θi = (µi(c), bi(c), σi|j(c)) fAi|C=c,Aj=aj
 N(µi(c)+

+ bij(c)(aj − µj(c))), σi|j(c))

Θn = (µn(c), bn(c), σn|j(c)) fAn|C=c,Aj=aj
 N(µn(c)+

+ bnj(c)(aj − µj (c))), σn|j(c))

Factorization of the joint density function

f(c, aj, a1, . . . , ai, . . . , an) = f(c)f(aj|c)f(a1|c, aj) · · · f(ai|c, aj) · · · f(an|c, aj) = p(c)
1

√
2πσj(c)

e
− 1

2

(

aj−µj (c)

σj(c)

)2

1
√

2πσ1|j(c)
e
− 1

2

(

a1−(µ1(c)+b1j (aj−µj (c)))

σ1|j(c)

)2

· · ·
1

√
2πσi|j(c)

e
− 1

2

(

ai−(µi(c)+bij (aj−µj(c)))

σi|j(c)

)2

· · ·

· · ·
1

√
2πσn|j(c)

e

− 1
2

(

an−(µn(c)+bnj(aj−µj(c)))

σn|j(c)

)2

Figure 2.3: Structure, local densities and result from the factorization of the
joint density function in a network with the SPODE structure where all the
predictive attributes are continuous.

would be as follows:

f(X|Y = y,Z = z; Θ) = N(x : µX(y) +

s
∑

j=1

bXZj
(y)zj, σ

2
X(y)). (2.14)

On the other hand, in Pérez et al. [2006] the authors consider Equation

2.11, but the variance for the CGN is constant for every configuration state

of the discrete parents.

It is also in this work [Pérez et al., 2006], that the authors show how to

adapt different classifiers, in which we find NB, TAN, KDB and semi naive

Bayes, and other proposals based on feature selection from these classifiers,

to the conditional Gaussian network paradigm, along with the corresponding

empirical evaluation. It is also interesting to note their proposal to calculate

the mutual information between every pair of continuous predictive variables

conditioned on the class.

27



2. PRELIMINARIES AND NOTATION

−3 −2 −1 0 1 2 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

−6 −4 −2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Z

Y

P (Y = 1)?

f(z) = 1√
2π

exp
(

−1
2
z2
)

P (Y = 1|z) = 1
1+exp(−z)

Figure 2.4: Example of illegal configuration in CGNs with two variables: a
discrete variable Y with a continuous parent Z.

So far, we have just considered how to model continuous variables con-

ditioned on either discrete or continuous variables as well, but how can we

face discrete variables with continuous parents? In this work we do not al-

low discrete variables to have continuous parents. This for example ensures

availability of exact local computation methods, see Lauritzen [1992]; Lau-

ritzen & Jensen [2001]. Figure 2.4 shows an example of what we can consider

an illegal configuration for CGNs: a discrete variable Y with a continuous

parent Z.

Furthermore, CGNs should be preferably used when Gaussian data are

provided. In principle, it may seem easy to determine whether the data of

interest follows a Gaussian distribution and hence, deciding whether or not

to use CGN for our classifiers. There exist several statistical tests to check

normality, such as Kolmogrov-Smirnov or ShapiroWilk, available through

different tools. Nevertheless, it is important to take into account the structure

of the BN we are considering for classification and performing multivariate

normality tests according to it.
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2.2.3 Kernel density estimation

Modelling all the attributes in a dataset through Gaussian estimations can

be inaccurate, if the group of samples for all or some of the attributes does

not follow a normal distribution. A possible solution to this problem is the

use of histograms, as they are considered the most simple non-parametric

density estimators. Unlike the parametric estimators, where the estimator

has a prefixed function and the parameters of that function are the only

information to store, the non-parametric estimators do not have a prefixed

structure and depend on all the samples to provide estimation. In order to

build a histogram, the range of the data is divided into subintervals of equal

size (bins), and they are represented in the X-axis. For every sample belong-

ing to a specific bin, the corresponding block in the Y-axis is incremented by

one unit.

Nevertheless, the use of histograms has several problems, such as the lack

of smoothing, the dependence of the bin-width and the final points selected.

In order to ameliorate these issues, we can resort to the use of density

estimators based on kernels [Bernard, 1986]. To relieve the dependence

on the final points selected for each bin, estimations based on kernels build a

kernel function for every sample. It is possible to smooth density estimation

by using an smoothed kernel function; hence avoiding two out of the three

above-mentioned problems in histograms. The binwidth issue can also be

solved, as we will introduce below.

Formally, kernel estimations smooth the contribution of each sample ac-

cording to the points in its neighbourhood. The contribution of the point

x(i) on the estimation of other point x depends on how separate they are.

The scope of this contribution also depends on the shape and width adopted

by the kernel function K. The estimated density in the point x is defined

through the following equation:

f̂(x) =
1

mh

m
∑

i=1

K

(

x− x(i)

h

)

, (2.15)

where m is the number of samples and h > 0 is a smoothing parameter called
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the bandwidth. Intuitively, one wants to choose h as small as the data allows,

however there is always a trade-off between the bias of the estimator and its

variance.

Gaussian kernels are the most well known, but there exist other options,

such us uniform kernels, triangulars’, Epanechnikov’s, etc. Even though the

selection of K determines the shape of the density to estimate, the literature

suggests that this selection is not critical, at least among the most common

ones [Deaton, 1997]. It is believed that the specification of the bandwidth is

even more important: the bigger the value of h, the greater the smoothing

factor is.

From its definition, one can deduce that both temporal and space com-

plexity in kernel estimations depend also on the number of instances of the

dataset. Hence, it imposes an additional undesired restriction to the applica-

tion of semi-naive Bayesian classifiers considered in this thesis, where keeping

time and space constrains under control is one of the main goals.

Still, we can find studies in literature that successfully apply kernel esti-

mations to semi-naive Bayesian classifiers, in the sense that if no constrains

in terms of space or time are imposed, the results are generally much bet-

ter than other alternatives. In John & Langley [1995] the authors introduce

the notion of flexible classifier, similar to NB except for the method used

for density estimation on continuous variables. They particularly investigate

kernel density estimation with Gaussian kernels, selecting h = σc =
1√
mc

as

bandwidth, where mc is the number of training instances with class c. It is

in Pérez et al. [2009], where the generalization of this notion of flexible naive

Bayes is proposed, extended to other paradigms such as TAN, KDB or even

the complete graph classifier. It is also interesting to note the new definition

for an estimator of the mutual information based on kernels.

2.2.4 Mixture of truncated exponentials

Even though CGNs offer a frame where it is possible to guarantee the exacti-

tude in the inference under time constrains, there exists a serious restriction:

it is not possible to model discrete variables with continuous parents. Fur-
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f(z) =



















−0.0172 + 0.931e1.27z if − 3 ≤ z < −1
0.442− 0.0385e−1.64z if − 1 ≤ z < 0

0.442− 0.0385e1.64z if 0 ≤ z < 1

−0.0172 + 0.9314e−1.27z if 1 ≤ z < 3

P (Y = 1|z) =



















0 si z < −5
−0.0217 + 0.522e0.635z if − 5 ≤ z < 0

1.0217− 0.522e−0.635z if 0 ≤ z ≤ 5

1 si z > 5

Figure 2.5: Example of the use of MTEs to model a discrete variable Y with
a continuous parent Z.

thermore, this model is especially useful in those situations where the joint

distribution of the continuous variables given the configuration of its discrete

parents follows a multivariate Gaussian; nevertheless, it is possible to find

scenarios where this hypothesis is not accomplished. In order to overcome

this problem there is a relatively new alternative that is becoming more and

more popular, the use of Mixtures of Truncated Exponentials (MTEs) [Moral

et al., 2001]. MTEs can be an attractive alternative to discretization, as dis-

cretization can be seen as an approximation to a density function with a

mixture of uniforms, being the use of exponentials a more accurate estima-

tion. Figure 2.5 shows an example of the use of MTEs to model the illegal

configuration presented in Figure 2.4.

Following the former notation, where Y = Y1, . . . , Yd is the set of discrete

variables and Z = Z1, . . . , Zc the set of continuous variables, and T both,

with d+ c = n. Considering that for the classification task Y 6= ∅, as at least
the class variable is discrete, a function f : ΩT 7→ ℜ+

0 is an MTE potential

if for each value y ∈ ΩY , the potential over the continuous variables Z is

defined as follows:

• For every value y ∈ ΩY , the density function fy(z) = f(y, z) is defined
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as follows:

fy(z) = a0 +
l
∑

i=1

ai exp

{

c
∑

j=1

b
(j)
i zj

}

, (2.16)

where all z ∈ ΩZ , ai ∈ R and bi ∈ R
c, i = {1, . . . , l}.

We also say that f is an MTE potential if there is a partition D1, . . . , Dk

of ΩZ into hypercubes and in each partition, f is defined as in Equation 2.16.

An MTE potential is an MTE density if it integrates to 1.

In a BN, two types of densities can be found:

• f(x) for each variable X with no parents.

• A conditional density f(x|pa(x)) for each variable X with parents

pa(X).

A conditional density f(x|pa(x)) is an MTE potential that obtains a density

function for X when the possible values for pa(X) are fixed. Note that either

X or its parents can be discrete or continuous.

2.2.4.1 Estimations of univariate and conditional MTEs:

If we restrict the definition of an MTE potential to a variable with no parents

and it is restricted to a single constant term and two exponentials, we obtain

the following densities:

f ∗(x) = k + a exp{bx} + c exp{dx}. (2.17)

The estimation of the parameters (â, b̂, ĉ, d̂, k̂) of a univariate MTE density

function is carried out through the MTE-fitting algorithm, described in Rumı́

et al. [2006]. However, this method is not valid for the conditional case, as

more restrictions should be considered over the parameters in order to force

the integration of the MTE potential for each combination of the values for

pa(X). Precisely, the use of conditional distributions through MTEs applied

to the learning phase in a NB classifier is shown in Rumı́ et al. [2006]. In

this case, the adaptation of the MTE-fitting algorithm is straightforward,

as it is called for every class value and the marginal function of the class is
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estimated according to its frequency. Nevertheless, this method is only valid

if the variable whose distribution we want to estimate has discrete parents.

Hence, it is not extensible to appearance of numeric parents.

This problem was in fact already solved in Moral et al. [2003], where the

authors propose to partition at the domain of the conditioning variables and

adjust the univariate density function for each part using the MTE-fitting

algorithm. More precisely, the algorithm learns a mixed tree whose leaves

contain MTE densities that only depend on the child variable (or node),

and that represent the density for the corresponding branch in the mixed

tree. The tree is learnt in such a way that the leaves discriminate as much

as possible, following a scheme similar to that carried out by decision trees

[Quinlan, 1986]. In order to do so, the following steps must be followed:

1. Selection of the variable to expand from pa(X) by means of the splitting

gain.

2. Determination of the splits of the selected variable (for example equal

frequency intervals can be used).

3. Learning the MTE. There exists a criterion to stop branching the tree

by means of a threshold given by the user.

4. Pruning the tree.

Example 2.1 illustrates a possible conditional MTE density for Y given

X (both of them continuous variables).

Example 2.1 Consider two continuous variables X and Y . A possible con-

ditional MTE density for Y given X is the following:

f(y|x) =































1.26− 1.15e0.006y if 0.4 ≤ x < 5, 0 ≤ y < 13 ,

1.18− 1.16e0.0002y if 0.4 ≤ x < 5, 13 ≤ y < 43 ,

0.07− 0.03e−0.4y + 0.0001e0.0004y if 5 ≤ x < 19, 0 ≤ y < 5 ,

−0.99 + 1.03e0.001y if 5 ≤ x < 19, 5 ≤ y < 43 .
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In Langseth et al. [2009, 2010] the authors propose an estimation method

that directly aims at learning the parameters of an MTE potential following

a maximum likelihood approach, instead of existing regression-based meth-

ods. Moreover, a model selection scheme is presented based on the Bayesian

Information Criterion (BIC) [Schwarz, 1978] for partitioning the domain of

the univariate and conditional MTEs.

Most of the work published so far concerning semi-naive Bayesian clas-

sifiers with MTEs is mainly focussed on regression [Fernández & Salmerón,

2008b] rather than classification [Flesch et al., 2007], i.e. the class variables

to predict are numeric instead of discrete. It makes sense, since MTEs are a

good alternative especially in that domain. Nevertheless, the inference mech-

anisms are similar, and we believe, that the results can also provide an idea

on those that would be obtained in the classification domain.

Figure 2.6 shows the graphical results of using the different methods de-

scribed above to handle a numeric attribute called waiting, which represents

the waiting time between eruptions for the Old Faithful geyser in the Yellow-

stone National Park, Wyoming, USA [Azzalini & Bowman, 1990]. The graph

on the left hand side shows the average of the values placed in the same bin

when applying equal frequency discretization with 5 bins. The graph on the

right hand side shows the Gaussian, kernel and MTE estimations.

Another alternative to MTEs is the use of Mixtures of Polynomials (MoPs),

proposed in Shenoy & West [2009], where the idea is to substitute the basis

function of the MTE, the exponential, by a polynomial. MOP functions are

easy to integrate in closed form; and they are closed under multiplication,

integration and addition [Giang & Shenoy, 2011; Shenoy, 2011].

In Langseth et al. [2012] the authors propose a framework, called mixtures

of truncated basis functions (MoTBFs), that generalizes both MTEs and

MoPs. It is based on a generalized Fourier series approximation. MoTBFs

are claimed to be more flexible than MTEs or MoPs, and support an on-

line/anytime tradeoff between the accuracy and the complexity of the ap-

proximation.
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Figure 2.6: Left: The original data points along with the corresponding
equal frequency discretization with 5 bins. Right: The histogram of the
original data along with: the Gaussian estimate, the kernel estimate and the
estimated function using mixtures of truncated exponentials.

2.3 Domains of competence of BNCs in the

complexity measurement space

In this section, the reader will find a review on the use of complexity mea-

sures specifically designed to define the domain of competence of a particular

classifier.

The motivation to resort to this type of measures in this thesis is clear: in

order to compare the aforementioned classifiers, we are carrying out empirical

studies in a moderate group of datasets so that it is possible to find out, based

on error/accuracy rates, the success or failure of a particular classification

approach. In Part IV of this thesis, we test to what degree these studies

can be enriched by an analysis of classifier’s performances based on data

characteristics, both for continuous and discrete datasets.
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2. PRELIMINARIES AND NOTATION

2.3.1 Background

The study of performance of different classifiers is not a recent task in ma-

chine learning. Several theoretical and many more empirical studies [Lim

et al., 2000; Toh, 2008; Wolpert, 1996] have been carried out. The former

attempt to analyse classifier’s behaviour for all possible problems and result

inevitably in very weak performance bounds, whereas the latter often con-

clude with a presentation of error rates on a small selection of problems, with

little analysis on the reasons behind the classifier’s success or failure.

Revealing enough is the work by Jaeger [2003], where the expressivity of

classifiers on the different levels in the hierarchy of probabilistic classifiers

is characterized algebraically by separability with polynomials of different

degrees. The results implies, for the first time, that the concepts recogniz-

able by a naive Bayesian classifier are exactly the linearly separable sets for

example.

With the increasing popularity of machine learning techniques, it is be-

coming more and more interesting to find out a priori, which specific tech-

nique will perform better for a particular dataset based on the geometrical

characteristics of this dataset. This kind of studies started to receive at-

tention with Sohn [1999], and has become more popular from the work of

Ho [2001]; Ho & Basu [2000]. In these studies, the authors indicate the im-

portance in considering detailed descriptions of geometrical characteristics of

data, to distribute problems in a measurement space according to its diffi-

culty, so that it is possible to describe a classifier’s domain of competence.

This idea matures in Ho & Basu [2002], where a selection of several mea-

sures for characterizing the complexity of classification problems is presented,

along with an empirical study on the distribution of real world problems

compared to random noise, indicating that it is possible to find learnable

structures with the geometrical measures presented. These measures indi-

cate the overlap of individual feature values; the separability of classes; and

geometry, topology and density of manifolds. We will describe some of them

in more detail in Section 2.3.2. This group of measures encounters its natural

definition in the two-class domain. Nevertheless, attempts to generalize some
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of these measures to the multi-class domain can be found in Mollineda et al.

[2005] and more recently in Orriols-Puig et al. [2010].

Numerous studies have followed that try to obtain the domains of com-

petence for one or more particular classifiers, by studying error rate patterns

with respect to individual or combination of complexity measures, usually bi-

variate combinations. Some of these works are Bernadó-Mansilla & Ho [2004,

2005] for 1-nearest-neighbour (1NN), linear classification through linear pro-

gramming, decision trees, decision forests and XCS; Sánchez et al. [2007]

for kNN classifier; and more recently, Luengo & Herrera [2009] for artificial

neural networks, Luengo & Herrera [2010a] for fuzzy rule based classification

systems and Luengo & Herrera [2010c] for C4.5.

In all these papers, experiments have been carried out with a common test

bed of datasets where similarity between the datasets for examples is often

unknown. In Macià et al. [2010], the authors design a procedure to provide

problems with a good coverage of the data complexity space to serve as a

more complete test bed on the occasion of the ICPR’10 contest “Classifier

domains of competence: The Landscape Contest”1.

Another interesting work in relation to this topic is presented in Hernández-

Reyes et al. [2005], where an automatic classifier selection based on data

complexity measures is proposed. Their method describes problems with

complexity measures and labels them with the classifier that gets the best

accuracy among a set of five classifiers: kNN, NB, linear regression, RBFNet-

work and J48.

The uses of complexity measures are expanding lately. In Miranda [2011],

a system of data complexity measures specifically tailored to be employed as

predictive attributes in meta-learning for instance selection is presented.

Furthermore, a data complexity library in C++ has been released [Orriols-

Puig et al., 2010] that allows to calculate several complexity measures for any

database with nominal and/or continuous attributes. Some of these measures

can also be found in KEEL, a Java software tool to assess evolutionary algo-

rithms for data mining problems [Alcalá-Fdez et al., 2011].

1http://www.salleurl.edu/ICPR10Contest/
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2. PRELIMINARIES AND NOTATION

2.3.2 Complexity measures

We are including below the different complexity measures for continuous and

discrete features as specified in the data complexity library (DCoL) [Orriols-

Puig et al., 2010], most of them originally proposed in Ho & Basu [2002].

Here, the different measures are divided in 3 groups based on the complexity

aspect they focus on: either overlaps in feature values from different classes;

separability of classes; and geometry, topology and density of manifolds. In

addition, the names of the complexity measures are identified by the letter L

if it is a linear classifier based, N if it is a nearest-neighbour based or F if it

is a geometry or topology-based measure.

We exclusively focus on two-class datasets, as applying these measures

to multi-class problems may hinder some key observations on the complexity

related to individual classes.

2.3.2.1 Measures of overlaps in the feature values from different

classes

These measures focus on the discriminant power of a single attribute or a

combination of them to separate the different classes. They study the range

and spread of their values in instances of different classes to check for overlaps

among different classes.

F1 - Maximum Fisher’s discriminant ratio: It is computed as the

maximum of the individual discriminative powers of the different attributes,

that is:

F1 =
n

max
i=1

(µi
c1
− µi

c2
)2

(σi
c1
)2 + (σi

c2
)2
, (2.18)

where; for continuous attributes, µi
cj
and (σi

cj
)2 are the mean and variance of

the attribute Ai for class cj. For nominal attributes, each value is mapped

into an integer number. Then, µi
cj
is the median value of the attribute Ai for

class cj, and (σi
cj
)2 is the variance of Ai for cj computed as the variance of

the binomial distribution, that is:

(σi
cj
)2 =

√

pµi
cj
(1− pµi

cj
) · ecj , (2.19)
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where pµi
cj

is the frequency of the median value µi
cj
, and ecj is the total

number of examples of class cj.

For a multidimensional problem, not all features have to contribute to

class discrimination, the problem is easy as long as there exists one discrimi-

nating feature. High values of F1 indicate that, at least, one of the attributes

enables the learner to separate the examples of different classes with parti-

tions that are parallel to an axis of the feature space. Low values do not

imply that the classes are not linearly separable, but that they cannot be

discriminated by hyperplanes parallel to one of the axis of the feature space.

Fisher’s discriminant ratio is good for indicating the separation between two

classes each following a Gaussian distribution, but not for two classes forming

non-overlapping concentric rings one inside the other.

F1v - Directional-vector maximum Fisher’s discriminant ratio:

complements F1 by searching for an oriented vector which can separate ex-

amples of two different classes. It calculates the two-class Fisher’s criterion

[Malina, 2001].

A high value of F1v indicates that there exits a vector that can separate

examples belonging to different classes after these instances are projected on

it.

F2 - Overlap of the per-class bounding boxes: It computes the

overlap of the tails of distributions defined by the instances of each class.

For each attribute, it computes the ratio between the width of the overlap

interval and the width of the entire interval encompassing the two classes.

Then, the measure returns the product of per-feature overlap ratios:

F2 =
n
∏

i=1

MIN MAXi −MAX MINi

MAX MAXi −MIN MINi

, (2.20)
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where:

MIN MAXi = min(max(Ai, c1),max(Ai, c2)), (2.21)

MAX MINi = max(min(Ai, c1),min(Ai, c2)), (2.22)

MAX MAXi = max(max(Ai, c1),max(Ai, c2)), and (2.23)

MIN MINi = min(min(Ai, c1),min(Ai, c2)). (2.24)

Again, nominal values are mapped to integer values to compute this mea-

sure.

A low value of this measure means that the attributes can discriminate

the examples of different classes. It is zero as long as there is at least one

dimension in which the value ranges of the two classes are disjoint.

F3 - Maximum (individual) feature efficiency: This measure com-

putes the largest fraction of points distinguishable with only one feature. To

this aim, it takes into account for each attribute the region where there are

instances of both classes, returning the ratio of the number of instances that

are not in this overlapping region to the total number of instances.

A classification problem is easy if there exists one attribute for which the

ranges of the values spanned by each class do not overlap (in this case, this

would be a linearly separable problem).

F4 - Collective feature efficiency: This measure is similar to F3, but

now it considers the discriminative power of all the attributes (therefore, the

collective feature efficiency).

To compute it, the attribute that can separate a major number of in-

stances of one class is selected. Then, all the instances that can be discrim-

inated are removed from the dataset, and the following most discriminative

attribute (with respect to the remaining examples) is selected. This proce-

dure is repeated until all the examples are discriminated or all the attributes

in the feature space are considered. Finally, the measure returns the pro-

portion of instances that have been discriminated. Thus, it gives an idea of

the fraction of examples whose class could be correctly predicted by build-

ing separating hyperplanes that are parallel to one of the axis in the feature

space.
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The difference with respect to F3, is that the former only considers the

number of examples discriminated by the most discriminative attribute, in-

stead of all the attributes. Hence, F4 provides more information by taking

into account all the attributes.

2.3.2.2 Measures of class separability

These measures study the separability of the classes by examining the ex-

istence and shape of the class boundary. The contributions of individual

feature dimensions are combined and summarized in a single score, usually

a distance metric, rather than evaluated separately.

L1 - Minimized sum of the error distance of a linear classifier:

This measure evaluates to what extent the training data is linearly separable.

It returns the sum of the difference between the prediction of a linear classifier

and the actual class value. A support vector machine (SVM) [Vapnik, 1995]

with a linear kernel is used, which is trained with the sequential minimal

optimization (SMO) algorithm [Platt, 1999] to build the linear classifier.

This learner is selected by Orriols-Puig et al. [2010], unlike in Ho & Basu

[2002], because the SMO algorithm provides an efficient training method,

and the result is a linear classifier that separates the instances of two classes

by means of a hyperplane.

A zero value of this measure indicates that the problem is linearly sepa-

rable.

L2 - Training error of a linear classifier: This measure also provides

information about to what extent the training data is linearly separable by

returning the training error of the linear classifier as explained above.

It is measured on the training set and when the latter is small, L2 can be

a severe underestimate of the true error rate.

N1 - Fraction of points on the class boundary: It gives an estimate

of the length of the class boundary by constructing a class-blind minimum

spanning tree over the entire dataset, and returning the ratio of the number

of nodes of the spanning tree that are connected and belong to different

classes to the total number of examples in the dataset.
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High values of this measure indicate that the majority of the points lay

closely to the class boundary, and hence, that it may be more difficult for the

learner to define this class boundary accurately. However, the same can be

true for a sparsely sampled linearly separable problem with margins narrower

than the distances between points of the same class.

N2 - Ratio of average intra/inter class nearest neighbour dis-

tance: This measure compares the within-class spread with the size of the

gap between classes. For each input instance ei, the distance to its near-

est neighbour within the class (intraDist(ei)) and the distance to its nearest

neighbour of any other class (interDist(ei)) are calculated. Then, the result

is the ratio of the sum of the intra-class distances to the sum of the inter-class

distances for each input example, i.e.,

N2 =

∑m
i=0 intraDist(ei)

∑m

i=0 interDist(ei)
. (2.25)

Low values of this measure suggest that the examples of the same class

lay closely in the feature space. High values indicate that the examples of

the same class are disperse.

N3 - The leave-one-out error rate of the one-nearest neighbour

classifier: The measure denotes how close the examples of different classes

are. It is simply the leave-one-out error rate of the one-nearest neighbour

(1NN) on the training set.

Low values indicate a large gap in the class boundary.

2.3.2.3 Measures of geometry, topology, and density of manifolds

These measures handle an indirect characterization of the class separability.

They study the shape, position and interconnectedness of the manifolds that

form each class; indicating how well two classes are separated.

L3 - Non-linearity of a linear classifier: This measure implements a

measure of non-linearity originally proposed by Hoekstra & Duin [1996]. The

method creates a test set from the training dataset, by linear interpolation

with random coefficients between pairs of randomly selected instances of

the same class. Then, the measure returns the test error rate of the linear
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classifier (SVM with linear kernel) trained with the original dataset. The

measure is sensitive to the smoothness of the classifier’s boundary and also

to the overlap of the convex hull of the classes. For linear classifiers and

linearly separable problems, it measures the alignment of the decision surface

with the class boundary. It carries the effects of the training procedure in

addition to those of the class separation.

N4 - Non-linearity of the one-nearest neighbour classifier: This

measure is exactly as L3 but considering a 1NN instead. It shows the align-

ment of the NN boundary with the shape of the gap or overlap between the

convex hulls of the classes.

T1 - Fraction of maximum covering spheres: This measure uses

the notion of adherence subsets in pre-topology to describe the shapes of

class manifolds [Lebourgeois & Emptoz, 1996]. It counts the number of

balls necessary to cover each class, centring each ball at a training point and

growing to the maximal size before it touches another class. Balls included in

others are removed. Finally, the count is normalized by the total number of

points. High values of T1 indicate higher complexity since points are covered

by balls of small size, i.e., points are closer to pints of the other class than

points of its own class.

T2 - Average number of points per dimension: This measure re-

turns the ratio of the number of instances in the dataset to the number of

attributes, i.e.,

T2 = m/n.

It is a rough indicator of sparseness of the dataset. However, since the volume

of a region scales exponentially with the number of attributes, a linear ratio

between both is not a good measure of sampling density.
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Part II

New BNCs to overcome

AODE’s limitations
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Chapter 3

Hidden one-dependence

estimator

We are drowning in information but starved for knowledge.

John Naisbitt. (1929- )

American author

In this chapter, a new classifier called hidden one-dependence estimator (HODE)

will be presented. It aims to tackle some of the drawbacks that are inherent to

AODE’s original definition. Hence, the goal is to solve, in the first place, the need

to store all the models constructed, that leads to a relatively high demand on space

and therefore, to the impossibility of dealing with some problems of high dimen-

sionality; and secondly, reducing the computational time required in classification

time (quadratic in the number of attributes), as it is frequently carried out in real

time. HODE estimates a new variable (the hidden variable) as a superparent besides

the class, whose main objective is to gather the significant dependences existing in

AODE models. The obtained results show that this new algorithm provides similar

results in terms of accuracy than AODE, with a reduction in space complexity and

classification time, and the possibility to be parallelizable.

Abstract

3.1 Introduction

Even though AODE offers an attractive trade-off between performance and

model complexity, it is subject to improvement. Just as discussed above,
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3. HIDDEN ONE-DEPENDENCE ESTIMATOR

one of the main drawbacks of AODE is the high space cost it entails, as it is

necessary to store all the SPODE models in main memory, O(c(nv)2). This

is especially problematic when the number of attributes and/or the number

of values per attribute is very high. Furthermore, AODE’s time complexity

is quadratic in the number of attributes in classification time, which could

entail a problem in real applications where the response time is critical.

The classifier proposed in this chapter makes use of the EM algorithm

[Dempster et al., 1977] to estimate a new superparent variable, with the

aim to gather the significant dependences between the predictive attributes

and overcome the aforementioned AODE’s weaknesses. In addition, we will

see how this classifier can be easily parallelizable and extensible to impute

missing values using the EM algorithm.

We already find other approaches in literature that tends to improve NB’s

performance by means of the estimation of hidden variables with different

procedures, such as Langseth & Nielsen [2006], with a novel algorithm for

learning hierarchical naive Bayes models in the context of classification; or

Zhang et al. [2005], with their proposal of the hidden naive Bayes.

In the following section (Section 3.2), we will describe in detail the new

proposed classifier. In Section 3.3, the experimental setup and results are

described. Section 3.4 describes the aspects related to parallelization for

HODE. Section 3.5 displays an empirical analysis on the imputation of miss-

ing values through the EM algorithm in HODE, versus simply ignoring or

replacing them by the global mean or mode. It is followed by the main

conclusions in Section 3.6.

3.2 HODE classifier

In order to alleviate AODE’s large memory requirements, we suggest the

estimation of a new variable, specifically, a hidden variable H , which gathers

the suitable dependences among the different superparents and the rest of

the attributes. In other words, instead of averaging the n SPODE classifiers,

a new variable is estimated in order to represent the links existing in the n

models. This new classifier, as indicated above, will be referred to as HODE.
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Definition 3.1 (HODE classifier [Flores et al., 2009b]) Let A1, . . . , An be a

set of features and C a class variable. A HODE classifier is a model that

classifies an individual described by features (a1, . . . , an) as belonging to the

class cMAP computed as in Equation 3.1, and where all the involved probability

functions are obtained through the EM algorithm (as in Algorithm 3.1).

HODE estimates the probability of every attribute value conditioned on

the class and the new variable which plays the superparent role. Figure 3.1

(a) shows the structure of the BN to learn. In our implementation, the class

values become the Cartesian product of the original class values and the

estimated states for H .

C,H

A1 A2
. . . An

C H

A1 A2
. . . An

(a) HODE structure (b) HODE alternative structure

Figure 3.1: HODE classifier possible structures.

Equation 3.1 shows the MAP hypothesis for the HODE algorithm. Each

hs, represents the s
th virtual value for H , and #H , the final number of states

estimated for variable H .

cMAP = argmaxc∈ΩC
p(c|~e) = argmaxc∈ΩC

(

#H
∑

s=1

p(c, hs)
n
∏

i=1

p(ai|c, hs)

)

.

(3.1)

Section 3.2.1 illustrates with a very simple example the direct adaptation

of the EM algorithm to estimate the probability distributions of the model,

whereas Section 3.2.2 explains the technique used to find out the most suit-

able number of states for H .
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3. HIDDEN ONE-DEPENDENCE ESTIMATOR

3.2.1 Application of the EM algorithm

As the different values for H are not known, we make use of the EM algo-

rithm [Dempster et al., 1977; Gupta & Chen, 2011] to obtain the maximum

likelihood estimation of the parameters, its use being quite common in this

kind of approaches [Cheeseman & Stutz, 1996; Lowd & Domingos, 2005].

Algorithm 3.1 shows the detailed process. Until convergence is reached, in

the Maximization step (M-step) the CPTs are constructed using the weights

estimated in the Expectation step (E-step). These weights are, in turn, esti-

mated according to the attribute values, the class value and the corresponding

label assigned to H .

Algorithm 3.1: EM algorithm’s adaptation to HODE

Input: Dataset with variables A1, . . . , An, C,#H .
Output: Last updated probabilities.
Random initialization of weights.1

begin2

while !convergence() do3

//*M-STEP*//4

Update probabilities according to weights.5

//*E-STEP*//6

for j ← 1 to j = m do7

for (s← 0 to s < #H) do8

w{c,hs,ai,··· ,an}j = P (c, hs)P (a1|c, hs) · · ·P (an|c, hs)9

end10

Normalize w{c,h,ai,··· ,an}j11

end12

end13

end14

return Last updated probabilities15

In EM the database is virtually divided according to the following proce-

dure: we divide every instance into #H virtual instances. Each one of the

subinstances corresponds to a different value of H and a weight reflecting

its likelihood (w{c,hs,ai,··· ,an}j , for the jth instance with value hs). At the be-

ginning, these weights are randomly initialized (~w vector), considering that

the sum of weights from a common instance has to be equal to 1. Table 3.1
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shows a virtual division example for a toy database.

Table 3.1: Virtual division example of a toy database with H = {h1, h2} in
HODE.

A B C H w

a b c
h1 0.3
h2 0.7

a b c
h1 0.5
h2 0.5

a b c
h1 0.9
h2 0.1

a b c
h1 0.6
h2 0.4

a b c
h1 0.7
h2 0.3

a b c
h1 0.2
h2 0.8

An example of how to carry out both the E and M steps is described

below. For the database in Table 3.1, the probabilities shown in Figure 3.2

are obtained in every M-step.

Structure

A

C,H

B

P (A|C,H)

P (C,H)

P (B|C,H)

A priori probabilities

p(c, h1) =
0.3 + 0.9 + 0.6 + 0.2

6
= 0.33 p(c, h2) =

0.7 + 0.1 + 0.4 + 0.8

6
= 0.33

p(c, h1) =
0.5 + 0.7

6
= 0.2 p(c, h2) =

0.5 + 0.3

6
= 0.13

CPT for attributes A and B

p(a|c, h1) =
0.3 + 0.6 + 0.2

2
= 0.55 p(a|c, h1) =

0.5

1.2
= 0.42 p(b|c, h1) = 0.45 p(b|c, h1) = 0.58

p(a|c, h2) =
0.7 + 0.4 + 0.8

2
= 0.95 p(a|c, h2) =

0.5

0.8
= 0.625 p(b|c, h2) = 0.55 p(b|c, h2) = 0.375

Figure 3.2: Count of database weights to obtain the CPTs in HODE (M-
step).

In the E-step, the estimation of the corresponding weights of the virtual

instances from the probabilities estimated in the previous step is performed.

Equations in Figure 3.3 show how the E-step is carried out for the first

instance in our example. Once this E-step is finished for all the instances,
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3. HIDDEN ONE-DEPENDENCE ESTIMATOR

the following generation of weights is depicted on the right-hand side table

in Figure 3.3.

Finally, the following M-step would use the ~w2 vector weight and the

cycle would continue until the algorithm converges, in other words, until the

weight differences for all instances, from adjacent iterations, are lower than

5 thousandths.

Weights count

p(c, h1|a, b) =
p(c, h1)p(a|c, h1)p(b|c, h1)

∑

H
i=1 (p(c, hi)p(a|c, hi)p(b|c, hi))

=
0.33 · 0.55 · 0.45

0.254
= 0.32

(3.2)

p(c, h2|a, b) =
p(c, h2)p(a|c, h2)p(b|c, h2)

∑

H
i=1 (p(c, hi)p(a|c, hi)p(b|c, hi))

=
0.33 · 0.95 · 0.55

0.254
= 0.68

(3.3)

Weights modification after

E-step

A B C H w1 w2

a b c
h1 0.3 0.32
h2 0.7 0.68

a b c
h1 0.5 0.41
h2 0.5 0.59

a b c
h1 0.9 0.92
h2 0.1 0.08

a b c
h1 0.6 0.32
h2 0.4 0.68

a b c
h1 0.7 0.79
h2 0.3 0.21

a b c
h1 0.2 0.41
h2 0.8 0.59

Figure 3.3: Count of database weights in HODE (E-step).

3.2.2 Number of states for the hidden variable

Even though the graphical structure is already fixed, we still have to perform

certain learning in order to find the inner structure of H , in other words, its

cardinality or number of states. To achieve this, we make use of the following

greedy technique: firstly, #H is fixed to 1 (base case equivalent to naive

Bayes), the EM algorithm is executed and the model built is evaluated; after

that, the number of states for H is increased one by one in every iteration

of the EM algorithm. If the result of the evaluation of one model is better

than the one in the previous iteration, the process continues, otherwise, the

previous model is restored and considered the final model.

The log-likelihood (LL) measure is used to evaluate the fitness of the

model. It calculates how the estimated mathematical model fits the training
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data. Equation 3.4 shows the formula we have used.

LL =

m
∑

i=1

log

(

#H
∑

s=1

p(ci, ai1, · · · , ain, hs)
)

=

m
∑

i=1

log

(

#H
∑

s=1

p(ci, hs)

n
∏

r=1

p(air|ci, hs)
)

,

(3.4)

where the superscript i indicates the class or the attribute value that corre-

spond with the ith instance.

Nevertheless, when we use these measures, it is also necessary to add

another quality measure to counteract the monotonous feature of LL. In

other words, it is necessary to somehow penalize the increase in the number

of states forH . There are several options in order to achieve this, one of them

is the use of the Minimum Description Length (MDL) measure [Rissanen,

1978], for which the model complexity, C(M), is computed as in Equation

3.5.

C(M) =

n
∑

i=1

((#H ·#C)(#Ai − 1)) + #H ·#C − 1 , (3.5)

where #C is the number of classes and #Ai the number of states of the

attribute Ai.

Thus, the MDL measure can be defined as in Equation 3.6:

MDL = LL− 1

2
logm · C(M) . (3.6)

Another way of penalizing LL consists in using information measures,

with the basic idea of selecting the model which best fits the data, penalizing

according to the number of parameters needed to specify its corresponding

probability distribution. Specifically, we are testing the so-called Akaike

Information Criterion or AIC [Akaike, 1978], which turns out to be equal

to the previous one but removing the 1
2
logm factor.

AIC = LL− C(M) . (3.7)

From our experiments testing these two measures, AIC is the one that

provides a smoother penalization over LL and hence, it achieves better results
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as it explores more states ofH (this is in concordance with Lowd & Domingos

[2005], where large cardinalities are used in order to achieve good modelling).

The graph in Figure 3.4 shows the comparison between accuracy results using

both penalty measures. These experiments have been carried out on 36

UCI repository datasets [WEKA-Datasets], whose main characteristics are

summarized in Table 3.2 and correspond to the X-axis in the graph. The

left-hand Y-axis represents accuracy results (upper pair of lines) whereas the

right-hand Y-axis represents the average #H obtained in the evaluation of

each dataset (lower pair of lines). From now on in this chapter, we will simply

refer to HODE with AIC as HODE.
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Figure 3.4: Accuracy and #H obtained with AIC and MDL penalization in
HODE.

3.3 Experimental methodology and results

This section presents some experimental results for HODE compared to

AODE.
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Table 3.2: Main characteristics of the datasets: number of class labels (c),
number of predictive variables (n), and number of instances (m).

Id. Dataset c n m Id. Dataset c n m

1 anneal.ORIG 6 38 898 19 ionosphere 2 34 351
2 anneal 6 38 898 20 iris 3 4 150
3 audiology 24 69 226 21 kr-vs-kp 2 36 3196
4 autos 7 25 205 22 labor 2 16 57
5 balance-scale 3 4 625 23 letter 26 16 20000
6 breast-cancer 2 9 286 24 lymph 4 18 148
7 breast-w 2 9 699 25 mushroom 2 22 8124
8 colic.ORIG 2 27 368 26 primary-tumor 21 17 339
9 colic 2 27 368 27 segment 7 19 2310

10 credit-a 2 15 690 28 sick 2 29 3772
11 credit-g 2 20 1000 29 sonar 2 60 208
12 diabetes 2 8 768 30 soybean 19 35 638
13 glass 6 10 214 31 splice 3 61 3190
14 heart-c 2 13 303 32 vehicle 4 18 846
15 heart-h 2 13 294 33 vote 2 16 435
16 heart-statlog 2 13 270 34 vowel 11 13 990
17 hepatitis 2 19 155 35 waveform-5000 3 40 5000
18 hypothyroid 4 29 3772 36 zoo 7 17 101

Firstly, in Section 3.3.1 we study the accuracy results obtained on the 36

datasets above mentioned; whereas Section 3.3.2 is devoted to the study of

the performance of HODE in terms of efficiency.

We have adopted three pre-processing steps, in order to make the group

of datasets suitable for the classifiers considered in the comparison:

• Unsupervised filter to replace all the missing values with the modes

and means from the existing data in the corresponding column.

• Supervise filter to discretize the datasets using Fayyad & Irani’s MDL

method based on minimum entropy [Fayyad & Irani, 1993].

• Unsupervised filter to remove attributes that do not vary at all or whose

variance percentage is greater than 99%.

3.3.1 Evaluation in terms of accuracy

Table 3.3 shows the classification accuracy of both classifiers, AODE and

HODE, on each dataset obtained via 10 runs of ten-fold cross validation (cv).
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Table 3.3: Accuracy results obtained with AODE and HODE classifiers.

Dataset AODE HODE #H Dataset AODE HODE #H

anneal.ORIG 93.3185 N94.0646 2.2 ionosphere 92.9915 N93.9886 4.4
anneal 98.1960 N99.1203 2.8 iris 93.2000 N93.7333 1.0
audiology 71.6372 N78.5841 1.0 kr-vs-kp 91.0325 90.8229 9.7
autos 81.3658 N82.0975 1.9 labor 95.0877 94.9123 1.0
balance-scale 69.3440 N71.0880 1.0 letter 88.9020 N91.1170 9.8
breast-cancer N72.7273 71.4336 1.3 lymph N87.5000 81.1487 1.5
breast-w 96.9671 96.9814 2.8 mushroom N99.9508 99.6824 6.2
colic.ORIG N75.9511 73.0707 1.0 primary-tumor N47.8761 45.7227 1.0
colic N82.5543 81.5489 2.1 segment 95.7792 N96.1732 4.8
credit-a N86.5507 85.5942 4.1 sick N97.3966 97.3118 4.6
credit-g N76.3300 74.9400 2.9 sonar N86.5865 83.0769 4.3
diabetes N78.2292 77.8516 1.2 soybean 93.3089 N94.3631 1.9
glass N76.2617 74.0187 1.6 splice N96.1160 95.8872 3.9
heart-c 83.2013 N83.4323 1.0 vehicle 72.3049 72.3522 4.9
heart-h 84.4898 85.0000 1.0 vote 94.5288 N95.5173 3.1
heart-statlog 82.7037 N83.7037 1.9 vowel N80.8788 79.0101 3.9
hepatitis 85.4839 N86.6452 2.3 waveform-5000 86.4540 86.5400 4.2
hypothyroid 98.7513 N99.0668 4.5 zoo 94.6535 N96.2376 1.0

Each value represents the arithmetical mean from the 10 executions. The

black triangle next to certain outputs means that the corresponding classifier

on this particular dataset is significantly better than the other classifier. The

results were compared using a two-tailed t-test with a 95% confidence level.

In 16 of the 36 databases, HODE is significantly better than AODE,

whereas AODE outperforms HODE in 14 of them. They draw in 6 of

them, hence 16/6/14, where the notation w/t/l means that HODE wins

in w datasets, ties in t datasets, and loses in l datasets, compared to AODE.

The results undergo no variation when the confidence level is raised to 99%,

obtaining 15/8/13.

On the other hand, although it is not shown in the tables, we also studied

HODE with the MDL penalization, and observed that it was significantly

better than AODE in 11 of the 36 datasets, drew in 7 of them, and lost in

18 (11/7/18).

Note that even though we have applied HODE on exclusively discrete

datasets for fair comparisons with AODE, it is fitting to point out the fact

that HODE is trivially applied on hybrid datasets (that contain continuous

and discrete attributes) using Gaussian distributions, similarly to NB.
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Figure 3.5: Classification time comparison between AODE and HODE.

3.3.2 Evaluation in terms of efficiency

As there is not a clear difference in terms of accuracy between the two clas-

sifiers, what could make us vote for one or the other? In fact, HODE’s time

complexity at training time is quadratic in the worst case (1mn + 2mn +

· · ·+ nmn, considering the different executions of the EM algorithm). How-

ever, AODE is usually faster than HODE in model construction, as HODE

spends more time executing the EM algorithm to find the most suitable #H ,

increasing this time as #H increases.

With respect to classification time, HODE’s is linear, whereas AODE’s is

quadratic. Figure 3.5 shows the experimental classification times obtained,

which corroborate this theoretical study. Note that in most real applications,

it is essential that classification time is as short as possible, as model training

can usually be performed offline. For example, consider spam detection in

mail, the recommendation of a specific product according to previous pur-

chases, interpretation of characters by an OCR tool, determining the folder

for a certain e-mail, etc.

Furthermore, space complexity for AODE is higher than HODE’s, as the
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3. HIDDEN ONE-DEPENDENCE ESTIMATOR

former needs to store more CPTs. In fact, HODE’s is O(n#Hvc), where #H

is usually much lower than n1. This requirement in AODE leads to a higher

demand on RAM memory, which could be a problem in large databases

with a high number of attributes, such as microarrays or DNA chips. To

corroborate this fact, we have experimented with a group of 7 databases of

this type (see left part of Table 3.4). AODE had problems of overflow with

a maximum of 8 gigabytes of memory available, while HODE terminated its

executions without problems, even with a lower need for memory.

Table 3.4: Main characteristics of the datasets (number of different values
of the class variable (c), number of genes (n), and number of microarrays
(m)); and accuracy results obtained with NB, AODE and HODE classifiers
in these datasets.

Dataset c n m NB AODE HODE

colon 2 2000 2 93.5484 91.9355 96.7742
DLBCL-Stanford 2 4026 47 100.0000 100.0000 100.0000
GCM 14 4026 47 60.5263 OutOfMem 70.0000
leukemia 2 7129 72 100.0000 OutOfMem 98.6111
lungCancerHarvard2 175 12533 181 98.8950 OutOfMem 99.4475
lymphoma 9 4026 96 96.8750 OutOfMem 75.0000
prostate tumorVS 2 12600 136 80.1471 OutOfMem 95.5882

3.4 HODE’s parallelization

HODE can be parallelizable by dividing the time employed in the most costly

part indeed. Hence, it is possible to assign the different executions of the

EM algorithm to different processors, while exploring the optimal number

of states for H . This permits to decrease the factual training time and also

the likelihood to obtain better accuracy rates, since it is more likely to find a

global value for #H than through the sequential version. Figure 3.6 (a) shows

an acceptable local optimum in terms of trade-off between complexity and

1In fact, HODE’s exact space complexity is θ(2n#Hvc), as there is a need to store a
backup set of CPTs while performing EM. However, if m < nvc, we could consider to store
directly the weights estimated in the E-step, hence, obtaining a complexity θ(n#Hvc +
m#H) instead.
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Figure 3.6: Differences between local and global optimum for anneal and
audiology datasets with HODE.

performance, whereas Figure 3.6 (b) displays a less desirable local optimum,

which is further from the global one or even from better local optimums.

Even though parallelization entails an extra cost in communicating the re-

sults obtained by each process, experiments with the mpiJava library [Baker

et al., 1999] show that this overload can be dismissed for even datasets of rel-

atively small size, such as soybean [Michalski & Chilausky, 1980]. In Figure

3.7, the behaviour in terms of time, depending on the number of processors

for three toy datasets: weather, labor and soybean, is displayed. Whereas

weather is shown to be too small to be parallelized, labor’s training time

is reduced by using 2 processors, and soybean even using three processors.

Note that, the larger the dataset, the bigger the speedup obtained by using

a larger number of processors, which is a desirable property in data mining.

3.5 Analysis of missing values in AODE and

HODE

As HODE makes use of the EM algorithm to estimate the probability dis-

tributions, it is logical to think of using this algorithm to take advantage of

its application for simultaneously carrying out an imputation of the missing
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Figure 3.7: Time employed by the parallelized version of HODE to train
three particular datasets: weather, labor (right Y-axis) and soybean (left
Y-axis), when 1, 2 or 3 processors are used.

values in data. In this empirical study, we are reproducing the same condi-

tions as in Section 3.3, and we are analysing the performance obtained when

the presence of missing values is faced in these three forms:

1. Missing values are ignored by the classification method.

2. Missing values are included in the EM algorithm in HODE.

3. Missing values are “a priori” imputed and replaced by the mean and

mode of the attribute.

Subsection 3.5.1 contains the comparisons between the first and second

methodology, and Subsection 3.5.2 introduces the results when the third

methodology is applied.

We do not consider more sophisticated techniques in order to maintain the

simplicity and efficiency desired in HODE. For the experiments, we take the
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datasets with missing values out of the group of datasets in Table 3.2, they

are summarized in Table 3.5 in increasing order of missing values percentage.

Table 3.5: Main characteristics of the datasets with missing values: column
%M indicates the percentage of missing values (increasing order).

Id. Dataset n c I %M

1 breast-w 38 6 898 0.23
2 breast-cancer 38 6 898 0.32
3 mushroom 38 6 898 1.33
4 audiology 69 24 226 2.00
5 heart-c 13 2 303 2.42
6 primary-tumor 69 24 226 2.00
7 credit-a 15 2 690 5.00
8 vote 16 2 435 5.30
9 hepatitis 19 2 155 5.39

10 hypothyroid 29 4 3772 5.40
11 sick 29 2 3772 5.40
12 soybean 35 19 638 9.51
13 autos 25 7 205 11.06
14 colic.ORIG 27 2 368 18.70
15 heart-h 13 2 294 19.00
16 colic 27 2 368 22.77
17 labor 16 2 57 33.64
18 anneal.ORIG 38 6 898 63.32

3.5.1 Missing values ignored vs included in the EM

algorithm

Table 3.6 shows the accuracy results for AODE, HODE ignoring missing

values, and HODE using EM in order to impute them (HODEMissing). It

does not seem to be worthy, at least for this group of datasets, to give a special

treatment for missing values inside the EM algorithm. HODEMissing wins

in 7 datasets vs 11 for HODE. The number of H states selected in both cases

is very similar, still, estimations made by HODE ignoring the missing values

seem to be slightly more accurate.

To be in a better position to draw conclusions, we perform a different

experiment. Now, we take several datasets and start to include missing

values at random at increasing percentages. The results are displayed in

Table 3.7, where the first column %M indicates the increasing percentage

of missing values in every case. With this study, we do not obtain a clear
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Table 3.6: Accuracy results for AODE, HODE (ignoring missing values) and
HODEMissing. The bullet next to certain outputs indicates an improvement
on the comparison of this value with the corresponding results in AODE.

Id AODE HODE estH HODEMissing estH

1 97.1674 •97.0815 2.76 97.0672 2.62
2 73.0420 70.8741 1.32 •71.8881 1.27
3 99.9508 99.6984 6.17 •99.8104 6.68
4 72.6991 •78.7611 1.00 78.0088 1.00
5 83.3663 83.6964 1.00 •83.7624 1.00
6 49.7640 47.4041 1.00 •47.8761 1.00
7 86.2029 85.5507 4.08 •86.0870 3.83
8 94.2759 •95.9540 3.18 95.8161 3.04
9 86.6452 •86.9677 2.22 86.4516 2.21
10 99.0376 •99.2550 4.46 99.2391 4.15
11 97.3648 •97.3568 4.45 97.3515 4.83
12 93.2064 •94.6706 1.00 94.0703 1.05
13 82.5854 83.5610 1.89 •84.0488 1.93
14 71.9022 •71.9293 1.00 70.4348 1.00
15 84.2857 •84.9660 1.00 83.7755 1.00
16 83.3967 81.5217 2.40 •82.7717 2.25
17 92.4561 •92.1053 1.00 91.9298 1.00
18 97.2272 •97.3942 1.92 96.0690 1.96
Av. 85.8098 86.0416 2.32 85.9143 2.32

pattern either, as for some datasets using EM to impute these missing values

seems to be beneficial in most cases (autos in Table 3.7), whereas it is not

for others (soybean in Table 3.7).

3.5.2 Missing values imputed with the global mean/mode

Table 3.8 displays the results both for AODE and HODE, when ignoring

the missing values or imputing these values using the global mean/mode for

each attribute (Imputed G.). The bullet next to certain outputs in these

columns, indicates an improvement on the comparison of this value with the

corresponding results when ignoring the missing values (columns Ignored in

AODE or HODE); the circle indicates a tie.

The conclusions we can obtain in the light of the results are the following:

• Performing the imputation of missing values with the EM algorithm

does not seem to be overall beneficial (total average accuracy), although

HODEmissing provides better records (12-0-6) than imputation with
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Table 3.7: Accuracy results for HODE and HODEMissing when missing
values at random at increasing percentages are included in datasets autos,
labor and soybean. The bullet next to certain outputs indicates an im-
provement on the comparison of this value (in HODEMissing) with the cor-
responding results in HODE; whereas the circle indicates a tie.

autos labor soybean
%M HODE HODEMissing HODE HODEMissing HODE HODEMissing

0 83.0244 ◦83.0244 94.3860 94.3860 94.3777 94.3777
10 76.8293 •79.6098 94.2105 •94.3860 94.1288 93.9678
20 73.5610 •74.8780 92.6316 92.6316 93.0161 92.8111
30 70.3902 •71.2195 87.8947 •88.9474 91.5373 88.9898
40 66.9756 •67.6585 87.0175 85.4386 89.6486 86.3836
50 63.4634 •65.3171 84.9123 84.9123 86.1054 83.2943
60 61.5122 •63.1220 87.7193 85.7895 80.8346 77.3939
70 56.0976 •59.1220 84.2105 •84.3860 72.2694 69.0190
80 51.5610 50.9756 73.1579 •75.0877 58.1259 52.5476
90 39.9512 38.5854 68.2456 67.0175 34.0996 30.6003

Table 3.8: Accuracy results for AODE and HODE when imputing missing
values with the global mean/mode (Imputed G.). The bullet next to certain
outputs indicates an improvement on the comparison of this value with the
corresponding results when ignoring the missing values (columns Ignored in
AODE or HODE); the circle indicates a tie.

AODE HODE
Id. Ignored Imputed G. Ignored Imputed G. HODEMissing

1 97.1674 96.9671 97.0815 96.9814 97.0672
2 73.0420 72.7273 70.8741 •71.4336 •71.8881
3 99.9508 ◦99.9508 99.6984 99.6824 •99.8104
4 72.6991 71.6372 78.7611 78.5841 78.0088
5 83.3663 83.2013 83.6964 83.4323 •83.7624
6 49.7640 47.8761 47.4041 45.7227 •47.8761
7 86.2029 •86.5507 85.5507 •85.5942 •86.0870
8 94.2759 •94.5287 95.9540 95.5172 •95.8161
9 86.6452 85.4839 86.9677 86.6452 86.4516
10 99.0376 98.7513 99.2550 99.0668 •99.2391
11 97.3648 •97.3966 97.3568 97.3118 •97.3515
12 93.2064 •93.3089 94.6706 94.3631 94.0703
13 82.5854 81.3659 83.5610 82.0976 •84.0488
14 83.3967 82.5543 81.5217 •81.5489 •82.7717
15 84.2857 •84.4898 84.9660 •85.0000 83.7755
16 71.9022 •75.9511 71.9293 •73.0707 70.4348
17 92.4561 •95.0877 92.1053 •94.9123 91.9298
18 97.2272 93.3185 97.3942 94.0646 •96.0690
Av. 85.8098 85.6193 86.0416 85.8349 85.9143
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the global mean/mode.

• HODE seems to be, in nature, a bit more robust against missing values

than AODE. When the missing values are ignored, HODE tends to

outperform AODE in most of the datasets with higher percentage of

missing values (Table 3.8). The reason could be that in AODE these

missing values are ignored twice (as children and parents) whereas in

HODE only once.

3.6 Conclusions and future work

HODE provides a reduction in space complexity and classification time as

well (linear complexity order). The latter leads to a lower time response in

many real applications and a lower RAM consumption. Basically, HODE

estimates a new variable whose main objective is to model the meaningful

dependences between each attribute and the rest of the attributes that AODE

takes into account. In order to estimate the number of states of this new

variable, we make use of the EM algorithm, evaluating the fitness for every

model with a greedy technique.

So far, we have shown empirically how HODE can be considered an at-

tractive alternative to AODE, especially in high dimensional datasets (where

the number of attributes, or number of values per attributes is very large),

for which it may become the only alternative, since AODE requires larger

memory requirements.

Besides, we have introduced the promising performance of HODE in a

parallel environment, as we are able to find a global optimum for #H . An

additional advantage of HODE would be the direct adaptation to work with

missing values in the dataset, due to the use of EM in its main cycle. Further-

more, HODE seems to be more robust against missing values than AODE.

Finally, it would be of a major interest, in order to speed up the training

process, to investigate how the estimations on one step in the EM algorithm

used in HODE can be reused on posterior steps [Karciauskas, 2005].
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Chapter 4

Gaussian AODE and hybrid

AODE

The harmony of the universe knows only one musical form - the legato; while

the symphony of number knows only its opposite - the staccato. All attempts

to reconcile this discrepancy are based on the hope that an accelerated staccato

may appear to our senses as a legato.

Tobias Dantzig. (1884 - 1956)

Baltic German Russian American mathematician

Within the framework of BNs, most classifiers assume that the variables involved

are of a discrete nature, but this assumption rarely holds in real problems. In order

to offer an alternative to discretization, in this chapter, we present two different

approaches based on Gaussian distributions to deal directly with numeric attributes.

One of them uses conditional Gaussian networks to model a dataset exclusively with

numeric attributes; and the other one keeps the superparent on each model discrete

and uses univariate Gaussians to estimate the probabilities for the numeric attributes

and multinomial distributions for the categorical ones, it also being able to model

hybrid datasets. Both of them obtain competitive results compared to AODE, the

latter in particular being an attractive alternative to AODE in numeric datasets.

Abstract
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4.1 Introduction

The paradigm of BNs assume all random variables are multinomial. Most

of the algorithms and procedures designed for Bayesian classifiers are only

able to handle discrete variables, so when a numeric variable is present, it

must be discretized. In Pérez et al. [2006], wrapper and filter approaches are

designed to adapt four well-known paradigms of discrete classifiers for han-

dling continuous variables (namely NB, TAN, KDB and the semi naive Bayes

using joint variables). However, so far, the only way of training AODE with

a dataset containing numeric attributes has been to discretize this dataset

before building the model, which can be a handicap in many situations as

this process, by definition, entails an inherent loss of information.

Nevertheless, when numerical variables are considered, the problem arises

of how to model the probability distribution for a variable conditioned, not

only by the class (which is discrete), but also by another numeric attribute.

Gaussian networks (GNs) [Geiger & Heckerman, 1994] have been proposed

as a good alternative to the direct discretization of continuous attributes.

A GN is similar to a BN, but it assumes all attributes are sampled from a

Gaussian density distribution, instead of a multinomial distribution. Despite

this strong assumption, Gaussian distributions usually provide reasonable

approximations to many real-world distributions.

In this chapter, two approaches are proposed to handle continuous vari-

ables in AODE: GAODE and HAODE. Both of them inherit the same struc-

ture as AODE. In the first one, we make use of CGNs to model the relation-

ship between a numeric attribute conditioned to a discrete class and another

numeric attribute; and hence, it is restricted to numerical datasets. In the

second one, a discrete version of the superparent attribute is considered in

every model, so the previous relationship can be estimated by a univariate

Gaussian distribution. The latter approach applies multinomials for nominal

children, being able to deal directly with datasets with continuous and/or

discrete attributes.

This chapter is organized as follows: Sections 4.2 and 4.3 provide a de-

tailed explanation of the two algorithms designed. In Section 4.4 we describe
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the experimental setup and results. And finally, Section 4.5 summarizes the

main conclusions of our chapter and outlines the future work related to this

study.

4.2 Gaussian AODE (GAODE) classifier

Definition 4.1 (GAODE classifier [Flores et al., 2009a]) Let A1, . . . , An be

a set of continuous features and C a class variable. A GAODE classifier

is a model that classifies an individual described by features (a1, . . . , an) as

belonging to the class cMAP computed as in Equation 4.2, and where all the

involved probability functions are of conditional Gaussian class (Equation

4.1).

The underlying idea of this classifier consists in using CGNs to deal with

continuous attributes in AODE. In fact, as the class variable is discrete, if

we restrict all the predictive attributes to be continuous, we can make use

of the Bayes rule to combine Bayesian and Gaussian networks to encode

the joint probability distributions among the domain variables, based on the

conditional independences defined by AODE.

In the particular case of AODE’s structure, the density function for every

predictive attribute has to be estimated over a node with a single discrete

parent, that is, the class C and another continuous parent, which is the

superparent attribute in every model, Aj. The adaptation of the CG density

function in Equation 2.11 to this case is:

f(Ai = ai|C = c, Aj = aj) = N
(

ai : µi(c) + bij(c)(aj − µj(c)), σ
2
i|j(c)

)

(4.1)

The Bayesian structure for GAODE would remain the same as AODE,

and its MAP hypothesis is obtained when we replace the multinomial prob-

ability distributions in Equation 2.4 (page 13), with the corresponding CG

distribution function defined in Equation 4.1. Whereas the relationship be-

tween every predictive attribute conditioned on the class and the correspond-

ing superparent is modelled by a CG distribution, the relationship between
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4. GAUSSIAN AODE AND HYBRID AODE

every superparent and the class is modelled by a univariate Gaussian distri-

bution. Hence, assuming all the predictive variables are continuous, GAODE

selects the class label which maximizes the following summation:

argmaxc

(

n
∑

j=1

N
(

aj : µj(c), σ
2
j (c)

)

p(c)

n
∏

i=1∧i 6=j

N
(

ai : µi(c) + bij(c)(aj − µj(c)), σ
2
i|j(c)

)

)

(4.2)

More details on CGNs and the calculations of these parameters can be

found in Section 2.2.2.

As we can deduce from our definition of this classifier with the application

of CGNs, it is not possible to define the corresponding probability function for

a discrete variable conditioned on a numeric attribute [Lauritzen & Jensen,

2001]. As in AODE, all the attributes play the superparent role in one

model, none of the children attributes are allowed to be discrete and therefore,

GAODE is only defined to deal with datasets exclusively formed by numeric

attributes (plus, of course, the discrete class).

In this case, the space complexity at training and classification time

becomes independent of the number of values per attribute v, and equals

O(kn2). Furthermore, as the number of necessary parameters is independent

of v, the probabilities estimated can be more reliable compared to the multi-

nomial version as they are modelled from more samples, specially when the

size of the CPTs is very large.

The time complexity undergoes no variation as the parameters of the

different Gaussian and CG distributions can be computed incrementally.

4.3 Hybrid AODE (HAODE) classifier

Definition 4.2 (HAODE classifier [Flores et al., 2009a]) Let A1, . . . , An be

a set of (continuous and/or discrete) features and C a class variable. A

GAODE classifier is a model that classifies an individual described by features

(a1, . . . , an) as belonging to the class cMAP computed as in Equation 4.3 using

68



the discretized version of aj, and where all the involved probability functions

are of Gaussian or multinomial class.

As we have seen, the GAODE classifier as defined above, is only able to

deal with datasets which exclusively contain continuous attributes. In order

to include the possibility of handling all kind of datasets, we decide to con-

sider every superparent as discrete in its corresponding model, in principle, by

means of any discretization method. However, only the superparent will be

discretized, for the rest of attributes their numeric value will be considered.

In this way, there is no need to resort to conditional Gaussian distributions,

as all the parents in the network will be discrete, but at the same time, we

keep most of the original precision from the numeric data.

This can also be seen as an even more simple way of solving the problem of

dealing with the continuous superparents on each model in AODE, as there

is no need to use conditional Gaussian distributions, but only univariate

Gaussians, as in Gaussian NB.

Hence, the MAP hypothesis is developed in the following way:

argmaxc

(

n
∑

j=1,N(aj)>q

p(aj , c)

n
∏

i=1∧i 6=j

N
(

ai : µi(c, aj), σ
2
i (c, aj)

)

)

(4.3)

This means that the relationship between the superparent and the class

is modelled with a multinomial probability distribution, whereas the rest of

relationships, where every other attribute is conditioned on the class and the

superparent, are modelled by univariate Gaussian distributions, as long as

they are continuous.

As we have pointed out above, this new classifier offers the additional

advantage of dealing with datasets that contain a mixture of discrete and

continuous variables. In the cases where the child attribute is discrete, a

multinomial distribution will be used, as in AODE. This feature represents

a significant advantage with respect to the use of CGNs proposed in the

previous section, as well as an evident simplification in the calculation of

parameters.

The models constructed are 1-dependent, which is why the required CPTs
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to store the different probability distributions, when necessary for HAODE,

are still three-dimensional, as in AODE. In this case, space complexity will

increase with the number of discrete variables in the dataset, the top level

being the same as for AODE, O(c(nv)2).

In both classifiers the model selection between the n SPODE models is

unnecessary, as in AODE, thus avoiding the computational cost required

by this task and hence maintaining AODE’s efficiency and minimizing the

variability in the error obtained.

4.4 Experimental methodology and results

4.4.1 Numeric datasets

In order to evaluate the performance of the two classifiers developed, we have

carried out experiments over a total of 26 numeric datasets, downloaded from

the homepage of the University of Waikato [WEKA-Datasets]. We gathered

together all the datasets on this web page, originally from the UCI repository

[Frank & Asuncion, 2010], which are aimed at classification problems and

exclusively contain numeric attributes according to WEKA [Hall et al., 2009].

Table 4.1 displays these datasets and their main characteristics.

Table 4.1: Main characteristics of the 26 numeric datasets: number of pre-
dictive variables (n), number of classes (c) and number of instances (m).

Id Datasets n c m Id Datasets n c m

1 balance-scale 4 3 625 14 mfeat-fourier 76 10 2000
2 breast-w 9 2 699 15 mfeat-karh 64 10 2000
3 diabetes 8 2 768 16 mfeat-morph 6 10 2000
4 ecoli 7 8 336 17 mfeat-zernike 47 10 2000
5 glass 9 7 214 18 optdigits 64 9 5620
6 hayes-roth 4 4 160 19 page-blocks 10 5 5473
7 heart-statlog 13 2 270 20 pendigits 16 9 10992
8 ionosphere 34 2 351 21 segment 19 7 2310
9 iris 4 3 150 22 sonar 60 2 208

10 kdd-JapanV 14 9 9961 23 spambase 57 2 4601
11 letter 16 26 20000 24 vehicle 18 4 946
12 liver-disorders 6 2 345 25 waveform-5000 40 3 5000
13 mfeat-factors 216 10 2000 26 wine 13 3 178
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Table 4.2 shows the accuracy results obtained when using 5x2cv1 to eval-

uate the different classifiers, as it entails a reasonable trade-off between pre-

cision and execution time of the experiments, providing a better partition

for the posterior statistical analysis, as in addition, the degree of overlapping

between the different folds is lower [Dietterich, 1998]. Each value represents

the arithmetical mean from the 10 executions. The black square next to

certain outputs means that the corresponding classifier on this particular

dataset either obtains the highest accuracy or is not significantly worse than

the classifier which does. The results were compared using the 5x2cv F Test

defined by Alpaydin [1999], which has lower type I error and higher power

than the 5x2cv t-test. The level of significance was fixed at 95% (α = 0.05).

The 5x2cv F Test is more conservative than the 5x2cv t-test, so a higher

number of ties will be obtained with the same level of significance.

Besides GAODE and HAODE, three other classifiers were included in the

comparison. From left to right: NB with Gaussian distributions to deal with

continuous attributes (GNB); and NB and AODE with the datasets previ-

ously discretized using Fayyad and Irani’s MDL method [Fayyad & Irani,

1993] (simply identified as NB and AODE). The corresponding discretiza-

tion of the superparent attributes in HAODE was also carried out using this

method2.

Table 4.3 shows, in the upper half of each cell, the comparison between

every pair of algorithms, where each entry w-t-l in row i and column j means

that the algorithm in row i wins in w datasets, ties in t (ties means no

statistical difference according to the 5x2cv F Test) and loses in l datasets,

compared to the algorithm in column j. The lower half of each cell contains

the results from the Wilcoxon tests [Demšar, 2006], with α = 0.05, which

compare every pair of algorithms with the 26 datasets: whenever the test

result represented a significant improvement in favour of one of the tests

over the other, the name of the winner is shown, otherwise NO is shown.

In terms of the arithmetical mean obtained, NB with discretization might

15x2cv means performing 2-folds cross validation 5 times (randomizing the data).
2Further experiments have been performed with different discretization methods, and

the results obtained follow the same tendency (further details in Chapter 6).
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Table 4.2: Accuracy results obtained for NB with Gaussians (GNB), NB,
AODE, GAODE and HAODE in continuous datasets. The black square next
to certain outputs means that the corresponding classifier on this particular
dataset either obtains the highest accuracy or is not significantly worse than
the classifier which does.

Id GNB NB AODE GAODE HAODE

1 �88.8640 77.6320 76.9920 �89.0880 �87.6800
2 �96.0801 �97.1102 �96.6237 �95.9662 �95.0787
3 �74.9740 �74.6875 �74.5573 �74.7917 �75.9115
4 �83.9881 �80.7738 �81.0119 �84.5238 �84.3452
5 49.7196 �60.0000 �60.7477 �52.8037 �60.6542
6 �65.3750 �57.5000 �57.5000 �65.6250 �68.5000
7 �83.4815 �81.2593 �80.8148 �83.7778 �83.0370
8 �82.9630 �88.8889 �90.7123 �92.0228 �91.7379
9 �95.0667 �93.4667 �93.3333 �97.4667 �95.6000
10 85.7444 84.5758 90.3885 91.8442 �93.9966
11 64.0600 73.2960 �86.2920 71.2350 �86.1380
12 �54.2609 �58.6087 �58.6087 �57.3333 �54.2029
13 92.2900 92.3600 �96.0800 �95.9400 �96.3100
14 75.7000 75.8700 79.2500 �79.3900 �80.6900
15 93.1600 90.4800 �93.8300 �96.1500 �95.9200
16 �69.3200 68.0300 68.9000 �70.7900 �69.9500
17 72.9900 70.2100 74.6300 �77.4200 �78.1000
18 91.1317 91.7544 �96.3167 93.6370 �96.9181
19 �87.7142 93.1336 �96.6307 �90.9446 �91.8144
20 85.7041 87.3362 �97.1161 94.2085 �97.5182
21 80.6753 90.4416 �94.1732 86.6667 �95.1602
22 67.5000 �75.6731 �75.5769 �71.4423 �75.9615
23 79.5131 89.8544 �92.7277 79.8566 77.3658
24 43.1678 58.6052 67.4704 �68.5106 �72.9787
25 80.0000 79.9680 �84.5080 �84.4600 �84.2200
26 97.4157 96.9663 �96.9663 �98.4270 97.4157

Av 78.4842 80.3262 83.1445 82.4739 84.1233

Table 4.3: Accuracy comparison between pairs of algorithms: GNB, NB,
AODE, GAODE and HAODE.

Ftest
GNB NB AODE GAODE

Wilcoxon

NB
7-16-3
NO

AODE
11-14-1 14-12-0
AODE AODE

GAODE
12-14-0 12-12-2 5-16-5
GAODE GAODE NO

HAODE
13-13-0 13-12-1 6-19-1 6-18-2
HAODE HAODE HAODE HAODE
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be thought to work better than GNB, but the number of datasets where

GNB is not significantly worse than the best method, or actually is the best

method, is 11, versus the 10 for NB. In fact, the Wilcoxon test returned

no significant difference between these two methods for these datasets. We

might expect the same reasoning to be extensible to the comparison between

AODE and GAODE. However, this is not entirely true as the difference

between means from the two algorithms is lower and the number of datasets

where they are not significantly worse than the other classifiers is exactly

the same. In this case, the Wilcoxon test also failed to show a significant

difference.

Analysing these scores, we can confirm that both the GAODE and HAODE

classifiers are significantly better than NB in any of its versions. As far as

HAODE is concerned, not only does it obtain the highest accuracy mean,

but also the highest number of datasets whose accuracies are not signifi-

cantly different from the best one provided by any of the other classifiers.

Likewise, according to the Wilcoxon test, it is significantly better than AODE

and GAODE for this group of numerical datasets despite the considerable

number of ties.

Furthermore, a Friedman test was performed for the 5 classifiers, yielding

statistical difference. The posterior Nemenyi tests [Demšar, 2006; Garćıa

& Herrera, 2009] only rejected the hypothesis that two algorithms are not

significantly different in favour of GAODE and HAODE over GNB and NB,

whereas AODE could not be proved to be significantly better than any of

them.

4.4.2 Hybrid datasets

So far, we have seen the great capacity of HAODE as an alternative to AODE

for numeric datasets. As opposed to GAODE, HAODE is able to deal with

all kinds of datasets, hence we have also carried out experiments with 16

hybrid datasets included in a standard group of 36 UCI repository datasets,

whose main characteristics are summarized in Table 4.4. All the numeric

datasets in these group were included in the previous set of experiments and
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for the discrete datasets both classifiers are equal. That is the reason why in

this block we just focus on hybrid ones.

Table 4.4: Main characteristics of the 16 hybrid datasets: number of at-
tributes (n), number of classes (c), number of instances (m), number of
discrete and continuous attributes (#D and #C) and percentage of missing
values (%M).

Id. Dataset n c m #D #C %M

1 anneal.ORIG 38 6 898 32 6 63.32
2 anneal 38 6 898 32 6 0.00
3 autos 25 7 205 10 15 11.06
4 colic.ORIG 27 2 368 20 7 18.70
5 colic 22 2 368 15 7 22.77
6 credit-a 15 2 690 9 6 5.00
7 credit-g 20 2 1000 13 7 0.00
8 heart-c 13 2 303 7 6 0.17
9 heart-h 13 2 294 7 6 19.00

10 hepatitis 19 2 155 13 6 5.39
11 hypothyroid 29 4 3772 22 7 5.40
12 labor 16 2 57 8 8 0.00
13 lymph 18 4 148 15 3 0.00
14 sick 29 2 3772 22 7 5.40
15 vowel 13 11 990 3 10 0.00
16 zoo 17 7 101 16 1 0.00

Table 4.5 shows the accuracy results with NB (estimating Gaussians or

multinomials according to the type of the attribute), AODE and HAODE

using a 5x2cv on the evaluation and applying the discretization method pre-

viously mentioned in all the cases. The reason why the order of the datasets

was altered will be given below.

Taking each w-t-l notation to mean that HAODE wins in w datasets, ties

in t and loses in l datasets compared to AODE at a 95% confidence level,

the hybrid classifier significantly improves on AODE in 1 of them, loses in

5 others and draws in 10 of them (1-10-5). Even though these are not the

results we expected, considering only these hybrid datasets, it cannot be

proved that there exists a significant advantage of AODE over HAODE, as

Wilcoxon does not guarantee statistical difference.

Looking for a plausible explanation of this fact, specially taking into ac-

count the good results obtained by HAODE vs AODE in numerical datasets

(Table 4.2), we analysed the percentage of numerical variables with respect to
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Table 4.5: Accuracy results obtained with NB, AODE and HAODE classifiers
in the hybrid datasets. The black square next to certain outputs means
that the corresponding classifier on this particular dataset either obtains the
highest accuracy or is not significantly worse than the classifier which does.

Id NB AODE HAODE %M

16 �90.4950 �91.6832 �94.2574 0.00
13 �81.0811 �80.8108 �82.5676 0.00
15 50.6667 61.0505 �78.4444 0.00
7 �74.1600 �74.4400 �75.3200 0.00

12 �88.4211 �87.7193 �88.0702 0.00
2 �95.1448 �96.7483 �92.7840 0.00
8 �83.3003 �83.3003 �83.7624 0.17
6 �86.0290 �86.2609 78.8696 5.00

10 �82.3226 �83.0968 �84.3871 5.39
11 �97.7253 �98.0011 95.6416 5.40
14 97.0891 �97.2057 94.5652 5.40
3 �58.7317 �64.1951 �57.5610 11.06
4 �69.6196 �69.7826 60.8696 18.70
9 �83.8776 �83.9456 �83.4014 19.00
5 �79.3478 �81.0870 �78.8043 22.77
1 �93.1403 �93.9866 88.7751 63.32

Av 81.947 83.3321 82.3801

discrete ones in hybrid datasets, but no significant pattern was found. Then,

we turned to study the impact of missing values and, in this case, a relevant

pattern can be obtained: the presence of missing values seems to punish

HAODE vs AODE. Thus, in Table 4.5, hybrid datasets have been ordered

according to their percentage of missing values. Above the line of the 2nd

column in Table 4.5 we have the ones with almost no missing values. In fact,

the Wilcoxon test shows statistical difference when only the datasets with

missing values are considered. Based on the apparent tendency of HAODE

to punish datasets with missing values, we then preprocessed all the datasets

with an unsupervised filter to replace missing values with the modes and

means from the existing data in the corresponding column. The same ex-

periments were executed obtaining a result of 2-12-2. For the first group of

numeric datasets the results are the same, as only breast-w has a 0, 23% of

missing values. These results lead us to the conclusion that HAODE can

be more sensitive to missing values than the other classifiers included in the

comparison. It seems that the repeated use of different estimators (average

of n models) made from few data when using Gaussian networks is more
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damaging than when they are made from multinomials.

4.5 Conclusions and future work

In this chapter, we have proposed two alternatives to AODE in order to deal

with continuous attributes without performing a direct discretization process

over the whole data. The first classifier, GAODE, applies CGNs to model

the relationships between each predictive attribute and its parents, obtain-

ing competitive results compared to AODE. GAODE implies a reduction in

the space complexity and the parameters can be computed a priori in a sin-

gle pass over the data, maintaining AODE’s time complexity as well. This

approach can also provide a more reliable and robust computation of the

necessary statistics as the parameters are exclusively class-conditioned.

Furthermore, we have also presented a “hybrid” classifier, HAODE, which

keeps the superparent attribute discrete in every model. This approach offers

the clear advantage of dealing with any kind of dataset. Nonetheless, even

though it is in general competitive when compared with AODE, it has shown

a clear preference for datasets with continuous attributes and the absence of

missing data, where it is significantly better than AODE.

Even though Gaussian networks often provide a reasonable approxima-

tion to many real-world distributions, they assume variables are sampled

from Gaussian distributions. In the following chapter, we are exploring more

general distribution probabilities, specifically the application of Mixtures of

Truncated Exponentials (MTEs) [Moral et al., 2001]) to AODE, which en-

tails a more precise estimation, being also able to model Bayesian, Gaussian

and hybrid networks.
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Chapter 5

The MTE-AODE classifier

To be beyond any existing classification has always pleased me.

Boyd Rice. (1950-)

American artist

As indicated in the previous chapter, AODE is exclusively defined to deal with dis-

crete variables. Two approaches to avoid the use of the discretization pre-processing

technique have been presented in Chapter 4, which involve, in lower or greater de-

gree, the assumption of Gaussian distributions. In this chapter, we propose the use

of mixtures of truncated exponentials, whose expressive power to accurately approx-

imate the most commonly used distributions for hybrid networks has already been

demonstrated. We perform experiments on the use of MTEs over a large group of

datasets for the first time, and we analyse the importance of selecting a proper num-

ber of points when learning MTEs for NB and AODE, as we believe, it is decisive

to provide accurate results.

Abstract

5.1 Introduction

As most of the techniques based on Bayesian networks, AODE is defined to

work with multinomial probability distributions, and hence, all continuous

variables have to be treated somehow before the classification process. To this

end, discretization techniques seem to be the most direct alternative, even

though they entail inherent loss of information that may have a negative
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impact on the accuracy obtained when classifying.

In the previous chapter, two different proposals are described to deal with

numerical variables in a different way [Flores et al., 2009a]. Both proposals

are based on the assumption that for each configuration of the categorical

variables, all the numerical attributes are sampled from a Gaussian density

distribution. Despite this strong assumption, Gaussian distributions usually

provide reasonably good approximations to many real-world distributions.

In this sense, MTEs [Moral et al., 2001] have become an attractive alter-

native, as they offer an exact frame for working with hybrid networks and the

parameter estimation process from data, both for univariate and conditional

potentials, is well-defined [Rumı́ et al., 2006]. Therefore, in this chapter we

generalize the use of the AODE classifier to work with all kind of datasets by

estimating MTEs for all the density functions involved. Nevertheless, esti-

mation using MTEs involves the selection of the maximum number of points

into which the domain of numeric variables is partitioned. This parameter

can be decisive to obtain accurate estimation from data, as shown below.

We will also study the application of MTEs over a large group of datasets

without an individual parametrization, in order to find out if a general rec-

ommendation on how to best handle the continuous attributes can be given.

So far, only studies tailored to specific datasets have been carried out using

estimations based on MTEs.

We have performed the same study on NB as well, as it is directly exten-

sible and always a good baseline to take into consideration.

The chapter is then organized as follows: Section 5.2 defines the proposed

MTE-AODE classifier. In Section 5.3, we describe the experimental setup

and results when comparing the performance of using MTEs with Gaus-

sian distributions and discretization methods. Furthermore, we analyze the

importance of selecting an adequate number of intervals when building the

MTEs. Finally, Section 5.4 summarizes the main conclusions of this study

and outlines the future work related with it.
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5.2 MTE-AODE classifier

Definition 5.1 (MTE-AODE classifier [Flores et al., 2011b]) Let A1, . . . , An

be a set of (continuous and/or discrete) features and C a class variable. An

MTE-AODE classifier is a model that classifies an individual described by

features (a1, . . . , an) as belonging to the class cMAP computed as in Equa-

tion 2.4 (MAP hypothesis for AODE), and where all the involved probability

functions are of class MTE 1.

Hence, this classifier keeps the original AODE’s structure, as GAODE

and HAODE.

The advantages of MTE-AODE over GAODE are that, in this case, we

do not assume that the underlying distribution is of Gaussian type, as MTEs

are able to accurately represent the most common distributions [Cobb et al.,

2006] and also, to handle datasets with discrete and continuous variables, i.e.

hybrid datasets. With respect to HAODE, an added advantage is that there

is no need to discretize the super-parent nodes, as the MTE paradigm can

deal with discrete variables with continuous parents.

In turn, the drawback is that the learning phase is slower, as the parame-

ters are adjusted iteratively following the algorithm described in Rumı́ et al.

[2006]. Nevertheless, the speed of the learning phase can be tuned at the

cost of the precision provided by the MTEs.

5.3 Experimental methodology and results

5.3.1 Decisions for the experimental frame

We have adopted two pre-processing steps to begin with. This is in order

to make the group of datasets uniform and suitable for all the classifiers

considered in the comparison:

• Unsupervised filter to replace all the missing values with the modes

and means from the existing data in the corresponding column.

1Note that we can trivially extend this definition to the MTE-NB classifier as a par-
ticular case of MTE-AODE.
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• Unsupervised filter to remove attributes that do not vary at all or whose

variance percentage is greater than 99%.

Note that the number of intervals into which the domain for a continuous

variable is split in an MTE potential is a parameter whose value remains

to be tuned. Traditionally, it has been chosen based on empirical results,

specifically, a trade-off between low complexity and high fitting power is de-

sired. In this work, we have performed experiments partitioning the domain

of each variable into 5 and 10 intervals (EF5 and EF10 respectively, from

equal frequency division). Why these numbers? In Chapter 6, a compar-

ison between different discretization methods for NB, AODE and HAODE

(among other semi-naive BNCs) is carried out. In this study, the best re-

sults are obtained when applying EF discretization methods with 5 bins for

AODE and 10 bins for NB and HAODE. Note that, in the MTE case, EF

discretization is applied only to parent variables in a conditional distribution

represented by a mixed tree. The domain of the variable that actually ap-

pears in the functional definition of the MTE potential in each leaf of the

mixed tree is split taking into account the inflection and extreme points of

the sample density [Rumı́ et al., 2006], although a maximum number of in-

tervals is set. Furthermore, we have made experiments with MTEs applying

the supervised minimum-entropy-based discretization proposed by Fayyad &

Irani (F&I) [Fayyad & Irani, 1993].

We have carried out experiments over the same group of 16 hybrid datasets

considered in the previous chapter (Table 4.4, Section 4.4.2), using 5x2cv to

perform the evaluation part. The software used in this case is Elvira [Elvira-

Consortium, 2002], a tool in Java for probabilistic graphical models in con-

tinuous and discrete domains. The number of exponential terms in each of

the MTEs estimated have been set to 2, which is the default value in Elvira.

5.3.2 Experimental results

Table 5.1 shows the accuracy results for this group of datasets when using

Gaussians and EF5 for the following classifiers: NB using Gaussians (GNB);
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NB, AODE and HAODE1 applying EF5 (simply NB and AODE); and NB

and AODE using MTEs with 5 intervals (MTE-NB and MTE-AODE). The

bullet next to certain outputs indicates the best value when comparing the

results provided by the three approaches based on NB on one hand (three

first columns), and AODE on the other (three last columns). Similar results

are shown for EF10 and F&I in Tables 5.2 and 5.3.

Table 5.1: Accuracy results obtained for NB, MTE-NB, AODE and MTE-
AODE in the hybrid datasets (EF5).

Naive Bayes AODE
Id GNB NB MTE-NB AODE HAODE MTE-AODE

1 66.8597 •88.5078 82.5612 •88.4633 81.9376 82.2717
2 87.1938 •92.9399 90.2227 •96.8597 94.4098 93.2294
3 56.6829 •60.6829 59.2109 68.4878 •70.9268 62.0350
4 71.5761 •78.2609 68.6957 •80.3261 73.0978 69.5652
5 77.5000 74.5652 •80.4891 74.4565 75.7065 •81.7935
6 77.5362 •86.1159 84.4348 •86.4638 80.7826 85.3333
7 •74.7600 74.6200 74.5600 74.1600 73.7400 •74.7400
8 82.6403 •84.0924 82.6965 •83.2343 82.4422 82.5000
9 81.9048 83.4694 •84.1497 83.6735 81.7687 •84.2177

10 83.2258 83.4839 •85.0316 82.1935 83.2258 •84.2524
11 •95.4189 94.5758 94.1569 94.6235 •95.3340 93.8388
12 91.2281 •93.6842 90.1847 •93.3333 90.8772 91.2562
13 81.7568 82.7027 •83.2432 83.3784 82.2973 •83.7838
14 92.3065 92.1898 •94.3584 93.3033 •95.5885 94.1676
15 •59.5152 53.6970 55.1313 75.5960 •86.1010 70.7879
16 92.6733 90.6931 •93.6627 91.4851 •94.4554 93.8588
Av 79.5487 82.1426 81.4244 84.3774 83.9182 82.9770

All pairwise comparison between every algorithm with MTE-NB and

MTE-AODE are summarized in Table 5.4, where each entry w-l in row i

and column j means that MTE-NB or MTE-AODE in row i wins in w

datasets and loses in l datasets, compared to either G (Gaussian NB), D

(NB or AODE applying the type of discretization indicated in row i) or H

(HAODE), depending on the content in column j.

In the case of NB, the use of MTEs offers an overall improvement over the

use of Gaussians. However, the conclusions are not as clear to obtain when

comparing with the use of discretization, where the latter specially stands

out when using 10 bins. The difference is less clear when 5 bins or F&I

1Note that the GAODE can not be applied in this context as it is restricted to work
exclusively with numeric attributes.
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Table 5.2: Accuracy results obtained for NB, MTE-NB, AODE and MTE-
AODE in the hybrid datasets (EF10).

Naive Bayes AODE
Id GNB NB MTE-NB AODE HAODE MTE-AODE

1 66.8597 •91.1804 82.6726 •86.0356 82.6281 82.0935
2 87.1938 •93.5189 90.3341 •96.1470 94.4321 92.9621
3 56.6829 •66.9268 59.8934 64.0824 •70.1463 63.0164
4 71.5761 •78.2065 69.1304 73.0978 •73.5870 69.4565
5 77.5000 74.5652 •80.7609 81.3587 75.0000 •81.6848
6 77.5362 •85.7971 84.2029 84.3188 80.9855 •84.9275
7 •74.7600 74.6000 74.4200 74.9200 74.1400 •75.1000
8 82.6403 •82.8383 82.5645 81.9715 82.1122 •82.5658
9 81.9048 82.8571 •84.0136 •84.0136 80.5442 83.6054

10 83.2258 83.4839 •85.0316 •85.0266 83.4839 84.2541
11 •95.4189 95.3446 94.1729 94.4274 •95.4401 93.7964
12 91.2281 •92.2807 90.1847 90.8867 90.5263 •91.2562
13 81.7568 82.5676 •83.2432 •84.1892 82.4324 83.7838
14 92.3065 •95.1326 94.3054 •96.2725 96.0233 94.5387
15 •59.5152 57.8788 55.5758 73.8990 •88.6263 71.3333
16 92.6733 90.6931 •93.6627 94.0549 •94.4554 93.8588

Table 5.3: Accuracy results obtained for NB, MTE-NB, AODE and MTE-
AODE in the hybrid datasets (F&I).

Naive Bayes AODE
Id GNB NB MTE-NB AODE HAODE MTE-AODE

1 66.8597 •89.7327 81.2695 •89.8441 78.7528 81.4477
2 87.1938 •94.4543 89.6659 •96.8597 92.7840 92.9621
3 56.6829 58.8293 •59.6031 63.9024 •68.6829 63.5028
4 71.5761 •72.8804 69.7826 74.0761 •74.5652 70.7065
5 77.5000 79.9457 •80.1087 81.2500 77.8261 •81.6304
6 77.5362 •86.0290 83.7101 •86.2319 79.0725 84.8986
7 •74.7600 74.1600 74.4400 74.4400 •75.3200 75.0800
8 82.6403 •83.2343 81.4434 •83.2343 82.9043 83.0281
9 81.9048 83.6735 •83.8776 83.6735 83.1293 •84.2177

10 83.2258 82.3226 •83.4898 83.2258 82.5806 •84.9018
11 95.4189 •97.9586 94.2312 •98.2397 95.5567 93.8600
12 •91.2281 87.3684 88.4236 88.4211 •92.9825 90.1847
13 81.7568 81.0811 •83.3784 80.8108 82.5676 •83.6486
14 92.3065 •97.0042 94.2948 •97.1686 93.9449 93.6638
15 •59.5152 50.6667 51.7980 61.0505 •78.4444 69.5152
16 92.6733 90.6931 •93.6627 91.4851 •94.2574 93.8588

are applied. Similar reasoning is extended to AODE when comparing MTEs

and the use of discretization, where even significant improvement is obtained

when the Wilcoxon test is performed in EF10. As far as the comparison

between HAODE and MTEs is concerned, we find also very competitive
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results. Note that here, we should focus on the domain of the variable that

appears in each leaf of the mixed tree, as the partition of the domain for the

parent variables in a conditional distribution represented by a mixed tree is

directly determined by the discretization method selected.

Table 5.4: Accuracy comparison between NB and AODE with MTEs, and
other approaches to deal with continuous variables. The black triangle indi-
cates significant performance applying the Wilcoxon test.

Naive Bayes AODE
MTE vs G MTE vs D MTE vs H MTE vs D

EF5 11-5 7-9 9-7 7-9
EF10 10-6 5-11 8-8 H5-11
F&I 10-6 9-7 8-8 8-8

5.3.3 Discussion

In the light of the results, we observe that the selection of the proper way

to deal with continuous variables in NB and AODE depends in high degree

on the dataset. This is the reason why in this section, we are analysing the

importance on the selection of the number of cutpoints when estimating the

MTEs.

Table 5.5 shows the accuracy results for MTE-NB and MTE-AODE when

using 5EF, 10EF and F&I to indicate the number of intervals into which the

domain of each leaf node will be partitioned to estimate the MTEs, and also,

in the case of AODE, to create the intervals for the superparents.

We can observe how the results can dramatically change depending on the

number of intervals selected. There are some few datasets where accuracy

remains the same, usually due to the fact that the number of intervals created

is lower than specified (e.g. for attributes of type integer).

Figures 5.1 (a), (b) and (c) show the kernel and MTE’s densities esti-

mated for a numeric attribute called waiting, which represents the waiting

time between eruptions for the Old Faithful geyser in Yellowstone National

Park, Wyoming, USA [Azzalini & Bowman, 1990]. Different values to set

the maximum number of intervals have been used to estimate the MTEs and
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Table 5.5: Accuracy results obtained for MTE-NB and MTE-AODE when
using 5EF, 10EF and F&I to create the intervals.

Naive Bayes AODE
Id 5EF 10EF F&I 5EF 10EF F&I

1 82.5612 •82.6726 81.2695 •82.2717 82.0935 81.4477
2 90.2227 •90.3341 89.6659 •93.2294 92.9621 92.9621
3 59.2109 •59.8934 59.6031 62.0350 63.0164 •63.5028
4 68.6957 69.1304 •69.7826 69.5652 69.4565 •70.7065
5 80.4891 •80.7609 80.1087 •81.7935 81.6848 81.6304
6 •84.4348 84.2029 83.7101 •85.3333 84.9275 84.8986
7 •74.5600 74.4200 74.4400 74.7400 •75.1000 75.0800
8 •82.6965 82.5645 81.4434 82.5000 82.5658 •83.0281
9 •84.1497 84.0136 83.8776 •84.2177 83.6054 •84.2177

10 •85.0316 •85.0316 83.4898 84.2524 84.2541 •84.9018
11 94.1569 94.1729 •94.2312 93.8388 93.7964 •93.8600
12 •90.1847 •90.1847 88.4236 •91.2562 •91.2562 90.1847
13 83.2432 83.2432 •83.3784 •83.7838 •83.7838 83.6486
14 •94.3584 94.3054 94.2948 94.1676 •94.5387 93.6638
15 55.1313 •55.5758 51.7980 70.7879 •71.3333 69.5152
16 93.6627 93.6627 93.6627 93.8588 93.8588 93.8588
Av 81.4244 81.5105 80.8237 82.9770 83.0146 82.9442

the resulting densities have been plotted and compared to the kernel den-

sity. Figure 5.1 (a) shows how selecting a number of intervals too small can

incur a too generalized estimation of the original data. This, in terms of dis-

cretization bias and discretization variance [Yang & Webb, 2009] can imply

a renunciation of an improvement in terms of bias while maintaining quite a

low variance, as estimations are made from large amount of samples. On the

other hand, if the maximum number of intervals is too high, the obtained

effect is the opposite: bias might get lower at the expense of an increase in

terms of variance and loss of generalization capabilities. Hence, the smaller

the number of intervals selected, the lower also the expressive power of the

MTEs; in turn, the larger is this number, the higher also will be the risk of

overfitting the training data. In fact, additional tests have been performed

by setting no restrictions in the maximum number of intervals, i.e., just tak-

ing into account the inflection and extreme points of the sample density, and

the results improved 11-0-5 as for using F&I for example.

That is why, we believe that the selection of the number of intervals in

this case is very important. It is not only advisable to find the optimum for

every dataset, but also, to find the optimum for every domain to partition
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Figure 5.1: Estimation of MTEs when selecting different number of cutpoints.

in each leaf of the mixed tree independently, requiring a more sophisticated

supervised “discretization” technique oriented to the estimation of MTEs.

As for the time complexity is concerned, the estimation of MTEs requires

more than performing EF discretization. However, this time can be controlled

in different ways: on one hand, limiting the number of exponential terms in

each of the estimated MTEs, but also, playing with the maximum number of

intervals into which divide the domain. Hence, being able to deal with very

large datasets at a lower cost.

5.4 Conclusions and future work

In this chapter, we have proposed an alternative approach to generalize the

application of AODE to datasets with continuous and/or discrete attributes.

To this end, we have resorted to the use of MTEs, specifically, all the proba-
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5. THE MTE-AODE CLASSIFIER

bility functions now involved in the AODE classifier are of class MTE; as this

kind of distributions is able to represent the conditional probability functions

in a Bayesian network without any structural restriction, providing, at least

in theory, a high expressive power. As we have shown, this idea is directly

extensible to NB (where the use of Gaussians is trivial, unlike in AODE);

and it is also to other semi-naive Bayesian classifiers.

So far, all the approaches designed to avoid direct discretization of the

numeric attributes in AODE assumed, in lower or greater degree the exis-

tence of Gaussian distributions. Although this is a reasonable approximation

for some problems, it does not hold in many other datasets, as we have cor-

roborated in this work, and that is why the application of MTEs is an option

to consider.

Nevertheless, the use of MTE estimations requires selecting the proper

number of intervals into which the domain of leaf variables in the mixed tree

is split, in order to compete with discretization methods. Also, we have seen

how AODE is less sensitive to the number of cutpoints selected compared

to NB. We believe this is so, due to its own definition as an aggregation of

models.

Finally, we propose the study of a new supervised method to dynamically

search for the optimum number in every case into every dataset. The idea is

to find a good trade-off between fitting and generalization capability of the

model.

86



Part III

Discretization techniques for

semi-naive BNCs

87





Chapter 6

Disjoint discretization

techniques

In theory, theory and practice are the same. In practice, they are not.

Albert Einstein. (1879-1955)

German theoretical physicist

Despite the loss of information discretization entails, it is a direct easy-to-use mech-

anism that can offer some benefits and, even though there are many ways to deal

with continuous variables other than discretization (see Chapters 4 and 5), it is still

commonly used. This chapter presents a study of the impact of using different dis-

cretization strategies on a set of representative BN classifiers. With this comparison

we analyse to what extent the type of discretization method affects classifier perfor-

mance in terms of accuracy and bias-variance discretization. Our main conclusion

is that, even if a discretization method produces different results for a particular

dataset, it does not really have an effect when classifiers are being compared. That

is, given a set of datasets, accuracy values might vary, but the classifier ranking is

generally maintained. This is a very useful outcome, as assuming that the type of

discretization applied is not decisive, future experiments can be d times faster, d

being the number of discretization methods considered.

Abstract
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6. DISJOINT DISCRETIZATION TECHNIQUES

6.1 Introduction

Discretization is one of the pre-processing techniques most broadly used in

machine learning and data mining. Strictly speaking, by means of a dis-

cretization process the real distribution of the data is replaced with a mix-

ture of uniform distributions. In practice, discretization can be viewed as

a method for reducing data dimensionality, since the input data are trans-

formed from a huge spectrum of numeric values to a much smaller subset of

discrete values, normally by placing variable values into ranges.

In Section 2.2.1, only a few of the many different discretization techniques

are shown. There is no doubt that, when dealing with a concrete problem

(dataset), choosing a certain discretization method can have a direct impact

on the success (accuracy, AUC, etc.) of the posterior classification task.

However, in this chapter we do not focus on the effect of the chosen dis-

cretization method on a specific application domain (dataset), but its impact

when studying a BN classifier over a significant range of application domains

(datasets). That is to say, should we worry about the discretization method

applied when designing the set of experiments in order to study whether or

not the analysed method is better than other BN classifiers? If the answer is

yes, then we must add a new parameter (the discretization method) to our

experimental study, and so the number of experiments will be multiplied by

d, d being the number of tested discretizations. Otherwise, if the answer is

no, then we can avoid introducing this parameter in the experimental study

and therefore we will save a considerable amount of time in our experiments

(to be precise our experiments will be d times faster).

In order to answer the question posed above, in this study, we intend to

perform an empirical analysis of this problem, taking as our basis a subset of

classifiers based on BNs: NB, TAN [Friedman et al., 1997], KDB Classifier

[Sahami, 1996], AODE [Webb et al., 2005], HAODE [Flores et al., 2009a] and

a more general BN classifier which uses a Hill Climbing algorithm (BNHC)

[Buntine, 1996]. We have seen in Chapter 4, how HAODE provides better

results than AODE for continuous attributes when applying Fayyad and

Irani’s discretization method, but does it hold for other kinds of discretization
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techniques? [Flores et al., 2010, 2011a].

With respect to the datasets considered in our experiments, we have

used a significant sample consisting of the 26 datasets from the UCI archive

[Frank & Asuncion, 2010] presented in Chapter 4 (Table 4.1). Although more

classifiers (and perhaps datasets) can be added to our test suite in the future,

we think that the current study is already a significant one to draw the first

conclusions.

The rest of the chapter is organized as follows: Section 6.2 presents both

the design of the experiments performed and their results. It is comprised of

the experimental frame and three sets of experiments: global analysis, k value

selection and the study of NB-tailored discretization techniques. Finally,

Section 6.3 summarizes the main conclusions of this study.

6.2 Experimental methodology and results

6.2.1 Experimental frame

In the following three subsections, the three groups of experiments carried

out are detailed: Subsection 6.2.2 includes an extensive study, in terms of

accuracy and error components (bias and variance), of the performance ob-

tained by the BN classifiers when using six discretization methods; Subsec-

tion 6.2.3 explains why the maximum number of parents for a node in the

KDB algorithm is set to 1, as we will see below; and finally, Subsection 6.2.4

extends the comparison to two other NB-tailored discretization techniques

with the aim of finding out if the behaviour observed in Subsection 6.2.2 can

be extended to this kind of discretization techniques as well.

6.2.2 Experiment 1: global analysis and results

The experiments are performed over the following six BNCs: NB, TAN,

KDB1 (KDB with k = 1), BNHC, AODE and HAODE. We consider 6

different techniques for discretizing the datasets: equal-width discretization

with 5 (EW5) and 10 bins (EW10) and optimizing the number of bins through
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6. DISJOINT DISCRETIZATION TECHNIQUES

entropy minimization (EWE); equal frequency discretization with 5 (EF5)

and 10 bins (EF10); and Fayyad and Irani’s supervised discretization method

(F&I). In all cases, the corresponding filters included in WEKA [Hall et al.,

2009] for these types of discretizations are applied.

For all the experiments 5x2cv is used. The bias-variance decomposition

is performed using the sub-sampled cross-validation procedure exactly as

specified in Webb & Conilione [2002].

We analyse the results obtained in terms of accuracy and error on different

blocks, the latter divided into the bias and variance components according

to Webb [2000].

In order to provide a descriptive comparison between the results pro-

vided by the different classifiers considering the various types of discretiza-

tion methods, we show the average measures in terms of accuracy (Subsection

6.2.2.1) and error rate divided into bias and variance (Subsection 6.2.2.2).

This information is extremely useful as it provides a very compact and visual

representation of the comparative. However, as we are dealing with differ-

ent domains its results may not be commensurable and that is why some

statistical tests are carried out to provide a more analytical point of view.

In this sense, and following Demšar [2006] and Garćıa & Herrera [2009]

guidelines, we have decided to use Friedman tests in two levels of abstrac-

tion: the first one corresponds to compare the performance of the different

discretization methods for each classifier (here, if the discretization method

does not matter, no differences should be found), and the second, to com-

pare the different classifiers for a specific discretization method (here, if the

discretization method does not matter, the same differences should be found

among the classifiers in every discretization method).

The Friedman test is a non-parametric statistical test similar to ANOVA

(Fisher [1959]) that additionally ranks the algorithms compared. Iman &

Davenport [1980] came out with a less conservative statistic than Friedman’s,

that we are applying as well. In order to compare all the classifiers with

each others we use the well-known Nemenyi test (Nemenyi [1963]), which

is similar to the Tukey test for ANOVA. Note that, in this case, it is not

of major interest to compare the performance of a particular classifier (con-
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Figure 6.1: Comparison of average accuracy for NB, TAN, KDB1, AODE
and HAODE when using different discretization methods.

trol classifier) with the rest and that is why other tests, such as Holm’s or

Bonferroni-Dunn’s, have not been used here.

6.2.2.1 Study in terms of accuracy

The Y-axis in Figure 6.1 represents the average accuracy for the 26 datasets

considered. The different lines correspond to the behaviour of the six clas-

sifiers for the 6 discretization methods tested, which are represented on the

X-axis. Although the tendency followed by the six classifiers is similar, and

more importantly, the ranking among classifiers is maintained in all cases ex-

cept for NB with TAN and KDB1 when discretizing with EF10, we can see

that equal frequency discretization is specially good for AODE, whereas F&I

performs worse for HAODE. We can also observe how HAODE, from among

the 6 classifiers tested, is the least sensitive to the discretization method

applied (its corresponding line looks smoother than the rest).

As indicated above, in this comparison we have also included a more

generic Bayesian classifier named BNHC to construct an augmented Bayesian

network (ABN), from Bayes net with hill climber, as in WEKA1. This clas-

1This Bayes network learning classifier uses a hill-climbing algorithm for adding, delet-
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sifier has been introduced for the sake of curiosity, as it does not belong to

the family of semi-naive BNCs. But despite the fact that it performs a more

exhaustive search of the structure of the network, it provides an average ac-

curacy between that of KDB and AODE. Furthermore, its training time is

around 453 times worse than KDB and 642 times worse than AODE (for the

dataset mfeat-factors, for example).

All pairwise comparisons between every classifier with each other are sum-

marized in Table 6.1, where each entry w in row i and column j means that

HAODE (the top classifier) wins in w datasets, compared to the algorithm in

column j, and using the discretization method in row i. The idea here is that

all the w values in the same column should be as similar as possible, meaning

that regardless of the discretization method applied, the top classifier wins

approximately in the same number of datasets. Hence, the biggest difference

we found is only 4 datasets (out of 26) when HAODE is compared to BNHC

and AODE.

Table 6.1: Pairwise comparisons between HAODE and the rest of classifiers.

HAODE

NB TAN KDB1 BNHC AODE
EW5 20 21 21 18 23
EW10 20 21 23 20 21
EWE 23 24 24 22 22
EF5 20 22 23 20 21
EF10 21 22 23 21 21
F&I 22 22 22 22 19

Max. difference 3 3 3 4 4

Figure 6.2 shows, on each circular graph, the individual accuracy obtained

over each dataset for the six classifiers. Each graph corresponds to a specific

discretization method, from top to bottom and left to right: EW5, EW10,

EWE, EF5, EF10 and F&I. The circumferences are divided into 26 sectors

(every ≈ 13.85◦) corresponding to the different datasets. The radius, in turn,

ing and reversing arcs. The maximum number of parents a node in the Bayes net can
have is set to 5. The initial network used for structure learning is a NB network. This hill
climber also considers arrows as part of the NB structure for deletion.
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represent the percentage of accuracy for each dataset (from 50 to 100). We

can see, from the circular visualization, that HAODE almost always encloses

the other methods, indicating that it dominates them in terms of accuracy.

Similarly, the line corresponding to AODE covers TAN’s, KDB1’s and NB’s;

KDB1’s and TAN’s almost overlap and they enclose NB’s in most of the

cases. However, the situation is different for BNHC, where the pattern is, in

general, more irregular. It makes sense though, as it is the only one which

does not belong to the semi-naive family of BNCs.

Comparisons between discretization methods: As indicated above,

Friedman tests were applied to perform the multiple comparison of the dif-

ferent discretization methods for each classifier, as well as the Nemenyi post-

hoc test, using the software provided by the guidelines in Garćıa & Herrera

[2009]. The summarized results are shown in Table 6.2.

Table 6.2: Test results when comparing the discretization methods over each
classifier (in brackets, the p-value obtained). The null hypothesis (H0) states
that there is no difference between the algorithms. α = 0.05 for all the cases.

FRIEDMAN IMAN-DAV. NEMENYI

NB
Reject H0 Not necessary • None
(0.034)

TAN
Reject H0 Not necessary

• F&I vs (EWE&EF10)
(0.006) (0.007 & 0.012)

KDB1
Reject H0 Not necessary

• F&I vs EF10
(0.029) (0.022)

BNHC
Accept H0 Accept H0 • None
(0.294) (0.296)

AODE
Accept H0 Accept H0 • None
(0.069) (0.065)

HAODE
Accept H0 Reject H0 • None
(0.052) (0.049)

For NB, even though Friedman’s claims statistical difference, these dif-

ferences are not found by the post-hoc tests. As far as TAN is concerned,

Nemenyi finds differences between F&I vs EWE and EF10; similar results

are obtained for KDB1 except for the EWE difference. BNHC, AODE and
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Figure 6.2: Comparison of accuracy obtained on each of the 26 datasets with
NB, TAN, KDB1, BNHC, AODE and HAODE for the different discretization
methods. From top to bottom and left to right: EW5, EW10, EWE, EF5,
EF10 and F&I. The circumferences are divided into 26 sectors corresponding
to the different datasets. The radius, in turn, represent the percentage of
accuracy for each dataset.

96



HAODE seem to be the most robust to the discretization method, as the null

hypothesis is rejected by Friedman.

Note that in this case, the Bonferroni correction has not been applied,

as it is considered to be too conservative. Nevertheless, if the Bonferroni

correction were to be applied, not a single difference would be found1.

Comparisons between classifiers: If we change the point of view and

perform the same tests comparing the different classifiers for a specific dis-

cretization method, we obtain evidence of statistical difference in all cases

when applying the Friedman test. According to Nemenyi tests, HAODE is

significantly better than NB, TAN, KDB1 and BNHC in all cases (except for

BNHC in EW5). This test also states that AODE is better than NB when

EW5, EF5 and F&I are used and KDB for EF5 and EF10. One interest-

ing observation is that, according to Friedman, EWE is the discretization

method that has found the clearest difference, as opposed to EW10. EW10

finds the smallest number of differences with Nemenyi also (3 rejections), as

opposed to EF5 and EF10 (with 6 rejections).

It is worth noting that in all cases HAODE is placed in first position,

AODE in second and BNHC in third by the ranking performed by the Fried-

man test. NB gets fourth position when EF10 is used, forcing both KDB1

and TAN to occupy fifth position in this case.

6.2.2.2 Study in terms of bias and variance

In Yang & Webb [2009] the behaviour of NB in terms of bias and variance is

studied, and the authors refer to discretization bias and variance. We have

endeavoured to carry out a similar analysis here, extending it to the rest of

the BN classifiers considered in this chapter.

The error component can be divided into three terms: bias, variance and

an irreducible term [Webb, 2000]. The bias describes the part of the error

component that results from the systematic error when learning the algo-

rithm, whereas the variance describes the random variation existing in the

1As the number of comparisons is equal to 15, the statistical significance level would
then be 0.003̄ instead of 0.05.
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training data and from the random behaviour when learning the algorithm.

The more sensitive the algorithm is, the higher the variance becomes. The

irreducible error describes the error existing in an optimal algorithm (noise

level in data).

There are two important concepts to be taken into account when trying

to reduce the error components mentioned above: the number of intervals

and the number of training instances contained in each interval. Intuitively,

discretization resulting in large interval numbers tends to have low bias (any

given interval is less likely to include a decision boundary of the original

numeric attribute), whereas discretization resulting in intervals with a large

number of instances tends to have low variance (as the probability estimations

are more stable and reliable). The problem is that supposing there is a fixed

dataset size, the larger the number of intervals, the smaller the number of

instances per interval is.

In Figure 6.3 the average error for every discretization method over all

the datasets, divided into bias and variance, is shown. Now again HAODE

obtains, on average, the lowest error rates. Similar reasoning is obtained

when just the bias is considered, followed by AODE, KDB1 and TAN, which

obtain analogous values. In terms of variance the analysis is slightly different.

It is now NB that obtains the lowest variance in almost all cases, whereas

TAN, KDB and BNHC, obtain the highest rates for all the discretization

methods. Note that TAN’s and KDB’s results are similar in terms of bias to

AODE’s, but it is when considering the variance of the former that the final

error is dramatically greater.

6.2.3 Experiment 2: justification for the parameter k

being equal to 1 in KDB

As mentioned above, KDB is a more flexible classifier compared with TAN,

as it does not restrict the number of parents allowed for a feature to one,

in addition to the class variable. However, this means that in practice, the

maximum number of parents of a variable (k) must be fixed beforehand. As

far as we know, a way to automatically identify an optimum k-value for a
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Figure 6.3: Mean error divided into bias and variance for NB, TAN, KDB,
BNHC, AODE and HAODE. The discretization methods are presented on
the X-axis, the Y-axis indicates the error rate.

given problem has not been determined yet1. Hence, for this study, in a

similar way to Sahami [1996], we try with values of k equal to 1, 2 and 3

1Although it has been demonstrated that a good selection of the k-value, individually
for each variable, provides significant improvements in terms of accuracy [Rubio & Gámez,
2011]
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Figure 6.4: Comparison of average accuracy for KDB with different k values
when using different discretization methods.

(k = 0 being equivalent to NB). The average accuracy results are shown in

Figure 6.4.

As KDB with k = 1 (KDB1) obtains better results in terms of average

accuracy compared with the others, we have only included this one in the

previous and following comparisons.

The reader might find this KDB1 too similar to the TAN classifier. In

fact, from the point of view of the final structure created by both methods,

they are. However, there are some differences in the way they have been

built. To start off, TAN uses a Bayesian score metric, as implemented in

WEKA1 to evaluate the candidate structures, whereas the KDB1 method is

implemented as specified in Sahami [1996], and hence, the way the structure

is gradually formed by the two methods is different.

1Specifically, the Bayesian metric applied can be defined as in Bouckaert [2005]:

QBayes(D) =

n
∏

i=0

qi
∏

j=1

Γ(N ′
ij)

Γ(N ′
ij +Nij)

ri
∏

k=1

Γ(N ′
ijk +Nijk)

Γ(N ′
ijk)

,

whereD is the dataset, qi the cardinality of the parent set of Ai in the network structure, ri
(1 ≤ i ≤ n) the cardinality of Ai, Nij (1 ≤ i ≤ n, 1 ≤ j ≤ qi) denotes the number of records
in D for which pa(Ai) takes its jth value and Nijk (1 ≤ i ≤ n, 1 ≤ j ≤ qi, 1 ≤ k ≤ ri) the
number of records in D for which pa(Ai) takes its jth value and for which Ai takes its
kth value. Γ(.) is the gamma-function, N ′

ij and N ′
ijk represents choices of priors on counts

restricted by N ′
ij =

∑ri
k=1

N ′
ijk.
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6.2.4 Experiment 3: NB-tailored discretization tech-

niques extended to other BN classifiers

In this section we study the application of two discretization techniques tai-

lored to the NB classifier [Yang & Webb, 2009] to the other classifiers con-

sidered so far: TAN, KDB1, AODE and HAODE1.

These two techniques, known as proportional discretization and fixed fre-

quency discretization, are explained below. The aim of these discretization

methods is to reduce both the bias and the variance obtained by NB when

applied to the discretized data.

1. Proportional discretization (PD): The idea behind this discretiza-

tion method is to equally weight bias and variance reduction by setting

both the number of the intervals and the number of instances per in-

terval in such a way, that they are equally proportional to the size of

the dataset. If we consider to apply PD to a numeric attribute for

which there are m training instances with known values, the number

of intervals (or bins) b and the number of values per interval s, is set

considering that b · s = m and b = s. Hence, the method is equivalent

to EFD with b =
√
m bins.

The advantage of this method is that any increase in training data

would reduce both discretization bias and variance, as b and s increase.

So, in theory, PD is bound to provide good results for large datasets

(at least for NB [Yang & Webb, 2001]).

2. Fixed frequency discretization (FFD): This technique pursues the

same objective of keeping bias and variance under control, specially the

latter. This is carried out by setting a minimum number of values, r,

per interval. As the optimal value for r may vary from domain to

domain, it is proposed to choose a value r = 30, since it is commonly

accepted as the minimum sample size from which one should draw

1BNHC, however, has been left out as the high number of values (intervals) per at-
tribute created by PD and FFD, makes it infeasible for BNHC to be executed in terms of
RAM memory.
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Figure 6.5: Comparison of average accuracy for NB, TAN, KDB1, AODE
and HAODE when using different discretization methods (including PD and
FFD).

statistical inferences [Weiss, 2002]. As the number of intervals is not

limited a priori, more bins can be formed as the training data increase,

and hence, the bias component is kept under control also.

Figure 6.5 shows the same accuracy results as Figure 6.1, but including

the results when PD and FFD are used to discretize the datasets.

It seems not surprising that the only classifier whose averages are main-

tained is NB, as this kind of discretization is “designed” to suit this classifier

[Yang & Webb, 2001]. However, even for NB, although both kinds of dis-

cretization are aimed to keep both bias and variance under control, in our

experiments it is only accomplished for the first component (see Figure 6.6).

The reason might be that the high dimensions of some of the datasets implies

a number of intervals per attribute which is too high, with a relatively low

frequency of instances per attribute. This would also partially explain why

the more complex classifiers would perform dramatically worse with this kind

of discretization methods, as their estimates are even less strong consistent

estimates according to the strong law of large numbers [Casella & Berger,

2001; John & Langley, 1995].

It is then desired to perform a wiser discretization controlling both bias

and variance for the rest of the classifiers that are different from NB. To this
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Figure 6.6: Mean error divided into bias and variance for NB. The discretiza-
tion methods are presented on the X-axis (including PD and FFD), the Y-axis
indicates the error rate.

aim, a discretization method that establishes different decision boundaries for

an attribute depending on the test instance might be required, as it would

depend on the specific values of the other attributes in that instance. It

would also imply extending the notion of decision boundaries to the case of

multiple attributes, which is beyond the scope of this chapter. For further

work related to this, please refer to Hsu et al. [2000, 2003]; Yang & Webb

[2009].

6.3 Conclusions and future work

In this chapter we have studied the effect, in terms of accuracy, bias and

variance, of applying some of the most common discretization methods to

NB, TAN, KDB, AODE and HAODE.

One of our first goals was the comparison between AODE and HAODE,

in order to study if the results in Chapter 4 can be extensible to other dis-

cretization methods. The results obtained reveal that in all cases HAODE’s

average accuracy is higher than AODE’s, the former being significantly better

than the latter in all cases except when EF10 is applied.

Furthermore, it was of major interest to investigate whether the applica-

tion of a particular discretization technique could alter the ranking of clas-
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sifiers according to the accuracy obtained for the six BN classifiers taken

into consideration. The results indicate that no matter what discretization

method we use the ranking is the same for HAODE, AODE and BNHC with

the rest of the classifiers, as their performance is sufficiently different. How-

ever, as NB, TAN and KDB obtain very similar results, their position in the

ranking can vary in a particular case. Even so, in the light of the results, we

believe that if the set of datasets is large enough, the discretization method

applied becomes irrelevant when comparing the BN classifiers.

Nonetheless, we have also seen that, in the case where the discretization

technique is tailored to a specific algorithm (NB in our study), the results are

not so good for the rest of the classifiers, even when these classifiers belong

to the same family (naive or semi-naive BNCs).

Mainly as a matter of interest, a more general BN classifier (with hill

climbing as search algorithm), referred to as BNHC, has also been included.

It provided lower results in terms of accuracy on average than AODE and

HAODE, with a training time much larger than the rest of classifiers con-

sidered and a higher demand in terms of RAM memory. Even though the

individual results (per dataset) provided by this classifier follow a more dif-

ferent pattern than the rest of semi-naive classifier, the global comparison

places it in concordance with the rest.

A direct extension for future work consists in considering a wider range

of discretization techniques, covering other families such as multivariate dis-

cretization methods, which despite being less efficient in terms of complexity,

seem very promising regarding their properties.
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Chapter 7

Non-disjoint discretization

techniques

However beautiful the strategy, you should occasionally look at the results.

Sir Winston Churchill. (1874-1965)

British politician and statesman

There is still lack of clarity about the best manner in which to handle numeric

attributes when applying BNCs. In the previous chapter, both AODE and HODE’s

performance have shown to be robust towards the discretization method applied.

However, all the discretization techniques taken into account so far formed non-

overlapping intervals for a numeric attribute. We argue that the idea of non-disjoint

discretization, already justified in NB classifiers, can also be profitably extended to

AODE and HAODE, albeit with some variations; and our experimental results seem

to support this hypothesis, specially for the latter.

Abstract

7.1 Introduction

The discretization process entails grouping together consecutive continuous

samples to form discrete groups of members, usually called bins or intervals.

It is hence unavoidable to suffer from loss of information in this process,

but still, the approximation provided can be more accurate than assuming

unrealistic distributions.
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However, when discretization is to be applied, many questions arise: to

start with, which is the proper number of bins to form? How should the

selection of the different cut-points be carried out? But also, should every

sample belong to a single interval? That is, a decision must be made on

the discretization method to apply. In which degree should we be concerned

about this decision?

In this respect, Chapter 6 analyses the robustness of AODE and HAODE

(along with other BNCs) regarding the discretization method. The conclu-

sions in this study indicate that although the discretization method indeed

matters when studying a particular dataset, it does not seem to be decisive

when the aim is to compare a group of semi-naive BNCs over a standard

group of datasets. Nevertheless, only disjoint discretization (DD) techniques

have been taking into account so far. In Yang & Webb [2002], a novel non-

disjoint discretization (NDD) technique is presented to cope with numeric

attributes in NB by forming overlapping intervals. NDD forms overlapping

intervals for a continuous attribute, always locating a value towards the mid-

dle of an interval to obtain more reliable probability estimations. Its use

is based on the insight that while it is necessary to use a single discretiza-

tion of each variable while classifying an instance, different discretizations

can be applied when classifying different instances. The results show a clear

improvement in NB over other DD methods. Compared to NB, AODE and

HAODE could suffer more from creating a large number of intervals (from

a variance increase), since their CPTs are formed by the combination of a

couple of attributes (the class and the parent). It is credible that NDD could

help us to alleviate this problem by allowing larger intervals to be formed

without greatly increasing the bias.

The main contributions of this chapter are the following: to begin with,

we redefine the original approach of NDD discretization for its use in AODE

and HAODE, describing the corresponding modifications (Section 7.2). Fur-

thermore, a new weighting system is included with the aim to decrease dis-

cretization bias. In Section 7.3, an experimental study compares the appli-

cation of these NDD techniques in AODE and HAODE with the use of a
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traditional DD method: equal frequency discretization (EFD)1. This study

includes comparisons in terms of accuracy, but mainly focuses in results de-

tailing bias and variance discretization records. Finally, Section 7.4 provides

our main conclusions from the study.

7.2 NDD adapted to AODE and HAODE

By dividing the ranges of numeric attributes into overlapping intervals in

AODE and HAODE, we not only intend to reduce discretization bias [Yang

& Webb, 2009] by always locating a value towards the middle of an interval

and, in general, creating a larger number of intervals; but also maintaining

discretization variance, since the number of samples from which the CPTs

will be estimated should be similar.

The application of NDD to AODE involves discretizing the whole dataset

into non-disjoint intervals before training the classifier, whereas in the case

of HAODE, just the cases where a numeric attribute plays the role of super-

parent will be discretized [Mart́ınez et al., 2012].

Furthermore, and for the reasons that we detail next, some changes are

introduced to the original definition of NDD as specified in Yang & Webb

[2002]:

1. A threshold is considered to mark the minimum frequency from which

an atomic interval will not be merged with its neighbours. This should

prevent us from increasing bias when sufficient samples are already

provided. See figure 7.1 for an example on interval formation having

each atomic interval frequency into account. Since it is possible the

presence of multiple instances with the same value, the number of final

samples per atomic attribute may vary, and it usually does2.

1As deducted from previous chapters, this selection has not been made at random,
since EF5 has shown to be the most beneficial for AODE.

2The way in which this is handled is the same for NDD and EF5, check WEKA’s equal
frequency discretization method for more details.
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Figure 7.1: Example of NDD division, the minimum frequency to merge
atomic intervals into a single label (L) is equal to 100. The labels selected
when classifying samples belonging to atomic bins B0, B1, B2, B3 and B4

are indicated at the bottom right corner.

2. In the original definition of NDD, the interval size is equal to the in-

terval number (≈ ⌊√m⌋) with the aim to give equal importance to

discretization bias and discretization variance reduction. Even though

it provides very good results for NB, it is not the case for AODE or

HAODE, where in general, a smaller number of intervals is desired.

Both in AODE and HAODE, it is necessary to estimate the proba-

bility of an interval on one attribute conditioned by both an interval

on another attribute and the class, whereas in NB it is necessary only

to estimate the probability of an interval given the class. Previous

experiments have shown that PD, proportional discretization tailored

to NB where a number of ⌊√m⌋ instances is selected, is not generally
beneficial for AODE (see Section 6.2.4).

3. When the number of cut-points is lower than 3, then EFD will be kept.

Figure 7.2 shows and example of this special case.

4. Weighting importance or weighted NDD (wNDD): note that

by using NDD as defined above, there are some numeric samples that

fall within two or three labels. Given a numeric sample xi discretized

by NDD into the labels L1 = (a′1, b
′
1], L2 = (a′2, b

′
2] and L3 = (a′3, b

′
3] in

training time; L2 would be the final label assigned to another sample

xj ∈ R, xj = xi in classification time. The contribution of L2 to

the CPT will be greater (it is given more importance when training)

than the contribution provided by the other two bins. This is carried
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Figure 7.2: Example of the special case when the number of cut-points is
lower than 3. Even thought the sum is below the limit (100), EFD will be
kept instead of merging.

out by the use of weights. There exist several forms in which these

weights could be distributed, in this first approach we have adopted

the simplest one (apart from uniform distribution, being equivalent

to non-weighting). Since a single sample can be allocated at most in

three atomic bins, the weight distribution could be set as 0.75 for the

centred label and the rest equally divided into the other labels (if there

is more than one)1. See Table 7.1 for more details. In AODE, the

combination of weights when both the parent and the child involved in

a CPT come from a joint discretization is carried out by multiplying

its corresponding weights (so that the sum remains equal to one).

Figure 7.3 shows an example for a training instance I with two numeric

attributes: X0 and X1. This instance is discretized using the NDD

procedure indicated in Section 7.2, obtaining INDD. Hence, the value

3.5 for X0 falls within three labels: L0, L1 and L2 (specifically centred

in L1, that is why it is given the highest weight), whereas the value

2 for X1 falls within labels L′
0 and L′

1 (centred in L′
1 in this case).

These weights are then used to indicate the contribution of each pair

of values when updating the CPTs2. When the same instance I were

1Further experiments have been carried out by slightly altering the weight assignment
obtaining very similar results. This study has been performed using 3 atomic bins per
interval, and we believe that this result may not be extrapolated to higher odd numbers.

2Note that in a multinomial distribution, the combination of values from an instance
to be incorporated in a CPT contribute with a unit, whereas here we consider the con-
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Table 7.1: Distribution of weights when using wNDD. w0 corresponds to the
weight to be assigned to the bin in the centre (i.e. label to be selected in
classification time by wNDD).

1 interval 2 intervals 3 intervals
w0 1 0.75 0.75
w1 0.25 0.125
w2 0.125

to be classified (the class is missing), then I ′NDD would be used, where

the centred labels for both attributes are considered. Then the MAP

equation would be as follows:

argmaxc∈ΩC





n
∑

j=1,N(xj)>q

p(c, L∗
j )

n
∏

i=1,i 6=j

p(L∗
i |c, L∗

j)



 ,

where L∗
j , is the centred label for Xj ; and L∗

i , the centred label for Xi.

As NDD is dominated by sorting, no increase in the algorithm complexity

order is induced.

I = {X0 = 3.5, X1 = 2, C = c1} INDD = {X0 = (L0, L1, L2), X1 = (L′
0, L

′
1), C = c1}

NDD

L0 : w0 = 0.125
L1 : w1 = 0.75
L2 : w2 = 0.125

L′
0 : w

′
0 = 0.25

L′
1 : w

′
1 = 0.75

When updating p(X0|X1,C):

• {L0, L
′
0, c1} w = w0 ∗ w′

0 = 0.125 ∗ 0.25
• {L0, L

′
1, c1} w = w0 ∗ w′

1 = 0.125 ∗ 0.75
• {L1, L

′
0, c1} w = w1 ∗ w′

0 = 0.75 ∗ 0.25
• {L1, L

′
1, c1} w = w1 ∗ w′

1 = 0.75 ∗ 0.75
• {L2, L

′
0, c1} w = w2 ∗ w′

0 = 0.125 ∗ 0.25
• {L2, L

′
1, c1} w = w2 ∗ w′

1 = 0.125 ∗ 0.75

∑

w = 1

When classifying I:

I ′NDD = {X0 = L1X1 = L′
1, C = ?}

Figure 7.3: Example on how wNDD works in AODE: first of all, the instance
is discretized using NDD and weights are assigned to every label. When
training, instance I would contribute to the CPT for X0 given X1 and C as
shown in the left hand side. If classifying I, only the main labels (so that
the sample is in the centre) are considered.

tribution of the weight for each label (that always sums to one for each instance).
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7.3 Experimental methodology and results

We run our experiments on 28 datasets from the UCI machine learning repos-

itory [Frank & Asuncion, 2010] and KDD archive [Hettich & Bay, 1999], listed

in Table 7.2 (in increasing order of the number of instances). As in Yang

& Webb [2002], this experimental suite comprises 3 parts. The first part is

composed of all the UCI datasets used by Fayyad & Irani [1993] when pub-

lishing the entropy minimization heuristic discretization. The second part is

composed of all the datasets with numeric attributes used by Domingos &

Pazzani [1997] for studying NB classification. The third part is composed of

larger datasets employed in Yang & Webb [2001].

Table 7.2: Main characteristics of the 28 hybrid datasets: number of pre-
dictive continuous variables (#C), number of predictive discrete variables
(#D), number of classes (c) and number of instances (m).

Id Datasets #C #D c m Id Datasets #C #D c m

1 labor-negotiations 8 8 2 57 15 annealing 6 32 6 898
2 echocardiogram 5 1 2 74 16 german 7 13 2 1000
3 iris 4 0 3 150 17 multiple-features 3 3 10 2000
4 hepatitis 6 13 2 155 18 hypothyroid 7 18 2 2163
5 wine-recognition 13 0 3 178 19 satimage 36 0 6 6435
6 sonar 60 0 2 208 20 musk 166 0 2 6598
7 glass-identification 9 0 3 214 21 pioneer-mobile-robot 29 7 57 9150
8 heart-disease 7 6 2 270 22 handwritten-digits 16 0 10 10992
9 liver-disorders 6 0 2 345 23 sign-language 8 0 3 12546

10 ionosphere 34 0 2 351 24 letter-recognition 16 0 26 20000
11 horse-colic 7 14 2 368 25 adult 6 8 2 48842
12 credit-screening 6 9 2 690 26 impums.la.99 20 40 13 88443
13 prima-indians-diabetes 8 0 2 768 27 census-income 8 33 2 299285
14 vehicle 18 0 4 846 28 forest-covertype 10 44 7 581012

We have adopted two pre-processing steps to begin with. This is in order

to make the group of datasets uniform and suitable for all the classifiers

considered in the comparison:

• Unsupervised filter to replace all the missing values with the modes

and means from the existing data in the corresponding column.

• Unsupervised filter to remove useless attributes that do not vary at all
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7. NON-DISJOINT DISCRETIZATION TECHNIQUES

or whose variation percentage is greater than 99% 1.

In order to evaluate the experimental results we employ two evaluation

measures: accuracy and error in terms of bias and variance according to

Kohavi & Wolpert [1996].

Once again, 5x2cv has been used to estimate accuracy. The bias-variance

decomposition has been performed using the sub-sampled cross-validation

procedure as specified by Webb & Conilione [2002].

As indicated above, the discretization technique selected as the basis for

comparison is EF5, as it has shown to provide slightly better results for

AODE compared to other DD techniques.

Since the final intervals formed in NDD will comprise at most 3 atomic

bins2, in order to provide a fair comparison with EF5, the initial number of

atomic bins considered is 15. This means that the final bins (groups of three

atomic bins) will be of approximately the same average size as the bins for

EF5. The minimum frequency from which an atomic interval will not be

merged with its neighbours will be 100 (approximately 30 per atomic bin3).

Table 7.3 shows the accuracy results obtained for AODE and HAODE

using EF5, NDD and wNDD along with the sample standard deviation for

each dataset. The bullet next to certain outputs (in NDD and wNDD) indi-

cates that the corresponding result improves the output provided when EF5

is used. The circle, in turn, indicates a draw. These results lead us to think

that the use of NDD or wNDD is competitive over EF5 (and by extension,

other traditional DD techniques), especially for the former. Nevertheless,

standard deviation is on average a bit higher for NDD and wNDD compared

to EF5, although this difference is not statistically significant. This could

indicate that EF5 is a bit more robust with respect to the income data, in

spite of providing lower accuracy records.

1These two filters have been applied with the default settings provided by WEKA.
2In theory any odd number would be acceptable (the larger the better to allocate a

sample in the middle of an interval), but for simplicity we take 3 as in Yang & Webb
[2002].

3The value 30 has been selected motivated by the 30-sample rule-of-thumb, very recur-
rent in statistics. Still, further experiments were carried out with different values; although
the results were not significantly different, the best values were obtained with 30 and 33.3.
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Table 7.3: Results in terms of accuracy±sample standard deviation obtained
for AODE and HAODE using EF5, NDD and wNDD.

AODE HAODE
Id EF5 NDD wNDD EF5 NDD wNDD

1 93.3333±3.88 •94.3860±4.49 •94.0351±5.35 90.8772±8.59 •91.2281±9.76 •91.2281±9.48
2 68.9189±4.81 •72.9730±4.77 •72.1622±7.10 74.3243±4.64 72.9730±5.41 •76.7568±5.44
3 92.9333±2.74 •93.8667±2.20 •93.0667±1.97 95.8667±1.83 •96.0000±2.08 95.4667±1.80
4 82.1935±2.81 •82.9677±3.86 •82.4516±3.54 83.2258±2.23 82.0645±3.23 82.7097±3.09
5 96.4045±1.28 •96.8539±1.66 ◦96.4045±1.48 98.0899±0.93 ◦98.0899±0.76 97.8652±0.98
6 81.4423±3.63 •81.6346±4.19 80.7692±4.03 82.7885±3.91 82.5000±3.76 •84.6154±3.74
7 68.1308±5.07 •68.5047±4.06 •70.2804±3.76 69.1589±4.13 •69.5327±4.83 •70.0000±4.77
8 81.4815±2.42 •83.4815±2.59 •81.7037±1.60 81.0370±1.95 •81.5556±1.96 ◦81.0370±2.84
9 60.3478±3.47 •65.1014±3.46 •63.5942±2.76 62.0290±3.56 59.5942±3.81 61.1014±3.40

10 91.3390±2.19 89.4017±2.55 90.3134±2.42 92.2507±2.33 •92.7066±1.68 •92.4217±1.37
11 79.5652±1.23 •80.1087±1.94 •80.7609±1.18 65.6522±4.65 •66.3043±4.42 •66.4674±3.95
12 86.4638±1.23 •86.5797±0.95 •86.5507±1.18 80.7826±1.16 •80.0870±0.88 80.0870±1.14
13 75.2083±1.78 •75.5208±1.33 74.1927±1.65 75.6250±0.90 75.2344±0.94 75.0260±1.08
14 69.2199±1.14 68.3215±1.39 67.9433±1.58 73.3806±2.05 •73.5225±2.13 72.2695±2.25
15 87.9955±1.77 86.3474±1.65 •90.0668±1.07 82.9176±1.61 81.9822±2.81 82.5167±2.64
16 74.1600±1.08 •74.3800±0.93 •74.3400±1.19 73.7400±1.27 •74.7800±1.16 •74.1800±1.10
17 66.2600±1.22 •68.1700±1.26 •68.3600±1.31 69.1800±1.37 •69.9400±1.68 •70.6800±1.60
18 97.3000±0.21 •98.1979±0.27 •98.2548±0.22 98.1284±0.23 •98.3181±0.26 •98.3307±0.33
19 87.4219±0.57 •88.4444±0.40 •88.4444±0.40 83.9254±0.98 •85.9176±0.79 •85.9176±0.78
20 85.2743±0.85 •93.2404±0.32 •93.2555±0.30 83.5920±1.09 •87.5750±0.71 •87.5720±0.71
21 90.5268±0.47 •93.5432±0.86 •93.5016±0.87 89.1607±0.86 •94.3607±0.67 •94.3497±0.67
22 97.0287±0.17 96.8013±0.32 96.8013±0.32 97.1634±0.33 •97.6638±0.21 •97.6638±0.21
23 71.3678±0.70 •73.2680±0.51 •73.2855±0.51 66.3399±1.01 •67.1433±0.86 •67.1242±0.88
24 83.4580±0.21 •85.4120±0.37 •85.4720±0.37 84.5250±0.21 •88.1870±0.32 •88.2030±0.32
25 83.9347±0.25 •84.1677±0.29 •84.2771±0.29 84.0830±0.31 •83.9237±0.37 83.9892±0.35
26 92.3890±0.08 92.3854±0.08 •92.3928±0.08 87.0904±0.44 •87.7243±0.58 •87.7017±0.57
27 92.1766±0.09 •92.4165±0.07 •92.4171±0.07 93.4646±0.11 •93.6628±0.09 •93.6666±0.09
28 71.3988±0.11 •73.9682±0.09 •73.9682±0.09 69.9027±0.13 •70.8710±0.09 •70.8710±0.09

Av. 82.4169±1.62 •85.5873±1.67 •83.5381±1.67 81.7251±1.89 •82.2658±2.01 •82.4935±1.99

Table 7.4 shows the number of datasets for which discretizing with NDD

obtained better, equal or worse performance compared to using EF5. These

records are complemented by the results from the Wilcoxon signed-rank tests

[Demšar, 2006], which compare every pair of algorithms considering the whole

group of datasets. The first two columns depict the records when the samples

are not weighted (i.e. weighted uniformly) according to the atomic bin to

which they belong. In this case, NDD in AODE and HAODE is better at

improving accuracy. The improvement is clear also as far as bias is concerned

for HAODE and variance for AODE. However, this advantage is not as clear

in terms of bias in AODE and variance in HAODE, although they still provide

better records compared to EF5, no statistical difference is found. If we
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7. NON-DISJOINT DISCRETIZATION TECHNIQUES

Table 7.4: Comparisons in terms of win-draw-lose records and Wilcoxon tests
for AODE and HAODE using EF5, NDD and wNDD.

non-weighted weighted
w-t-l

Wilcoxon
AODE HAODE AODE HAODE

NDD vs EF5 NDD vs EF5 wNDD vs EF5 wNDD vs EF5

Accuracy
23-0-5

< 0.05

21-1-6
< 0.05

22-1-5
< 0.05

18-2-8
< 0.05

Bias
14-3-11

0.2395
21-1-6

< 0.05

15-3-10
< 0.1(0.06)

22-0-6
< 0.05

Variance
18-2-8

< 0.05

14-4-10
0.3621

13-2-13
0.6

10-0-14
0.863

consider wNDD, the results are slightly better in terms of bias (specially

for AODE), at the expense of variance and overall worsening. Hence, from

now on in the chapter, we will just consider non-weighted NDD, although

it is important to note that the increase in variance may have less effect on

accuracy when larger data are provided.

Table 7.5 displays the average results in terms of accuracy, bias and vari-

ance obtained for the different classifiers, where NDD outperforms in every

pair-to-pair comparison.

Table 7.5: Average results in terms of accuracy/bias/variance (best value in
bold).

AODE HAODE
EF5 NDD EF5 NDD

Accuracy 82.4169 83.5873 81.7251 82.2658
Bias 0.1298 0.1250 0.1348 0.1275
Variance 0.0395 0.0355 0.0440 0.0435

Figure 7.4 shows, on each circular graph, the individual bias and variance

obtained over each dataset for AODE and HAODE with the two types of

discretizations. Starting from the labelled radius where the results for the

labor dataset are shown and going counter-clockwise, we find larger datasets

(in terms of number of instances), being covtype (forest-Covertype) the

largest one. Subfigures 7.4 (a) and 7.4 (b) depict the results in terms of bias,

7.4 (c) and 7.4 (d) in terms of variance and 7.4 (e) and 7.4 (f) the error
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for AODE and HAODE respectively. Even though some differences are too

small to be shown with precision, an overall tendency for NDD to enclose

EF5 can be seen. But most importantly, the improvement of NDD over EF is

more noticeable in the third and fourth quarter in the circle, indicating that

NDD tends to perform better the more data we have. This last observation

follows for all cases except for AODE in terms of variance, where NDD seems

to have an advantage for small datasets.

Note that execution time comparisons would show non-relevant informa-

tion, since differences are minimum (same complexity order).

Hence, in light of these results one question arises: why does NDD seem to

improve more pronouncedly AODE’s variance and HAODE’s bias compared

to applying equal frequency? The difference between the two classifiers lies

in the “double use” (in parents and children nodes) of NDD in AODE, which

seems to help in reducing variance at the expense of a bias sacrifice.

In this study, even though there is a slight improvement of HAODE over

AODE (16-0-12 in terms of accuracy, see Table 7.3), this is not as striking

as in the original study in Chapter 4, and this difference even shifts to 13-

1-14 when NDD is applied. We believe this fact might be motivated by two

reasons:

• HAODE aims to avoid information loss by resorting to the use of dis-

cretization only when necessary for the super-parents. However, that

implies that Gaussian distributions are assumed in some cases, which

can be a handicap if the real distributions in data are not Gaussians.

• In general, we should prefer high-bias, low-variance classifiers when the

data are sparse; and low-bias, high-variance classifiers when data are

numerous. Since we are now dealing with larger datasets, we could also

deduce that HAODE is more robust in small ones and AODE in larger

ones, unless the normality condition is satisfied.
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Figure 7.4: Graphical representation of individual results in terms of bias,
variance and error for AODE and HAODE, using EF5 and NDD.
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7.4 Conclusions and future work

In this chapter, we have studied the impact of applying non-disjoint dis-

cretization for AODE and HAODE classifiers compared to traditional dis-

joint discretization techniques. We have chosen equal frequency division to

represent the latter, as it was previously shown to provide better results

among the most common disjoint discretization methods (EF, equal width

division, MDL, etc.).

We have introduced some modifications to the original definition of NDD

[Yang & Webb, 2002] in order to fit into AODE and HAODE’s context, as a

smaller number of bins is usually desired compared to NB to avoid increasing

variance.

Furthermore, a new weighting system has been introduced at the counting

process in order to increase the importance given to the bins created by NDD

where samples are placed in the middle; which provided better results in

terms of bias but worse overall records.

The results have been analysed in terms of accuracy, bias and variance

obtaining the following conclusions:

• In general terms, an overall improvement is found for the two classi-

fiers (AODE and HAODE) when NDD is used. Statistical differences

according to the Wilcoxon test are found for both classifiers as far as

accuracy is concerned.

• If we analyse the error decomposition in terms of bias and variance, we

observe better results at all times when using NDD, but this improve-

ment is more marked for HAODE in terms of bias, and AODE in terms

of variance.

The most important conclusion though, is the fact that whereas some

of the most common disjoint discretization techniques have failed to demon-

strate consistent improvement relative to alternatives, non-disjoint discretiza-

tion demonstrates better win/draw/loss records and significant overall im-

provement.

117



7. NON-DISJOINT DISCRETIZATION TECHNIQUES

Moreover, we believe that the positive results observed in AODE are

a good motivation to think that the beneficial properties of NDD will be

strengthen when applied to Aggregating n-dependence estimators (AnDE)

[Webb et al., 2012] for values of n greater or equal to 2 (since when n = 1 it

is equivalent to AODE).

One drawback of NDD is that it requires the user to select additional

parameters apart from the number of bins to form (such as in equal frequency

division), also the number of atomic bins per operational interval and the

minimum frequency per interval must be chosen.

In the future, we find it of major interest to include a test bed of higher

dimensional datasets, to investigate whether the bias/variance values behave

similarly or even better, specially for the weighted approach, as indicated in

light of the current results.
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Part IV

Domains of competence of the

semi-naive BNCs
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Chapter 8

Domains of competence of the

semi-naive BNCs

Crude classifications and false generalizations are the curse of organized life.

George Bernard Shaw. (1856 - 1950)

Irish playwright

The motivation of this chapter comes from observing the recent tendency to assert

that rather than a unique and globally superior classifier, there exist local winners.

This idea can also be extracted from the experiments carried out on Chapters 3 to 7.

Hence, the proposal of new classifiers can be seen as an aim to cover new parcels or

even to compete with those previously assigned to others. The complexity measures

for supervised classification have been designed to define these parcels. In this

chapter, we want to discover which type of datasets, defined by certain range values

of the aforementioned complexity measures, fits for some of the semi-naive BNCs

considered along this thesis.

Abstract

8.1 Introduction

The use of complexity measures (CMs) for supervised classification has re-

ceived increasingly attention since their formal definition in Ho & Basu [2002].

Many subsequent studies have applied these measures to find out the domains

of competence of different classifiers [Bernadó-Mansilla & Ho, 2004, 2005; Lu-
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8. DOMAINS OF COMPETENCE OF THE SEMI-NAIVE BNCS

Type Id. Name Simpler if...

Overlaps in the feature
values from different classes

F1 Maximum Fisher’s discriminant ratio +
F1v Directional-vector maximum Fisher’s discriminant ratio +
F2 Overlap of the per-class bounding boxes −
F3 Maximum (individual) feature efficiency +
F4 Collective feature efficiency +

Measures of class
separability

L1 Minimized sum of the error distance of a linear classifier −
L2 Training error of a linear classifier −
N1 Fraction of points on the class boundary −
N2 Ratio of average intra/inter class nearest neighbor distance −
N3 Leave-one-out error rate of the one-nearest neighbor classifier −

Measures of geometry,
topology, and density of
manifolds

L3 Nonlinearity of a linear classifier −
N4 Nonlinearity of the one-nearest neighbor classifier −
T1 Fraction of maximum covering spheres −
T2 Average number of points per dimension +

Table 8.1: Summary of CMs for supervised classification.

engo & Herrera, 2009, 2010a,c; Sánchez et al., 2007]. Other works have also

attempted to generalize these measures to problems with multiple classes

[Mollineda et al., 2005; Orriols-Puig et al., 2010], as the original definition

only covers binary-class problems (more details in Section 2.3).

However, there is no work done in this sense in relation to semi-naive

BNCs and neither for discrete domains, since these CMs have been applied

to exclusively numeric domains.

Hence, our objective in this chapter is to explore the behaviour of some

of the semi-naive BNCs according to the values of the CMs in literature for

a particular group of datasets. Since the natural domain of BNCs comprises

exclusively discrete attributes, we want to analyse as well, the descriptive

power of the CMs on discrete domains. For these purposes, we use the

measures summarized in Table 8.1, where as a novelty, a new column is added

to indicate the tendency that a particular measure may follow according to its

definition, in order to reflect more simplicity on the problem it applies. Note

that the symbol + indicates more simplicity as the value of the corresponding

complexity measure increases, and − as it decreases.

The rest of the chapter is divided as follows: Section 8.2 provides a study

of the individual characterization of NB and AODE (in discrete and continu-

ous domains) based on several CMs. Section 8.3 includes a comparison of the

values of the CMs on continuous datasets and its version after discretization.

And finally, in Section 8.4, a meta-classifier to predict the best semi-naive

BNC based on some of these CMs is proposed and empirically tested.
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8.2 Domains of competence of NB and AODE

In this section we study the behaviour, in terms on training and test accuracy,

of NB and AODE, according to the values of the different measures. In the

first place, we will work on discrete domains for both classifiers, resorting to

unsupervised discretization; and secondly, we will carry out the same study

on the same group of datasets but recovering its continuous original values,

that will be handled with Gaussian distributions by both classifiers (GNB

and GAODE).

8.2.1 Discrete domains

Some of the CMs have been originally defined for numeric values. Still, nom-

inal attributes can be mapped into integer numbers for all the calculations,

assuming though an non-existent order between the labels.

8.2.1.1 Naive Bayes - EF5

It is not easy to determine when a particular classification method will per-

form successfully on a given dataset. It is well known that accuracy on

training is not a good estimator, since it usually overfits data. However, this

overfitting can be more severe in some classifiers than others.

Figure 8.1 shows the differences in terms of accuracy on training and test

for a group of datasets ordered in ascending accuracy in training. 5x2cv

has been used for the evaluation. Even though overfitting is not generally

too high compared to other more complex classifiers, it affects some datasets

more than others.

As test bed for this and the following experiments in this chapter, we

are using the group of 26 numeric datasets already presented in Table 4.1.

Since most of the CMs are only defined to deal with datasets with two class

labels, we have created several binary datasets from each dataset with more

than 2 class labels, specifically, as many as the total number of class labels

per dataset (by following the strategy known as one-against-all). Hence, we

work with a total of 157 datasets with two class labels. Additionally, we

123
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Figure 8.1: Datasets in increasing order of accuracy in training for NB.

discretize them applying unsupervised equal frequency discretization with 5

bins (EF5).

Now, we want to find the range of the measures for which NB shows

good or bad behaviour. To accomplish it we calculate the values for the 14

CMs in Table 8.1 on each dataset. Afterwards, we could simply observe the

behaviour of the datasets (in terms of accuracy in training and test) when

they are ordered according to the value of a particular complexity measure,

and the ranges of good/bad behaviour could be obtained directly in light

of the graphs. Even though in principle, it seems to be the most accurate

method, it is tedious and subject to lack of rigour, since the creation of the

different intervals would follow different criteria.

Hence, we consider the method suggested in Luengo & Herrera [2010b],

in which the authors propose an automatic algorithm to extract the ranges

for good and bad behaviour depending on the values of a single complexity

measure. In particular, an interval of good behaviour is considered when

both the differences in average training and test accuracy with the global

average are lower than a fixed value. An interval of bad behaviour is con-

sidered when any of the differences in average training and test accuracy with

the global average are greater than a fixed value, or overfitting is observed.
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Let U = {u1, u2, . . . , um} be a list of paired training and test accuracy

values for m different datasets (m = 157 in our case). Following the nota-

tion in Luengo & Herrera [2010b], then utra
i is the training accuracy value

associated to the dataset ui and utst
i the test accuracy for ui. Besides, every

ui has associated a value for the complexity measure considered.

Two types of elements are then identified: points of good and bad be-

haviour, that take into account the presence of overlearning; and the intervals

of good and bad behaviour, that consider differences in their average accuracy

V̄ with respect to the global one Ū :

• A good behaviour point ui is such that:

1. utra
i − utst

i ≤ overLearningDifference; and

2. utra
i ≥ minGoodTraining.

• A bad behaviour point ui is such that:

1. utra
i − utst

i > overLearningDifference; or

2. Ū tra − utra
i ≥ minBadGlobalDifference.

• An interval of good behaviour V is such that:

1. V̄ tra − Ū tra ≥ inTrainDifference; and

2. V̄ tst − Ū tst ≥ inTestDifference.

• An interval of bad behaviour V is such that:

1. Ū tra − V̄ tra ≥ minBadGlobalDifference; or

2. (V̄ tra − V̄ tst)− (Ū tra − Ū tst) ≥ overLearningDifference; or

3. Ū tst − V̄ tst ≥ inTestDifference.

The different intervals of good and bad behaviour are created then fol-

lowing Algorithm 8.1. The functions invoked in the algorithm are defined as

follows1:

1More details on how these intervals are automatically extracted and the value of the
different parameters, can be found in Luengo & Herrera [2010b]. The same parameters
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• nextImportantGoodPoint(ui, U) and nextImportantBadPoint(ui, U):

return the next good/bad behaviour point respectively from ui, or −1 if

none can be found.

• extendGoodInterval(pos, U) and extendBadInterval(pos, U): return

an interval of good/bad behaviour respectively from upos.

• mergeOverlappedIntervals(I): removes those intervals that are in-

cluded in others. Besides, it merges overlapped intervals or intervals

that are separated by a maximum gap of 5 points, provided that the

new merged interval satisfies the previous definitions of good or bad

behaviour.

Table 8.2 shows the domains of the different CMs on the group of 157

discrete datasets considered. We have decided not to normalize these ranges

to preserve as much genuine information as possible. The calculations of the

different measures have been obtained with the data complexity library in

C++ [Orriols-Puig et al., 2010].

Figure 8.2 shows the datasets organised according to the values obtained

for different CMs. A total of 6 CMs have been selected for this study, specif-

ically, those whose graph representations seems to provide better patterns

when the examples are placed in ascending order of the corresponding mea-

sure. In Subfigures 8.2 (a) to (f), the intervals of good and bad behaviour,

given by the algorithm indicated above, have been marked. The lower X-axis

indicates the number of datasets, whereas the upper one marks the value of

the complexity measure for the interval’s boundaries1. Note that if the inter-

vals were made directly based on the visual representation they would have

been selected differently. It would not be an easy task though, while the

have been considered here except for inT rainDifference = 3 and inT estDifference =
3.5, since the range of the accuracy results obtained for NB-EF5 is narrower (no smaller
than 60) than the results provided by the fuzzy rule based classification system used as
case study by the authors.

1Since the datasets are placed along the X-axis uniformly distributed and not according
to the values of the CM, the marks in the upper X-axis are not lineally distributed. There
might be several datasets with the same value for a particular CM for example.
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Algorithm 8.1: Interval automatic extraction method

Input: Dataset with values U = {u1, u2, . . . , um} sorted by a
particular CM; Ū tra; Ū tst.

Output: Intervals of good and bad behaviour, G and B respectively.
G = {}, B = {}, i = 0;1

while i < m do2

pos = nextImportantGoodPoint(i);3

if pos 6= −1 then4

interval = extendGoodInterval(pos, U);5

G = G ∪ {interval};6

i = Up{interval}7

end8

end9

i=0;10

while i < m do11

pos = nextImportantBadPoint(i);12

if pos 6= −1 then13

interval = extendBadInterval(pos, U);14

G = G ∪ {interval};15

i = Up{interval}16

end17

end18

G = mergeOverlappedIntervals(G);19

B = mergeOverlappedIntervals(B);20

return {G,B}21

Table 8.2: Domains of the different CMs on the group of 157 datasets created
from Table 4.1 after discretizing using EF5 (discrete datasets).

Domains
F1 ∈ [0.00082, 0.475] N1 ∈ [0.004, 0.571]

F1v ∈ [0.008, 93.81] N2 ∈ [0.014, 0.971]
F2 ∈ [0, 1] N3 ∈ [0.000866, 0.435]
F3 ∈ [0, 0.97] L3 ∈ [0, 0.5]
F4 ∈ [0, 1] N4 ∈ [0, 0.5]
L1 ∈ [0.012, 2.706] T1 ∈ [0.987, 1]
L2 ∈ [0.0005, 0.42] T2 ∈ [3.467, 1250]

automatic method provides homogeneous results, and (probably) a higher

generalization capability.
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Figure 8.2: Characterization of the group of datasets into good or bad be-
haviour for NB according to increasing order of 6 CMs individually: F1v, F3,
F4, L2, N1 and N3.
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The tendency in these graphs follows, in greater or leaser degree, the

pattern indicated in the last column in Table 8.1, i.e., for F1v, F3 and F4,

the larger the values of the measures the better the behaviour of the classifier

for these datasets (since they are supposed to become simpler to classify),

and the opposite for L2, N1 and N3. Figure 8.3, in turn, shows the graphs

obtained for L1 and T2, where it is difficult to observe a coherent pattern.

Also T1 has been discarded in advance, since the values of T1 for most of

the datasets are equal to 1.
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Figure 8.3: Examples organised in increasing order of L1 and T2, for which
patterns are not clearly identified.

Table 8.3 depicts the statistics of these intervals of good and bad be-

haviour obtained with the automatic method, providing more detailed quan-

titative information. In the first line, the global average accuracy on train-

ing and test (93.19% and 92.32% respectively), along with their standard

deviations are shown. Those intervals characterizing datasets with good be-

haviour have been identified with the name Ri+, whereas those characterizing

datasets with bad behaviour are identified with the name Ri- (first column).

The percentage of datasets (out of the 157) that falls into a particular inter-

val is indicated in the third column, %Support. Both average accuracy on

training and test for each interval are shown, as well as the differences with

the corresponding total average accuracy on training and test.

The percentages of examples supporting these intervals (43.31%, 17.83%,
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Table 8.3: Rules for NB from the intervals automatically obtained.

Training accuracy=93.1912 ± 6.1753 Test accuracy=92.3230 ± 6.8575
Good behaviour rules

Id. Interval %Support %Training Training %Test Test
Accuracy Difference Accuracy Difference

R1+ F1v ∈ [8.018, 93.81] 43.3121 96.3806 3.1893 96.0235 3.7005
R2+ F3 ∈ [0.462, 0.97] 17.8344 97.1264 3.9351 96.2535 3.9304
R3+ L2 ∈ [0.0005, 0.022] 40.7643 96.7970 3.6058 96.4228 4.0997
R4+ N1 ∈ [0.0040, 0.029] 40.1274 96.5084 3.3172 96.3237 4.0006
R5+ N3 ∈ [0.0009, 0.022] 55.4140 96.2174 3.0261 95.9946 3.6715

Bad behaviour rules
Id. Interval %Support %Training Training %Test Test

Accuracy Difference Accuracy Difference
R1- F1v ∈ [0.014, 4.819] 38.2166 89.9146 −3.2767 88.4610 −3.8620
R2- F3 ∈ [0.0, 0.158] 26.7516 90.5030 −2.6883 88.6962 −3.6268
R3- F4 ∈ [0, 0.2] 31.8471 90.3038 −2.8875 88.7971 −3.5260
R4- L2 ∈ [0.099, 0.42] 22.2930 85.0267 −8.1646 82.9197 −9.4033
R5- N1 ∈ [0.119, 0.571] 22.9299 86.6363 −6.5550 84.1298 −8.1932
R6- N3 ∈ [0.168, 0.435] 10.8280 83.1718 −10.0195 79.2170 −13.1061

40.76%, . . .) indicate that it is possible to characterize a wide range of

datasets and to obtain significant differences in accuracy. However, the

ranges obtained from different CMs may have overlapping examples, and

in fact they do. Therefore, in order to obtain a description of the behaviour

of NB based on disjoint intervals for the different variables we will create

new general rules based on the combination of the “positive” and “negative”

rules presented above.

Similarly to Luengo & Herrera [2010b], a positive rule disjunction (PRD)

will be formed through the disjunction of all the “positive” rules, and a

negative rule disjunction (NRD) with the disjunction of all the “negative”

ones. Since these two groups may still overlap, and our aim is to obtain

disjoint groups of good and bad behaviour; we also consider the following

groups:

• PRD ∧ NRD: formed by those datasets that fall into both groups.

• PRD ∧ ¬NRD: formed by those datasets that accomplish at least one

of the rules in PRD but none of the rules in NRD.

• NRD ∧ ¬PRD: formed by those datasets that accomplish at least one

of the rules in NRD but none of the rules in PRD.
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• ¬NRD ∧ ¬PRD: formed by those datasets that do not fall in any of

the groups, i.e., datasets that can not be characterized by any of the

CMs considered.

Table 8.4 shows the statistics of this new group of rules. Note that only

3 datasets (1.91% of support) are not characterized by the value of any of

the CMs considered. Note that if the supports for the four combinations

previously indicated (last four lines in Table 8.4) are summed, the result is

the 100% of the datasets, naturally.

Table 8.4: Disjunction and intersection rules from all simple rules for NB.

Id. If Then %Support %Training Training %Test Test
(behaviour) Accuracy Difference Accuracy Difference

PRD R1+ or R2+ or R3+ good 68.1529 96.1026 2.9114 95.7190 3.3959
or R4+ or R5+

NRD R1- or R2- or R3- bad 59.2357 91.3471 -1.8441 90.2215 -2.1016
or R4- or R5- or R6-

PRD ∧ NRD PRD and NRD good 29.2994 96.0005 2.8093 95.7661 3.4431
PRD ∧ ¬NRD PRD and ¬NRD good 38.8535 96.1796 2.9884 95.6834 3.3604
NRD ∧ ¬PRD NRD and ¬PRD bad 29.9363 86.7927 -6.3985 84.7947 -7.5283

¬NRD ∧ ¬PRD ¬(PRD or NRD) bad 1.9108 89.5962 -3.5951 89.1445 -3.1785

Finally, Figure 8.4 shows the two regions of good and bad behaviour

obtained for NB. On the left hand side, those datasets characterized as good

behaviour are displayed (with no particular order). This covers rules: (PRD

∧ NRD) and (PRD ∧ ¬NRD), with average accuracy equal to 96.1026±2.58

on training and 95.719 ± 2.54 on test. On the right hand side, in turn, the

datasets characterized as bad behaviour are shown. This covers the following

rules: (NRD ∧ ¬PRD) and (¬NRD ∧ ¬PRD) in this case, with average

accuracy equal to 86.9609± 7 and 85.0557± 7.53 on test.

Appendix A includes several graphs showing bivariate relationships be-

tween some of the CMs on NB.

8.2.1.2 AODE - EF5

In this section we perform a similar study on AODE, on the same group

of 157 datasets discretized using EF5. Figure 8.5 shows these datasets in
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Figure 8.4: NB characterization in terms of good and bad behaviour from
the disjunction and intersection rules of 6 CMs: F1v, F3, F4, L2, N1 and
N3.

increasing order of training accuracy. We now see larger overfitting than in

NB, as there is a higher difference between training and test accuracy values.
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Figure 8.5: Datasets in increasing order of accuracy in training for AODE.

The parameters for the intervals’ creation have been maintained here

except for inTrainDifference = 2 and inTestDifference = 3, since the
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range of the accuracy results obtained is different (standard deviations are

lower than in NB, specially in training accuracy). The results of the intervals

created are graphically displayed on Figure 8.6. Note that the same group of

CMs than for NB has been selected, since they provide the clearest patterns

also for AODE.

The detailed quantitative information of all these intervals is shown in

Table 8.5, and the disjunction and intersection rules are summarized in Table

8.6.

Table 8.5: Rules for AODE from the intervals automatically obtained.

Training accuracy=96.4669 ± 3.7672 Test accuracy=94.7236 ± 6.1236
Good behaviour rules

Id. Interval %Support %Training Training %Test Test
Accuracy Difference Accuracy Difference

R1+ F1v ∈ [10.675, 93.81] 28.6624 98.5685 2.1016 98.1840 3.4604
R2+ F3 ∈ [0.462, 0.97] 17.8344 98.9906 2.5237 98.3320 3.6084
R3+ F4 ∈ [0.65, 1.0] 28.0250 98.7006 2.2338 97.8829 3.1593
R4+ L2 ∈ [0.0005, 0.032] 50.9554 98.4885 2.0217 98.0002 3.2766
R5+ N1 ∈ [0.0040, 0.027] 38.8535 98.5087 2.0418 98.3076 3.5840
R6+ N3 ∈ [0.0009, 0.02] 52.8662 98.3675 1.9006 98.1123 3.3887

Bad behaviour rules
Id. Interval %Support %Training Training %Test Test

Accuracy Difference Accuracy Difference
R1- F1v ∈ [0.0080, 1.349] 11.4650 91.7540 −4.7128 84.2153 −10.5083
R2- F3 ∈ [0, 0.2] 33.1210 95.3222 −1.1447 91.6170 −3.1066
R3- F4 ∈ [0.0, 0.285] 40.7643 94.9078 −1.5591 91.6761 −3.0475
R5- L2 ∈ [0.13, 0.42] 11.4650 91.1862 −5.2806 82.7101 −12.0135
R4- N1 ∈ [0.21, 0.571] 12.7388 91.3592 −5.1076 82.6454 −12.0782
R6- N3 ∈ [0.119, 0.435] 15.2866 91.1543 −5.3126 83.6289 −11.0947

Table 8.6: Disjunction and intersection rules from all simple rules for AODE.

Id. If Then %Support %Training Training %Test Test
(behaviour) Accuracy Difference Accuracy Difference

PRD R1+ or R2+ or R3+ good 69.4267 98.1488 1.6820 97.5593 2.8357
or R4+ or R5+

NRD R1- or R2- or R3- bad 52.2293 95.2300 -1.2369 92.3711 -2.3525
or R4- or R5- or R6-

PRD ∧ NRD PRD and NRD good 26.1146 98.0156 1.5487 97.2134 2.4898
PRD ∧ ¬NRD PRD and ¬NRD good 43.3121 98.2292 1.7623 97.7679 3.0443
NRD ∧ ¬PRD NRD and ¬PRD bad 26.1146 92.4443 -4.0225 87.5289 -7.1947

¬NRD ∧ ¬PRD ¬(PRD or NRD) bad 4.4586 93.8368 -2.6301 92.7078 -2.0158

Figure 8.7 displays the final characterization for AODE. Average accu-
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Figure 8.6: Characterization of the group of datasets into good or bad be-
haviour for AODE according to increasing order of 6 CMs individually: F1v,
F3, F4, L2, N1 and N3.
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racy obtained on training is equal to 98.1488± 1.48 for good behaviour and

92.6474± 4.52 for bad behaviour; whereas average accuracy on test is equal

to 97.5593± 1.67 for good behaviour and 88.2842± 4.54 for bad behaviour.
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Figure 8.7: AODE characterization in terms of good and bad behaviour from
the disjunction and intersection rules of 6 CMs: F1v, F3, F4, L2, N1 and
N3.

8.2.2 Continuous domains

Whereas for discrete domains T1 was discarded, given that it practically did

not vary for the different datasets; in continuous domains we encounter that

neither L3 does, as it is approximately equal to 0.5 in most of the cases.

Furthermore, also F2 is discarded, since its results are very close to 0 in

many cases; and T1 remains uninformative.

Table 8.7 shows the domains of the different CMs for the group of 157

datasets considered in continuous domains.

8.2.2.1 Gaussian naive Bayes

Figure 8.8 shows these datasets in increasing order of training accuracy for

NB in continuous domains using Gaussian distributions.
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Table 8.7: Domains of the different CMs for the group of 157 datasets created
from Table 4.1 (continuous datasets).

Domains
F1 ∈ [0.001, 65.2] N1 ∈ [0.00071, 0.574]

F1v ∈ [0.000068, 132.917] N2 ∈ [0.004, 0.922]
F2 ∈ [0, 1] N3 ∈ [0, 0.374]
F3 ∈ [0, 0.999] L3 ∈ [0.001, 0.5]
F4 ∈ [0, 1] N4 ∈ [0, 0.494]
L1 ∈ [0.01, 0.895] T1 ∈ [0.313, 1]
L2 ∈ [0.002, 0.461] T2 ∈ [3.467, 1250]
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Figure 8.8: Datasets in increasing order of accuracy in training for Gaussian
NB.

Here overfitting plays a much less important role, in fact, it is practically

non-existent. However, the datasets could be more difficult to characterize

since the patterns in the different graphs (Figure 8.9) are not as clear as

for the previous studies on discrete domains. In this case, the CMs selected

are different also: F1, L1, N1, N2, N3 and N4 provide the more meaningful

patterns. Note that all the CMs related to the nearest neighbour paradigm

seem to be the most informative.

The same parameters have been considered here except for inTrainDif -

ference = 3 and inTestDifference = 4, since the range of the accuracy

results obtained is different and the standard deviations is higher than in the
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Figure 8.9: Characterization of the group of datasets into good or bad be-
haviour for Gaussian NB according to increasing order of 6 CMs individually:
F1, N1, N4, L1, N3 and N2.

previous cases.

Similarly to the discrete domains, Tables 8.8 and 8.9 display the statistics
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of the good and bad intervals created from the 6 CMs selected and the

disjunction and intersection rules for NB with Gaussians respectively.

Table 8.8: Rules for Gaussian NB from the intervals automatically obtained.

Training accuracy=91.3758 ± 9.5240 Test accuracy=91.2430 ± 9.4023
Good behaviour rules

Id. Interval %Support %Training Training %Test Test
Accuracy Difference Accuracy Difference

R1+ N2 ∈ [0.222, 0.399] 31.2101 95.5502 4.1744 95.3890 4.1459
R2+ N3 ∈ [0.0, 0.047] 65.6051 95.5554 4.1796 95.5673 4.3243
R3+ N4 ∈ [0.0, 0.059] 38.2166 95.8269 4.4511 95.7538 4.5108

Bad behaviour rules
Id. Interval %Support %Training Training %Test Test

Accuracy Difference Accuracy Difference
R1- F1 ∈ [0.012, 1.425] 47.7707 86.9202 −4.4556 86.6906 −4.5524
R2- L1 ∈ [0.401, 0.895] 26.7516 85.8407 −5.5351 85.3725 −5.8706
R3- N1 ∈ [0.099, 0.574] 31.8471 82.4884 −8.8874 82.0932 −9.1498
R4- N3 ∈ [0.088, 0.374] 26.7516 81.5791 −9.7967 81.2867 −9.9563
R5- N4 ∈ [0.23, 0.494] 24.2038 82.5268 −8.8490 82.6842 −8.5589

Table 8.9: Disjunction and intersection rules from all simple rules for Gaus-
sian NB.

Id. If Then %Support %Training Training %Test Test
(behaviour) Accuracy Difference Accuracy Difference

PRD R1+ or R2+ or R3+ good 71.9745 95.0517 3.6759 95.0079 3.7649
NRD R1- or R2- or R3- bad 67.5159 88.9608 -2.4150 88.8034 -2.4396

or R4- or R5-
PRD ∧ NRD PRD and NRD good 40.1274 93.9624 2.5866 93.9413 2.69832

PRD ∧ ¬NRD PRD and ¬NRD good 31.8471 96.4243 5.0485 96.3518 5.1088
NRD ∧ ¬PRD NRD and ¬PRD bad 27.3885 81.6330 -9.7429 81.2757 -9.9673

¬NRD ∧ ¬PRD ¬(PRD or NRD) good 0.6369 94.9405 3.5647 94.4048 3.1618

Figure 8.10 shows the final characterization, clearly not as accurate as the

previous ones for NB and AODE in discrete domains. Still, average accuracy

on training is equal to 95.0508± 4.45 for good behaviour and 81.633± 12.24

for bad behaviour; whereas average accuracy on test is equal to 95.0026±4.16
for good behaviour and 81.2757± 11.9 for bad behaviour.

8.2.2.2 GAODE

Figure 8.11 shows the differences in terms of accuracy on training and test for

the group of datasets ordered in ascending accuracy in training for GAODE.
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Figure 8.10: Gaussian NB characterization in terms of good and bad be-
haviour from the disjunction and intersection rules of 6 CMs: F1, L1, N1,
N2, N3 and N4.

Also in this case, the use of Gaussians does not result in high overfitting.
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Figure 8.11: Datasets in increasing order of accuracy in training for GAODE.

The same group of CMs than for GNB has been selected, since they seem

to provide the clearest patterns also for GAODE. However, the decisions on

where to fix the boundaries of the intervals are harder to make now. Note, for
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example, Graph 8.12 (d), corresponding to N2, where the boundaries could

arguably be placed differently.

Also, the same parameters have been considered here except for inTrain-

Difference = 3 and inTestDifference = 3.5.

Once again, Tables 8.10 and 8.11 display the statistics of the good and bad

intervals created from the 6 CMs selected and the disjunction and intersection

rules for GAODE respectively. Despite the difficulties, we can observe a

significant support for the different intervals.

Table 8.10: Rules for GAODE from the intervals automatically obtained.

Training accuracy=92.8283 ± 8.6279 Test accuracy=92.5401 ± 8.7134
Good behaviour rules

Id. Interval %Support %Training Training %Test Test
Accuracy Difference Accuracy Difference

R1+ F1 ∈ [1.498, 65.2] 48.4076 96.6625 3.8342 96.5529 4.0128
R2+ N1 ∈ [0.0007, 0.009] 26.7516 96.6642 3.8359 96.6478 4.1077
R3+ N3 ∈ [0.0, 0.0040] 31.2101 96.6232 3.7949 96.5828 4.0428
R4+ N4 ∈ [0.0, 0.038] 29.9363 97.8349 5.0066 97.7090 5.1689

Bad behaviour rules
Id. Interval %Support %Training Training %Test Test

Accuracy Difference Accuracy Difference
R1- F1 ∈ [0.0010, 0.799] 280255 85.3288 −7.4995 84.6278 −7.9123
R2- L1 ∈ [0.501, 0.895] 22.2930 88.2348 −4.5936 87.0917 −5.4484
R3- N1 ∈ [0.112, 0.574] 30.5732 85.07691 −7.7514 84.3415 −8.1986
R4- N2 ∈ [0.46, 0.922] 31.8471 89.0950 −3.7333 88.2554 −4.2846
R5- N3 ∈ [0.049, 0.374] 34.3949 86.1128 −6.7155 85.4249 −7.1151
R6- N4 ∈ [0.234, 0.494] 23.5669 84.3965 −8.4318 84.2006 −8.3394

Table 8.11: Disjunction and intersection rules from all simple rules for
GAODE.

Id. If Then %Support %Training Training %Test Test
(behaviour) Accuracy Difference Accuracy Difference

PRD R1+ or R2+ or R3+ good 60.5095 96.2804 3.4521 96.1927 3.6526
or R4+

NRD R1- or R2- or R3- bad 62.4204 90.5509 -2.2774 90.1524 -2.3876
or R4- or R5- or R6-

PRD ∧ NRD PRD and NRD good 27.3885 95.5664 2.7380 95.4612 2.9211
PRD ∧ ¬NRD PRD and ¬NRD good 33.1210 96.8708 4.0425 96.79764 4.2576
NRD ∧ ¬PRD NRD and ¬PRD bad 35.0318 86.6297 -6.1986 86.0019 -6.5381

¬NRD ∧ ¬PRD ¬(PRD or NRD) good 4.4586 94.6822 1.8539 94.3393 1.7993

Figure 8.13 displays the final characterization for GAODE. Average ac-

curacy on training is equal to 96.1707±3.48 for good behaviour and 86.6297±
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Figure 8.12: Characterization of the group of datasets into good or bad be-
haviour for GAODE according to increasing order of 6 CMs individually: F1,
L1, N1, N2, N3 and N4.
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11.49 for bad behaviour; whereas average accuracy on test is equal to 96.0655±
3.25 for good behaviour and 86.0019± 8.69 for bad behaviour.
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Figure 8.13: GAODE characterization in terms of good and bad behaviour
from the disjunction and intersection rules of 6 CMs: F1, L1, N1, N2, N3
and N4.

8.3 Change in behaviour on CMs when dis-

cretizing the datasets

Since most of the BNCs work in the discrete domain, we wonder how much

the values of these measures change when they are computed directly on a

continuous dataset and its discretized version.

When a numeric dataset is discretized, independently of the discretization

method used, the calculations for the measures designed to characterize the

apparent complexity of datasets for supervised learning change as well.

It is possible that depending on the dataset, the discretized version be-

comes easier or more complex to classify. It is even more likely that for a

particular discretized version of a dataset, some measures indicate that it

is now easier to classify, whereas according to other measures, the problem

becomes more complex.
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Measure Simpler if... Dif. Disc. Tendency Simpler
F1v + 4.2077 + Yes
F1 + -2.7438 − No
L1 − 0.7021 + No
F2 − 0.3341 + No
F4 + -0.2549 − No
L3 − -0.2318 − Yes
N2 − 0.1964 + No

F3 + -0.0829 − No
T1 − 0.0597 + No
L2 − -0.0592 − Yes
N4 − 0.0371 + No
N3 − 0.0028 + No
N1 − 0.0013 + No
T2 + 0 = Same

Table 8.12: Changes in behaviour observed on the CMs when calculated on
numeric datasets and their discretized versions. The measures are organised
in decreasing order according to the absolute value of the variability observed.

We believe that, for most of the measures, the tendency in variation is

similar for all the datasets, and hence, we would like to empirically know

what this tendency is.

In order to study how the different measures in Table 8.1 change, we

calculate the values for these measures on the original numeric datasets and

also on their discretized versions. When the values obtained are compared

and the patterns analysed, we obtain the results included in Table 8.12.

In the third column in Table 8.12, the average differences between the

values for a measure in the original dataset and the discretized version are

displayed. The general pattern of the differences between the discretized

version and the original one is shown in the fourth column by: a symbol +,

if a particular measure increases in the discretized version; −, if it decreases;
or =, if it remains equal. The fifth column indicates whether the change in

a particular measure implies that the problem becomes more or less simple

after discretization. The main results summarize as follows:

• F1 and F1v, which deal with the discriminative ratio of attributes, seem

to be the most affected. Note that whereas the former increases, the

latter decreases, thus reflecting simpler datasets to classify with respect

to F1 and the opposite according to F1v.
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• For F2, the original numeric datasets have values very close to 0. Those

that are 0 remain in the discrete version, but others increase their value

indicating, at least in theory, a more complex dataset to classify.

• From F3 (double line) and going downwards in Table 8.12, we can

find the most stable measures (with differences lower than ±0.1). F3

decreases in most of the cases, although not much. L2 is another quite

stable measure, that decreases a bit, indicating a simpler problem for

linear classification. N1 is the most stable, followed by N3 and N4. T1

slightly increases whereas T2 remains the same, as expected given its

definition.

To summarize, even though a common pattern is observed for each mea-

sure on the group of datasets, different changes are observed for different

measures with respect to how easy or difficult the classification of a par-

ticular dataset becomes after discretization. Even so, we believe that these

results might vary depending on the group of datasets considered, or even the

discretization method. Hence, they should be carefully taken into account.

8.4 Meta-classification of semi-naive BNCs

As a different and more practical approach into the study of the differences

between the domains of competence for some semi-naive BNCs, we propose a

mechanism to select the most promising classifier (belonging to this family)

for a particular dataset, based on the values of some of the CMs.

There have been several studies oriented to compare classifiers of different

nature. One of the most ambitious and rigorous is the Statlog project [King

et al., 1995; Michie et al., 1994], where about 20 procedures are compared for

about 20 real datasets, mainly focused on error rates. Besides, a meta-level

machine learning rule for algorithm recommendation, called the Application

Assistant [Brazdil et al., 1994], that uses the C4.5 algorithm [Quinlan, 1993]

to construct the rules from the given data is proposed. These rules are

based on the number of instances, attributes and classes; the proportion

of binary, categorical or unknown attributes; the use of cost or the value
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of other statistical measures. However, the rules generated by the expert

system were not very meaningful, mainly due to a lack of training data

[van der Walt & Barnard, 2006]. In Sohn [1999] a ranking of classification

algorithms is provided by using a statistical meta-model. It is used to predict

the expected classification performance of each algorithm as a function of

several data characteristics.

We pretend further automatize this process by using the values of the

CMs for supervised classification considered in previous sections. The idea is

that, given a particular dataset to be classified, it is possible to predict which

semi-naive BNC is more likely to provide the most accurate predictions. For

this purpose, it is necessary to create what we call a training meta-dataset :

where every instance represents a single dataset, for which the predictive

attributes correspond, in principle, to the 14 complexity measures in Table

8.1. This is in concordance with the method proposed in Hernández-Reyes

et al. [2005]. However, the biggest difference between their approach and

ours is that they consider a single class label dataset, assigning to every

instance the classifier with the lowest error for the dataset that represents

that instance, i.e. the classifier that obtains the lowest rate among KNN, NB

and C4.5.

In our case, only semi-naive BNCs for discrete attributes are considered,

in particular: NB, AODE, HODE, TAN and KDB31. We believe that the

selection of a single classifier based directly on the lowest error value can

be too arbitrary. Alternatively, we propose to carry out statistical tests on

the classifiers’ results for each problem, in order to keep the best classifier

and also those whose error rates are not significantly worse. Given that the

considered classifiers belong to the same family, it is reasonable to expect

small differences.

This then requires to resort to multi-label classification [Tsoumakas &

Katakis, 2007] in order to handle the existence of multiple class labels2. Since,

1KDB with k = 3 has been selected for these experiments in order to gain some variety
among the classifiers considered.

2Also known as multi-dimensional classification [Bielza et al., 2011]. Note, in any case,
the difference with a multi-class problem, that simply refers to the existence of one class
with more than two labels.
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once again, 5x2cv is used for the evaluation process, the 5x2cv F Test defined

by Alpaydin [1999] has been used to select the semi-naive BNCs for each

dataset. The level of significance has been fixed at 95% (α = 0.05).

In order to construct the meta-dataset with the complexity measure val-

ues from different datasets, we select the original group of 26 numeric datasets

in Table 4.1 (Section 4.4). We discretize them applying EF5 as well.

A small sample of this training meta-dataset can be found in Table 8.13.

Every example corresponds to the result of the 14 complexity measures for

a specific dataset, whereas the class labels are binary and correspond to the

5 following semi-naive BNCs: NB, AODE, HODE, TAN and KDB3: a bit

equal to 1 for the jth class label on the ith instance indicates that the classifier

on j, either obtain the best error rate for the dataset on the ith position or

it is not significantly worse that the classifier that does.

Table 8.13: Sample of the meta-dataset created to predict the best semi-naive
BNC based on data complexity measures.

dataset F1 F1v F2 F3 F4 L1 L2 L3 N1 N2 N3 N4 T1 T2 NB AODE HODE TAN KDB3
a1iris.2c0 0.474 16.455 0.000 0.807 1.000 0.333 0.007 0.000 0.067 0.209 0.013 0.263 1 37.5 0 1 0 0 0
a1iris.2c1 0.458 2.374 0.250 0.433 0.573 0.658 0.333 0.500 0.200 0.264 0.093 0.250 1 37.5 0 0 1 0 0
a1iris.2c2 0.475 10.186 0.062 0.627 0.760 0.461 0.053 0.017 0.160 0.244 0.093 0.290 1 37.5 1 1 1 0 1
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The statistics of the resulting meta-dataset are summarized in Table 8.14.

The upper part of the table (above the horizontal line) displays general infor-

mation: such as the number of examples, attributes or class labels; whereas

the lower part includes more specific information related to the class labels.

The number of distinct labelsets indicates the binary combinations out of the

25 possible. The value for cardinality is calculated as the ratio of positive

bits (those equal to 1) in the labels over the total number of instances. The

density is just the division of the cardinality between the number of labels.

This values indicate that, on average, every example can be optimally clas-

sified by at least 2 semi-naive BNCs. Two figures to be highlighted here

are: the number of examples of cardinality equal to 1, i.e., those that only

have one “best” classifier, which is 39; and the number of trivial examples

(cardinality equal to 5), i.e., those for which any classifier would be equally
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Examples: 157 Labels: 5 (binary)
Predictive attributes: 14 (numeric)
Distinct Labelsets: 24
Cardinality: 2.52 Density: 0.50
*Percentage of examples with label:

1(NB): 19.74% 4(TAN): 52.23%
2(AODE): 56.59% 5(KDB3): 61.78%
3(HODE): 61.15%

*Examples of cardinality:
0: 0 3: 43
1: 39 4: 19
2: 43 5: 13

Table 8.14: Statistics of the meta-dataset created.

eligible, which is 13.

Once the meta-dataset is ready, we can simply use a multi-label classi-

fier to handle it. Several strategies exist for multi-label classification; some of

them transform the multi-label classification problem into one or more single-

label classification problems, and others simply extend specific learning algo-

rithms in order to handle multi-label data directly. For our experiments, we

select the following two approaches to carry out the meta-classification task:

• Binary relevance (BR): is a transformation method that learns a

binary classifier for each class label. In our case, we transform the

original dataset into 5 binary datasets that contain all the examples

of the original one, labelled positively for datasets i if the label set of

the original example contained label i, and negatively otherwise. For

the classification of a new instance, the original definition of BR would

output the union of the labels that are positively predicted by the 5

classifiers. In our case, only the most likely label is returned.

• RAkEL: [Tsoumakas & Vlahavas, 2007], is a random k-labelset method

that constructs an ensemble of label powerset (LP) classifiers, where

each LP is trained using a different small random subset of the set

labels. LP is a simple but effective problem transformation method

that works as follows: it considers each unique set of labels that exists
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in a multi-label training set as one of the classes of a new single-label

classification task. A ranking of the labels is produced by averaging the

zero-one predictions of each model per considered label. Thresholding

is used to produce a bipartition as well. Only the first label in the

ranking will be considered in our case.

However, all of these strategies consider a multi-label prediction phase as

well. For our purposes, even though we are training a classifier based on a

multi-label paradigm, we select only the best classifier to predict with. This

restriction requires to redefine the way in which the evaluation is performed,

so that a specific prediction, Ze for the example (e, Ye), is considered suc-

cessful if the label predicted is among those included in Ye, where both Ze

and Ye are binary vectors of length L, L being the number of semi-naive

BNCs considered, i.e., the number of labels. However, given that the num-

ber of positive values in Ze is only one, we can use the original definition of

example-based precision [Tsoumakas et al., 2010] as evaluation measure:

Precision =
1

m

m
∑

i=1

|Yi ∩ Zi|
|Zi|

, (8.1)

where the operator |.| indicates the cardinality of the positive bits. Consider,

for example, an output Ye = {0, 1, 1, 0, 0}, which indicates that both AODE

and HODE provide the best results for a particular dataset e, i.e., one of

them has the highest absolute value and the other is not significantly worse.

Then, if the meta-classifier, let say NB with BR (NB-BR), provides the

output Ze = {0, 1, 0, 0, 0}, this example would contribute to the summation

as 1. If the output provided by RAkEL were Ze = {0, 0, 0, 0, 1} instead, the
contribution would be equal to 0.

Note that since the average number of “valid” labels for every instance is

equal to 2.5, our classification problem can be considered to be of equivalent

difficulty to a binary class problem, since there is a 50% of probability to be

accurate when classifying.

Additionally, it may not be necessary to use all the complexity measures

as predictive attributes, as some of them can be redundant, irrelevant and
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maybe the “intrinsic” dimensionality may be smaller than the total number

of measures considered. To that aim, we find a large amount of literature for

feature selection (FS) [Dash & Liu, 1997; Guyon & Elisseeff, 2003]. Note that

FS is not required here for dimensionality reduction with efficiency purposes,

but it could be beneficial to remove measures that are too similar in the

meta-dataset, and hence, redundant.

The whole process is outlined in Figure 8.14. The left-hand side displays

the three steps involved in the meta-dataset’s formation, which entails the

most time consuming part of the process. The steps required when a new

dataset faces a classification process, is included in the dashed line. Given

a new dataset, the values for the CMs considered in the meta-classification

process will be calculated (not necessarily all of them, as shown in Section

8.4.1). From these values the meta-classifier selected will return the best

semi-naive BNC.

Meta-dataset’s formation

Calculation
of CMs for
each dataset

Calculation
of accuracy
for the 5

classifiers on
each dataset

Tests to
select active
class labels

New dataset
-CMs values-

Meta-classifier
multi-label

Best semi-naive
BNC predicted

Figure 8.14: Schema of the meta-classification process.

8.4.1 Experimental methodology and results

We have resorted to a Java library for multi-label learning, called Mulan

[Tsoumakas et al., 2011], in order to handle the multiple labels. The two
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meta-classifiers selected to work with the meta-dataset created are NB with

BR and RAkEL, described above.

The selection of these two multi-classifiers have been motivated by the

results obtained with the different algorithms provided by Mulan. Other

paradigms have been tested, such as a lazy learning approach (ML-KNN);

and transformation methods, such as classifier chains [Read et al., 2009] with

different base classifiers. Even though this study is not an exhaustive one,

since it does not cover all the multi-classifiers in the existing literature (such

as Bielza et al. [2011]), we believe that it is sufficient for our purposes.

In Table 8.15, different results in terms of example-based precision are

shown. The alternatives tested are as follows:

• The first column, Data, indicates whether the data considered are di-

rectly the value of the measures for the different datasets (Original)

or the data have been transformed through principal component anal-

ysis techniques (PCA). Dimensionality reduction is accomplished by

choosing enough eigenvectors to account for some percentage of the

variance in the original data, which has been set to 0.95 (95%)1 (PC

space). Furthermore, the PC space data have been transformed back to

the original space eliminating some of the worst eigenvectors, with the

aim of filtering attribute noise (PC space transformed back to original

space).

• Feature selection through clustering techniques has also been carried

out in some cases, as indicated in the second column, Clustering+FS.

More specifically, a k-means clustering algorithm is performed in the

transposed dataset with2 k = 10. The output indicates the following

clusters: (L1, N2), (L2, L3, N3), (F1, N1) and the rest of the measures

in isolation. In order to select which measures to keep from each cluster

we use PCA techniques again. The procedure is as follows: data are

transformed through the PC space and back to the original space. As

1Default value in WEKA.
2Note that in this case, the purpose of feature selection is mainly carried out in order to

remove possible noisy features, that is why we consider appropriate (although arbitrarily)
not to remove more than 4 predictive attributes.
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only the best PCs are retained, by setting the variance covered equal

to 0.95, we will obtain a dataset in the original space but with less

attribute noise as above. Hence, the ranking obtained by this method

is:

F4, L2, L1, F1v, F1, F3, F2, N4, T2, T1, N1, L3, N3, N2

We maintain then: L1 from cluster (L1, N2), L2 from (L2, L3, N3) and

F1 from (F1, N1), along with the rest of the measures. And we will

discard N2, L3, N3 and N1, which happen to be the last four attributes

given by PCA.

• Two multi-label classifiers (BR-NB and RAkEL) are directly applied or

after performing FS as explained above. Indicated in the third column,

Meta-Classifier.

Table 8.15: Expected example-based precision for meta-classifier selection.

Data Clustering+FS Meta-Classifier Precision ± Stand. dev.

Original

BR-NB 84.79±7.40
RAkEL 86.75±7.59

K-means+PCA BR-NB 86.08±5.32
K-means+PCA RAkEL 86.04±7.30

PC space
BR-NB 85.46±10.4
RAkEL 77.67±8.61
BR-NB 86.08±6.63

PC space transformed RAkEL 86.71±5.8
back to original space K-means+PCA BR-NB 86.08±6.01

K-means+PCA RAkEL 87.38±7.81

The results on the last column in Table 8.15, show a variety of accuracy

values ranging from 77.7% to 87.4% depending on the data considered, the

use or not of pre-processing techniques for FS and the multi-label classifier

applied. It is obvious that the options and combinations here to test with

are massive, and it is not our aim to perform an exhaustive study. The main

purpose of this small comparison is to give an idea of the predictive power

of the model.

All in all, the results seem to be encouraging, since in the best case, they

offer a precision estimated in 87.38% of predicting correctly one of the best
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semi-naive BNCs, based on the complexity measures of a particular dataset

with discrete attributes.

8.5 Conclusions and future work

This chapter provides a different view of the performance of some of the

semi-naive BNCs considered in this dissertation. Motivated by the increasing

evidence that an “almighty” classifier does not exist, we defined the charac-

teristics of the datasets for which these semi-naive BNCs provide accurate

results.

For this purpose, we have resorted to several complexity measures recently

proposed, that have already shown their power for characterizing classifiers

of different nature, although mainly on continuous datasets.

In this chapter we have characterized NB and AODE on discrete and

continuous datasets. Contrary to our initial guess, it has been easier to do this

on the discrete domains. We have tried to understand how the complexity

measures’ values change on continuous datasets and these same datasets after

discretization. We can not assert that the values of these measures indicate

simpler classification problems in general on the discrete datasets. However,

the increase/decrease of difficulty in characterizing the new space formed by

the values of the CMs on the discrete datasets, is independent of the lack of

unanimity in the tendency followed by the changes. In fact, the space of the

CMs values provided by the discrete datasets have been easier to characterize,

as indicated above.

The most important result is that it is possible to characterize both NB

and AODE for both domains and to obtain disjoint rules to predict if the

classifier will perform well or poorly, depending on the values of some of the

complexity measures.

To finalize, an automatic procedure to advise on the best semi-naive BNC

to use for classification is proposed, with an estimated predictive accuracy of

87.38%.

The study carried out in this chapter can be easily extended on many

points. Firstly, the test bed of considered datasets can be extended incor-
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porating the datasets from the Landscape contest, that has been created to

cover a wider range of the complexity measurement space. Secondly, in our

work the measures’ selection of the 14 initially considered has been made

using empirical criteria, mainly based on the pattern provided by plotting

the complexity measures. It may be the best method, it may be not. This

remarks the need for a more theoretical way to know the reliability of a

measure to characterize a particular classifier, which remains to be explored.

Thirdly, in Appendix A, a preliminary study on the relationships between

pairs of measures to characterize accuracy results for NB has been included.

It remains for future works to extend this promising study for other classifiers

and, probably, for higher dimensionality relations.

Fourthly, we propose to consider the bias/variance decomposition in fu-

ture studies. We have already introduced the limitations on the use of the

accuracy for evaluation. Even though it provides a good general view of

the performance, the use of bias and variance components in isolation could

provide more knowledge about the good or bad performance of the different

classifiers in several datasets.
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Concluding remarks
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Chapter 9

Conclusions and future work

Uncertainty and mystery are energies of life. Don’t let them scare you unduly,

for they keep boredom at bay and spark creativity.

R. I. Fitzhenry.

9.1 Conclusions

This dissertation is a contribution to the state of the art of semi-naive

Bayesian network classifiers, focused on the aggregating one-dependence esti-

mators paradigm [Webb et al., 2005]. This contribution includes studies on

different aspects of the semi-naive BNCs, such as new proposals to overcome

AODE’s limitations, the behaviour of these classifiers with traditional and

non-disjoint discretization techniques and the domains of competence of this

family of classifiers.

Part II of the thesis is devoted to AODE’s limitations. Chapter 3 presents

a new classifier named HODE [Flores et al., 2009b], that provides a linear

order in classification time and a reduction in space complexity compared to

AODE. HODE estimates a new variable whose main objective is to model the

significant dependencies between each attribute and the rest of the attributes

that AODE takes into account. To estimate the number of states of this new

variable it resorts to the EM algorithm, which makes it slower in training

time. However, HODE is subject to be easily parallelized, and it may be a

good alternative for high dimensional datasets due to memory constrains.
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9. CONCLUSIONS AND FUTURE WORK

Chapter 4 presents two approaches, GAODE and HAODE [Flores et al.,

2009a], to handle continuous attributes when applying the AODE paradigm.

GAODE applies conditional Gaussian networks to model the relationships be-

tween each predictive attribute and its parents, obtaining competitive results

compared to AODE. GAODE implies a reduction in the space complexity

and its parameters can be computed a priori in a single pass over the data,

maintaining AODE’s time complexity as well. HAODE, in turn, keeps the

superparent attribute discrete in every model. This approach offers the clear

advantage of dealing with any kind of dataset. HAODE is generally com-

petitive with AODE, and even better for datasets with continuous attributes

and no missing data.

In Chapter 5 we propose the use of Mixture of Truncated Exponentials

to generalize the application of AODE to all kind of datasets [Flores et al.,

2011b]. Even though it is a good alternative for some datasets in order

to avoid Gaussian assumptions, the results indicate that the use of MTE

estimations requires selecting the proper number of intervals, into which the

domain of leaf variables in the mixed tree is split, in order to compete with

discretization methods.

Part III is devoted to the study of the impact of several discretization

paradigms on the family of semi-naive BNCs. Chapter 6 compares some of

the most common discretization methods, whereas Chapter 7 investigates

the use of non-disjoint intervals. The conclusions indicate that the ranking

obtained with traditional disjoint techniques is the same for HAODE, AODE

and BNHC, as their performance is sufficiently different; while the position in

the ranking for NB, TAN and KDB, can vary in a particular case, since they

obtain very similar results. Even so, in light of the results, we believe that if

the set of datasets is large enough, the choice of discretization method is ir-

relevant when comparing the BN classifiers [Flores et al., 2010, 2011a]. How-

ever, whereas some of the most common disjoint discretization techniques

have failed to demonstrate consistent improvement relative to alternatives,

non-disjoint discretization demonstrates better win/draw/loss records and

significant overall improvement for AODE and HAODE [Mart́ınez et al.,

2012].
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Finally, in Part IV (Chapter 8), we try to find the parcels of good be-

haviour in the complexity measurement space for the family of semi-naive

BNCs. Initially, patterns of good and bad behaviour are obtained to charac-

terize both NB and AODE in discrete and continuous domains. Unexpect-

edly, since discrete domains had been barely explored, the characterization

process has been easier in this case. In addition, an automatic procedure

to advise on the best semi-naive BNCs to use for classification has been

proposed, with a promising predictive accuracy.

9.2 Future work

Throughout the different chapters of this dissertation some new proposals

and ideas specific to each topic have been expounded. The main ones will be

summarized here along with some new.

As far as HODE is concerned, it would be of a major interest to investigate

how the estimations on one step in the EM algorithm used in HODE can be

reused on posterior steps [Karciauskas, 2005].

Regarding the study on new classifiers to overcome AODE’s limitations,

it would be attractive to further investigate the proper general configuration

of MTEs to obtain more successful results. One way could be the study of

a new supervised method to dynamically search for the optimum number in

every case into every dataset, with the aim to find a good trade-off between

fitting and generalization capability of the model.

An exhaustive study on model and attribute selection, through the use

of different metrics, would be a good complement to what has been studied

in this dissertation also. It not only would provide improvements in terms

of accuracy results, but also in time and space complexities (since simpler

models would be obtained).

With respect to the non-disjoint discretization proposal for AODE and

HAODE, we find that the study of the performance of these classifiers on a

test bed of very high dimensional datasets, would allow to gain insight into

the proposal based on weighting importance.

159



9. CONCLUSIONS AND FUTURE WORK

Regarding the domains of competence of the semi-naive BCNs, it remains

for future works to investigate higher dimensionality relations between com-

plexity measures, which can be the key to find more accurate characteriza-

tions of these classifiers. Furthermore, the use of the datasets created for the

Landscape contest, that have been specifically created to cover a much wider

range of the complexity measurement space, remains to be tackled.

Finally for now, and further moving off the path followed in this the-

sis, we believe that there are several ideas related to other paradigms, such

as multinets or recursive nets, that could benefit from AODE’s spirit, of-

fering interesting alternatives for classification. Additionally, the study of

the extension of the AODE paradigm to multi-label classification, where an

example may be associated with multiple labels. An interesting work with

Bayesian networks has been recently done in relation to this [Bielza et al.,

2011], however, we believe that there is still room for improvement as far as

the introduction of semi-naive Bayesian network classifiers is concerned for

example. Similar reasoning with the topic of multi-instance learning, where

the examples are represented by more than one feature vector.
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Appendix A

Domains of competence:

bivariate relationships between

complexity measures

A.1 NB on discrete data

Figures A.1, A.2 and A.3 show a selection of pairs of complexity measures

to reflect patterns on accuracy values. More specifically, the X and Y-axis

indicate the ranges of the complexity measures (original or logarithmic scale

values depending on the graph). The colour of the points reflect different

accuracy values obtained by NB with 5x2cv on the same 157 discrete datasets

used in Section 8.2. Yellow and orange colours indicates accuracy values

below the average (92.3230 ± 6.8575), more precisely, all the points below

the average minus the standard deviation are yellow and the rest in orange.

On the contrary, accuracy values over the average are displayed in blue and

black, where black represents the top best accuracy values.

Figure A.1 displays those pairs of complexity measures where the be-

haviour in terms of accuracy for NB seems to depend mainly on only one
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A. DOMAINS OF COMPETENCE: BIVARIATE RELATIONSHIPS
BETWEEN COMPLEXITY MEASURES
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Figure A.1: Bivariate relationships for NB - EF5. Behaviour seems to depend
mostly on the values of a single complexity measure.
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of the variables. Subfigures A.1 (a) and (b) represent the same data with

original and logarithmic scale respectively. One or the other scale will be dis-

played indistinctly depending of which one provides more illustrative results.

Subfigure A.2 (a) shows the positive correlation between the complexity

measures N1 and N3. Subfigure A.2 (b), in turn, shows the relationship

between T2 and L2, where large values of the latter indicates bad behaviour

(as expected), but more interesting is the fact that very large values of T2

(average number of points per dimension) provides very good accuracy results

(black points in all cases).
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Figure A.2: Bivariate relationships for NB - EF5. Interesting relationships.

On the other hand, Figure A.3 displays bivariate relationships where the

behaviour in terms of accuracy seems to depend in a pair of measures.

All in all, this only pretends to be an apéritive, to show how several

measures in isolation seem to be sufficient to characterize, in this case, NB

(Figure A.1); whereas others have more power jointly with at least one other

measure (Figure A.3).
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A. DOMAINS OF COMPETENCE: BIVARIATE RELATIONSHIPS
BETWEEN COMPLEXITY MEASURES
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Figure A.3: Bivariate relationships for NB - EF5. Behaviour seems to depend
on the joint values of the two complexity measures.
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Publications

Part of the contents presented in this dissertation are the results of the fol-

lowing publications:

1. Flores, M.J., Gámez, J.A. & Mart́ınez, A.M. (2012). Intelligent

Data Analysis for Real-Life Applications: Theory and Practice, chap.

Supervised Classification with Bayesian Networks: A Review onModels

and Applications. Book chapter. Announced to be published on May

2012.

2. Mart́ınez, A.M., Webb, G.I., Flores, M.J. & Gámez, J.A.

(2012). Non-disjoint discretization for aggregating one-dependence es-

timator classifiers. In Hybrid Artificial Intelligent Systems - 7th Inter-

national Conference, Part II (HAIS 2012), vol. 7209 of Lecture Notes

in Computer Science, 151–162.

3. Flores, M.J., Gámez, J.A., Mart́ınez, A.M. & Salmerón, A.

(2011). Mixture of Truncated Exponentials in Supervised Classifica-

tion: case study for Naive Bayes and Averaged One-Dependence Esti-

mators. In 11th International Conference on Intelligent Systems Design

and Applications (ISDA 2011), 593–598.

4. Flores, M.J., Gámez, J.A., Mart́ınez, A.M. & Puerta, J.M.

(2011). Handling Numeric Attributes when comparing Bayesian Net-
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Variables Continues. In Les 5èmes Journées Francophones sur les
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Garćıa, S. (2011). Keel data-mining software tool: Data set repository,

integration of algorithms and experimental analysis framework. Multiple-

Valued Logic and Soft Computing , 17, 255–287. 37

Alpaydin, E. (1999). Combined 5 x 2 cv f test for comparing supervised

classification learning algorithms. Neural Computation, 11, 1885–1892. 71,

146

Andersen, S.K., Olesen, K.G., Jensen, F.V. & Jensen, F. (1989).

HUGIN–A shell for building Bayesian belief universes for expert systems.

In Proceedings of the 11th International Joint Conference on Artificial In-

telligence, 1080–1085. 26

Antal, P., Fannes, G., Timmerman, D., Moreau, Y. & Moor, B.D.

(2003). Bayesian applications of belief networks and multilayer perceptrons

for ovarian tumor classification with rejection. Artificial Intelligence in

Medicine, 29, 39–60. 9

169



REFERENCES
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