GAODE and HAODE:

Ana M. Martínez

Motivation

Conditional Gaussian Networks

New proposals

classifier

Gaussian AODE (GAODE) classifier Hybrid AODE (HAODE)

Experimental Methodology and Results

Datasets with only continuous attributes Hybrid Datasets

Conclusions and Future Work

Presentation:

GAODE and HAODE: Two Proposals based on AODE to Deal with Continuous Variables

International Conference on Machine Learning 2009 on 15/06/2009

M. Julia Flores, José A. Gámez, Ana M. Martínez and José M. Puerta Computing Systems Department Albacete - UCLM - Spain

1 Motivation

- 2 Conditional Gaussian Networks
- New proposals to deal with numeric attributes in AODE Gaussian AODE (GAODE) classifier Hybrid AODE (HAODE) classifier
 - Experimental Methodology and Results Datasets with only continuous attributes Hybrid Datasets

5 Conclusions and Future Work

GAODE and HAODE:

Ana M. Martínez

Motivation

Conditional Gaussian Networks

New proposals

Gaussian AODE (GAODE) classifier

Hybrid AODE (HAODE) classifier

Experimental Methodology and Results

Datasets with only continuous attributes

Hybrid Datasets

1 Motivation

- 2 Conditional Gaussian Networks
- 3 New proposals to deal with numeric attributes in AODE Gaussian AODE (GAODE) classifier Hybrid AODE (HAODE) classifier
- Experimental Methodology and Results Datasets with only continuous attributes Hybrid Datasets

5 Conclusions and Future Work

GAODE and HAODE:

Ana M. Martínez

Motivation

Conditional Gaussian Networks

New proposals

Gaussian AODE (GAODE) classifier

Hybrid AODE (HAODE) classifier

Experimental Methodology and Results

Datasets with only continuous attributes

Hybrid Datasets

Framework

GAODE and HAODE:

Ana M. Martínez

Motivation

Conditional Gaussian Networks

New proposals

Gaussian AODE (GAODE) classifier

Hybrid AODE (HAODE) classifier

Experimental Methodology and Results

Datasets with only continuous attributes

Hybrid Datasets

Different network structures

GAODE and HAODE:

Ana M. Martínez

Motivatio

Conditional Gaussian Networks

New proposals

Gaussian AODE (GAODE) classifier

Hybrid AODE (HAODE) classifier

Experimental Methodology and Results

Datasets with only continuous attributes

Hybrid Datasets

Naive Bayes classifier

• The attributes are conditionally independent given the class value *I*(*A_i*, *A_j*|*C*).

$$c_{MAP} = argmax_{c \in \Omega_{C}} p(c) \prod_{i=1}^{n} p(a_{i}|c)$$

- Time complexity:
 - Training: $\mathcal{O}(tn)$
 - Clasification: O(kn)
- Problems:
 - × : It does not work properly in certain datasets.
 - Dependences between attributes reduce, unavoidable, the prediction capability of NB.
 - × : Not only interesting to be right in the classification in certain applications.

GAODE and HAODE:

Ana M. Martínez

Motivation

Conditional Gaussian Networks

New proposals

Gaussian AODE (GAODE) classifier

Hybrid AODE (HAODE) classifier

Experimental Methodology and Results

Datasets with only continuous attributes Hybrid Datasets

AODE classifier I

 AODE is significantly better in terms of error reduction compared to the rest of semi-naive techniques.

MAP hypothesis:

$$argmax_{c \in \Omega_{C}} \left(\sum_{j=1, N(a_{j}) > m}^{n} p(c, a_{j}) \prod_{i=1, i \neq j}^{n} p(a_{i} | c, a_{j}) \right)$$

GAODE and HAODE:

Ana M. Martínez

Motivation

Conditional Gaussian Networks

New proposals

Gaussian AODE (GAODE) classifier

Hybrid AODE (HAODE) classifier

Experimental Methodology and Results

Datasets with only continuous attributes

Hybrid Datasets

AODE classifier II

- Time complexity:
 - Training: $\mathcal{O}(tn^2)$
 - Classification: $O(kn^2)$
- Drawbacks:
 - × : Quadratical order time in classification.
 - × : High demand of RAM memory.
 - × : Only discrete variables.
- Attemps to improve AODE's accuracy
 - WAODE: Model weighting with *IM*(*C*, *A_j*).

ECSQARU 09

GAODE and HAODE:

Ana M. Martínez

Motivation

Conditional Gaussian Networks

New proposals

Gaussian AODE (GAODE) classifier

Hybrid AODE (HAODE) classifier

Experimental Methodology and Results

Datasets with only continuous attributes

Hybrid Datasets

Motivation

- A BN assume all the variables are discrete.
- Large amount of methods developed to solve problems with discrete variables.
- It is common the coexistence of discrete and continuous variables in the same problem.
- <u>Direct solution</u> → **discretization**.
 - × : Unavoidable lost of precision.
 - × : Which discretization method should we choose?.
- Some alternative solutions:
 - Conditional Gaussian Networks.
 - Ø Kernel-based distributions.
 - **3** Mixtures of truncated exponentials.

Ana M. Martínez

Motivation

Conditional Gaussian Networks

New proposals

Gaussian AODE (GAODE) classifier

Hybrid AODE (HAODE) classifier

Experimental Methodology and Results

Datasets with only continuous attributes

Hybrid Datasets

1 Motivation

2 Conditional Gaussian Networks

3 New proposals to deal with numeric attributes in AODE Gaussian AODE (GAODE) classifier Hybrid AODE (HAODE) classifier

Experimental Methodology and Results Datasets with only continuous attributes Hybrid Datasets

5 Conclusions and Future Work

GAODE and HAODE:

Ana M. Martínez

Motivation

Conditional Gaussian

New proposals Gaussian AODE (GAODE) classifier

Hybrid AODE (HAODE) classifier

Experimental Methodology and Results

Datasets with only continuous attributes

Hybrid Datasets

Conditional Gaussian Networks

• Every continuous variable X is modeled with a conditional Gaussian distribution.

$$f(X|\mathbf{Y} = y, \mathbf{Z} = z; \Theta) = \mathcal{N}(x : \mu_X(y) + \sum_{j=1}^s b_{XZ_j}(y)(z_j - \mu_{Z_j}(y)), \sigma^2_{X|\mathbf{Z}}(y))$$

- b_{XZ_j}(y), regression term that measures the strength of the connection between X and every continuous parent.
- $\sigma_{X|Z}^2(y)$ is the **conditional variance** of X over its continuous parents.

Ana M. Martínez

Motivation

classifier

Conditional Gaussian Networks

New proposals Gaussian AODE (GAODE) classifier Hybrid AODE (HAODE)

Experimental Methodology and Results

Datasets with only continuous attributes Hybrid Datasets

Factorization of the joint density function in a SPODE network

Structure

Factorization of the joint density function

$$f(c, a_j, a_1, \ldots, a_j, \ldots, a_n) = p(c) \frac{1}{\sqrt{2\pi}\sigma_j(c)} e^{-\frac{1}{2} \left(\frac{a_j - \mu_j(c)}{\sigma_j(c)}\right)^2}.$$

$$\frac{1}{\sqrt{2\pi}\sigma_{i|j}(c)}e^{-\frac{1}{2}\left(\frac{a_{i}-(\mu_{i}(c)+b_{ij}(a_{j}-\mu_{j}(c)))}{\sigma_{i|j}(c)}\right)^{2}}\cdots\frac{1}{\sqrt{2\pi}\sigma_{n|j}(c)}e^{-\frac{1}{2}\left(\frac{a_{n}-(\mu_{n}(c)+b_{nj}(a_{j}-\mu_{j}(c)))}{\sigma_{n|j}(c)}\right)^{2}}$$

GAODE and HAODE:

Ana M. Martínez

Motivation

Conditional Gaussian

New proposals Gaussian AODE (GAODE) classifier Hybrid AODE (HAODE) classifier

Experimental Methodology and Results

Datasets with only continuous attributes Hybrid Datasets

1 Motivation

2 Conditional Gaussian Networks

New proposals to deal with numeric attributes in AODE Gaussian AODE (GAODE) classifier Hybrid AODE (HAODE) classifier

Experimental Methodology and Results Datasets with only continuous attributes Hybrid Datasets

5 Conclusions and Future Work

GAODE and HAODE:

Ana M. Martínez

Motivation

Conditional Gaussian Networks

New proposa

Gaussian AODE (GAODE) classifier

Hybrid AODE (HAODE) classifier

Experimental Methodology and Results

Datasets with only continuous attributes

Hybrid Datasets

1 Motivation

2 Conditional Gaussian Networks

New proposals to deal with numeric attributes in AODE Gaussian AODE (GAODE) classifier Hybrid AODE (HAODE) classifier

Experimental Methodology and Results Datasets with only continuous attributes Hybrid Datasets

5 Conclusions and Future Work

GAODE and HAODE:

Ana M. Martínez

Motivation

Conditional Gaussian Networks

New proposals

Gaussian AODE (GAODE) classifier

Hybrid AODE (HAODE) classifier

Experimental Methodology and Results

Datasets with only continuous attributes

Hybrid Datasets

GAODE classifier

- Application of CGN to the children's distributions:
 - The density function just has a **discrete parent node** (*C*) and a **continous parent node**, which is the superparent on each model (*A_i*).

$$f(A_i = a_i | C = c, A_j = a_j) = \mathcal{N}(a_i : \mu_i(c) + b_{ij}(c)(a_j - \mu_j(c)), \sigma_{i|j}^2(c))$$

• MAP hypothesis:

$$\operatorname{argmax}_{c}\left(\sum_{j=1}^{n} \mathcal{N}(\mathbf{a}_{j}:\mu_{j}(\mathbf{c}),\sigma_{j}^{2}(\mathbf{c})) p(\mathbf{c})\prod_{i=1 \land i \neq j}^{n} \mathcal{N}(\mathbf{a}_{i}:\mu_{i}(\mathbf{c})+b_{ij}(\mathbf{c})(\mathbf{a}_{j}-\mu_{j}(\mathbf{c})),\sigma_{i|j}^{2}(\mathbf{c}))\right)$$

GAODE and HAODE:

Ana M. Martínez

Motivation

Conditional Gaussian Networks

New proposals

Gaussian AODE (GAODE) classifier

Hybrid AODE (HAODE) classifier

Experimental Methodology and Results

Datasets with only continuous attributes

Hybrid Datasets

GAODE classifier

- Univariate Gaussian Distribution -

- Conditional Gaussian Distribution -

GAODE and HAODE:

Ana M. Martínez

Motivation

Conditional Gaussian Networks

New proposals

Gaussian AODE (GAODE) classifier

Hybrid AODE (HAODE) classifier

Experimental Methodology and Results

Datasets with only continuous attributes

Hybrid Datasets

GAODE classifier

- Time complexity:
 - The same as AODE (incremental computation of parameters).
- Space complexity:
 - Training & Classification: O(kn²) (independent from v).
- V Probabilities estimated can be more reliable comparing to the multinomial version as they are modeled from more samples, especially with large CPTs.
- Not possible to define the corresponding probability function for a discrete variable conditioned to a numeric attribute. Restricted to Numerical datasets.

GAODE and HAODE:

Ana M. Martínez

Motivation

Conditional Gaussian Networks

New proposals

Gaussian AODE (GAODE) classifier

Hybrid AODE (HAODE) classifier

Experimental Methodology and Results

Datasets with only continuous attributes

Hybrid Datasets

1 Motivation

- 2 Conditional Gaussian Networks
- New proposals to deal with numeric attributes in AODE Gaussian AODE (GAODE) classifier Hybrid AODE (HAODE) classifier
- Experimental Methodology and Results Datasets with only continuous attributes Hybrid Datasets

5 Conclusions and Future Work

GAODE and HAODE:

Ana M. Martínez

Motivation

Conditional Gaussian Networks

New proposals Gaussian AODE (GAODE)

Hybrid AODE (HAODE) classifier

Experimental Methodology and Results

Datasets with only continuous attributes

Hybrid Datasets

HAODE classifier

- **Discrete** superparents (*A_j*) in its corresponding models.
- MAP hypothesis:.

$$\operatorname{argmax}_{c}\left(\sum_{j=1,N(\mathbf{a}_{j})>m}^{n}p(\mathbf{a}_{j},c)\prod_{i=1\wedge i\neq j}^{n}\mathcal{N}(\mathbf{a}_{i}:\mu_{i}(c,\mathbf{a}_{j}),\sigma_{i}^{2}(c,\mathbf{a}_{j})\right)$$

- Time complexity:
 - The same as AODE (incremental computation of parameters).
- Space complexity:
 - Training & Classification: The same as AODE $\mathcal{O}(k(nv)^2)$ in the worst of the cases.
- $\sqrt{}$ Able to deal with **hybrid datasets** too.

GAODE and HAODE:

Ana M. Martínez

Motivation

Conditional Gaussian Networks

New proposals Gaussian AODE (GAODE)

Hybrid AODE (HAODE) classifier

Experimental Methodology and Results

Datasets with only continuous attributes

Hybrid Datasets

HAODE classifier

- Multinomial distribution -

- Univariate Gaussian distribution -

GAODE and HAODE:

Ana M. Martínez

Motivation

Conditional Gaussian Networks

New proposals Gaussian AODE (GAODE) classifier

Hybrid AODE (HAODE) classifier

Experimental Methodology and Results

Datasets with only continuous attributes

Hybrid Datasets

1 Motivation

- 2 Conditional Gaussian Networks
- 3 New proposals to deal with numeric attributes in AODE Gaussian AODE (GAODE) classifier Hybrid AODE (HAODE) classifier
- Experimental Methodology and Results Datasets with only continuous attributes Hybrid Datasets

5 Conclusions and Future Work

GAODE and HAODE:

Ana M. Martínez

Motivation

Conditional Gaussian Networks

New proposals

Gaussian AODE (GAODE) classifier

Hybrid AODE (HAODE) classifier

Experimental Methodology and Results

Datasets with only continuous attributes

Hybrid Datasets

1 Motivation

- 2 Conditional Gaussian Networks
- 3 New proposals to deal with numeric attributes in AODE Gaussian AODE (GAODE) classifier Hybrid AODE (HAODE) classifier

Experimental Methodology and Results Datasets with only continuous attributes Hybrid Datasets

5 Conclusions and Future Work

GAODE and HAODE:

Ana M. Martínez

Motivation

Conditional Gaussian Networks

New proposals

Gaussian AODE (GAODE) classifier

Hybrid AODE (HAODE) classifier

Experimental Methodology and Results

Datasets with only continuous attributes

Hybrid Datasets

Experimental framework

- Experiments over the 26 numeric datasets for clasification, downloaded from the Weka home page and original from the UCI repository.
- 5x2cv for the evaluation process.
- 5x2 cv F Test with a 95 %.
- Supervised discretization for NB, AODE and HAODE's superparents.
 - Fayyad and Irani's MDL method.
 - Further experiments have been performed with different discretization methods, and the results obtained follow the same tendency.

GAODE and HAODE:

Ana M. Martínez

Motivation

Conditional Gaussian Networks

New proposals

Gaussian AODE (GAODE) classifier

Hybrid AODE (HAODE) classifier

Experimental Methodology and Results

Datasets with only continuous attributes

Hybrid Datasets

Comparison between different discretization methods

Type of Discretization

GAODE and HAODE:

Ana M. Martínez

Motivation

Conditional Gaussian Networks

New proposals Gaussian AODE (GAODE) classifier

Hybrid AODE (HAODE) classifier

Experimental Methodology and Results

Datasets with only continuous attributes

Hybrid Datasets

Comparison between different discretization methods

Favvad and Irani's Discretization Equal width with 5 bins Equal frequency with 10 bins ionos. heart hayes ionos. heart ionos. heart hayes irio haves irio irie kdd-J glass kdd-J glass kdd-J glass letter lette lette + A00 liver diab liver liver diab fact breast fact breast fact breast --- İbalan four 100 balan four - balan four àn 60 70 80 60 70 80 karh karh karh wine morph wavef morph wavet morph wave zem 7010 zem vehicle vehicle vehide optdig snamh optdig snamb optdig snamh pend segment sonar pend segment sonar page-b pend segment sonar page-b page-b

GAODE and HAODE:

Ana M. Martínez

Motivation

Conditional Gaussian Networks

New proposals

Gaussian AODE (GAODE) classifier

Hybrid AODE (HAODE) classifier

Experimental Methodology and Results

Datasets with only continuous attributes

Hybrid Datasets

GAODE and HAODE:

Datasets with only continuous attributes

ld	NB-G	NB	AODE	GAODE	HAODE
balance-scale	•88, 864	77,632	76,992	●89,088	●87,68
breast-w	96, 0801	•97, 1102	•96, 6237	 95, 9662 	●95, 0787
diabetes	•74, 974	74, 6875	•74, 5573	•74, 7917	•75, 9115
ecoli	 83, 9881 	80, 7738	•81,0119	•84, 5238	●84, 3452
glass	49,7196	•60	•60, 7477	 52, 8037 	●60, 6542
hayes-roth	65, 375	•57, 5	•57, 5	•65, 625	●68, 5
heart-statlog	•83, 4815	•81, 2593	80, 8148	•83, 7778	●83, 037
ionosphere	82, 963	 88, 8889 	90, 7123	92,0228	●91,7379
iris	95,0667	93, 4667	93, 3333	97, 4667	•95,6
kdd-JapanV	85, 7444	84, 5758	90, 3885	91,8442	 93, 9966
letter	64,06	73, 296	•86, 292	71,235	●86, 138
liver-disorders	54, 2609	 58, 6087 	•58, 6087	57, 3333	•54, 2029
mfeat-factors	92, 29	92, 36	●96, 08	●95, 94	●96, 31
mfeat-fourier	75, 7	75, 87	79, 25	•79, 39	●80, 69
mfeat-karh	93, 16	90, 48	•93, 83	●96, 15	●95, 92
mfeat-morph	•69, 32	68,03	68,9	•70, 79	●69, 95
mfeat-zernike	72, 99	70, 21	74,63	•77, 42	● 78, 1
optdigits	91, 1317	91, 7544	•96, 3167	93,637	●96, 9181
page-blocks	•87, 7142	93, 1336	96, 6307	90, 9446	●91,8144
pendigits	85, 7041	87, 3362	97, 1161	94,2085	●97, 5182
segment	80, 6753	90, 4416	●94, 1732	86,6667	●95, 1602
sonar	67, 5	75, 6731	75, 5769	•71, 4423	•75, 9615
spambase	79, 5131	89,8544	92, 7277	79,8566	77, 3658
vehicle	43, 1678	58,6052	67,4704	•68, 5106	•72, 9787
waveform-5000	80	79,968	•84, 508	●84, 46	●84, 22
wine	97, 4157	96, 9663	•96, 9663	•98, 427	97, 4157
Av	78, 4842	80, 3262	83, 1445	82, 4739	84, 1233

Ana M. Martínez

Motivation

Conditional Gaussian Networks

New proposals Gaussian AODE (GAODE)

classifier

Hybrid AODE (HAODE) classifier

Experimental Methodology and Results

Datasets with only continuous attributes

Hybrid Datasets

Datasets with only continuous attributes

✓ Both of our classifiers are significantly better than NB.

- \checkmark GAODE obtains compatitive results comparing to AODE.
- HAODE offers an even higher advantage, HAODE significantly improves AODE in numeric datasets.

GAODE and HAODE:

Ana M. Martínez

Motivation

Conditional Gaussian Networks

New proposals

Gaussian AODE (GAODE) classifier

Hybrid AODE (HAODE) classifier

Experimental Methodology and Results

Datasets with only continuous attributes

Hybrid Datasets

Friedman and Nemenyi tests

- Friedman statistic (chi-square with 4 df: 27,12): 1,877*e* 05.
- Iman and Davenport statistic (F-distribution with 4 and 100 df: 8,82): 3,852e 06.
- Nemenyi tests: only rejected the null hypothesis in favor of GAODE and HAODE over NB-G and NB.

Table: Adjusted p-values

i	hypothesis	unadjusted p	PNeme	PHolm
1	"NB-G"vs ."HAODE"	2.555080653283355E-5	2.555080653283355E-4	2.555080653283355E-4
2	"NB"vs ."HAODE"	2.299235858400624E-4	0.002299235858400624	0.0020693122725605616
3	"NB-G"vs ."GAODE"	3.8219140804744933E-4	0.0038219140804744934	0.0030575312643795947
4	"NB"vs ."GAODE"	0.002479351316213918	0.02479351316213918	0.017355459213497428
5	"NB-G"vsAODE"	0.01405860532373715	0.1405860532373715	0.0843516319424229
6	"NB"vsAODE"	0.053665391826160654	0.5366539182616066	0.2683269591308033
7	.AODE"vs ."HAODE"	0.07941062599894239	0.7941062599894239	0.31764250399576954
8	.AODE"vs ."GAODE"	0.27293765570660644	2.7293765570660646	0.8188129671198193
9	"GAODE"vs ."HAODE"	0.5106708223861578	5.1067082238615775	1.0213416447723156
10	"NB-G"vs ."NB"	0.598725069652846	5.98725069652846	1.0213416447723156

GAODE and HAODE:

Ana M. Martínez

Motivation

Conditional Gaussian Networks

New proposals

Gaussian AODE (GAODE) classifier

Hybrid AODE (HAODE) classifier

Experimental Methodology and Results

Datasets with only continuous attributes

Hybrid Datasets

1 Motivation

- 2 Conditional Gaussian Networks
- 3 New proposals to deal with numeric attributes in AODE Gaussian AODE (GAODE) classifier Hybrid AODE (HAODE) classifier

Experimental Methodology and Results Datasets with only continuous attributes Hybrid Datasets

5 Conclusions and Future Work

GAODE and HAODE:

Ana M. Martínez

Motivation

Conditional Gaussian Networks

New proposals

Gaussian AODE (GAODE) classifier

Hybrid AODE (HAODE) classifier

Experimental Methodology and Results

Datasets with only continuous attributes

Hybrid Datasets

Hybrid Datasets

- As HAODE is able to deal with all kind of datasets.
- Experiments with the 16 hybrid datasets of the standard group of 36 datasets from the UCI repository.
- Same Experimental framework.

ld	NB	AODE	HAODE	%М
Z00	 90, 495 	 91,6832 	 94, 2574 	0
lymph	•81, 0811	 80, 8108 	 82, 5676 	0
vowel	50,6667	61,0505	 78, 4444 	0
credit-g	•74, 16	•74,44	 75, 32 	0
labor	 88, 4211 	87, 7193	 88,0702 	0
anneal	 95, 1448 	96,7483	 92, 784 	0
heart-c	 83, 3003 	 83, 3003 	 83, 7624 	0, 17
credig-a	 86,029 	 86, 2609 	78,8696	5
hepatitis	 82, 3226 	 83,0968 	 84, 3871 	5,39
hypothyroid	97, 7253	 98,0011 	95,6416	5,4
sick	97,0891	 97, 2057 	94, 5652	5,4
autos	 58, 7317 	64, 1951	 57, 561 	11,06
colic.ORIG	69,6196	69,7826	60,8696	18, 7
heart-h	 83, 8776 	 83, 9456 	 83, 4014 	19
colic	 79, 3478 	81,087	 78, 8043 	22,77
anneal.ORIG	●93, 1403	●93, 9866	88, 7751	63, 32
Av	●81,947	83, 3321	 82, 3801 	

GAODE and HAODE:

Ana M. Martínez

Motivation

Conditional Gaussian Networks

New proposals

Gaussian AODE (GAODE) classifier

Hybrid AODE (HAODE) classifier

Experimental Methodology and Results

Datasets with only continuous attributes

Hybrid Datasets

What happen in hybrid datasets?

- Results summary:
 - **HAODE-ties-AODE**: 1 10 5.
 - Wilcoxon test: No statistical diference.
- Why?
 - No significant pattern found when the percentage of numerical variables with respect to discrete ones was analyzed.
 - Apparent tendency of HAODE to punnish datasets with missing values. Statistical difference (Wilcoxon) when only datasets with missing values are considered.
 - Results summary after applying an unsupervised filter to replace missing values: 2 – 12 – 2.

Ana M. Martínez

Motivation

Conditional Gaussian Networks

New proposals

Gaussian AODE (GAODE) classifier

Hybrid AODE (HAODE) classifier

Experimental Methodology and Results

Datasets with only continuous attributes

Hybrid Datasets

1 Motivation

- 2 Conditional Gaussian Networks
- 3 New proposals to deal with numeric attributes in AODE Gaussian AODE (GAODE) classifier Hybrid AODE (HAODE) classifier

Experimental Methodology and Results Datasets with only continuous attributes Hybrid Datasets

5 Conclusions and Future Work

GAODE and HAODE:

Ana M. Martínez

Motivation

Conditional Gaussian Networks

New proposals

Gaussian AODE (GAODE) classifier

Hybrid AODE (HAODE) classifier

Experimental Methodology and Results

Datasets with only continuous attributes

Hybrid Datasets

Conclusions and Future Work

- In this paper we propose two alternatives to AODE to deal with continuous attributes.
- GAODE: applies CGNs.
 - $\sqrt{}$ Competitive results comparing to AODE (5 16 5).
 - Reduction in the space complexity.
 - Maintains AODE's time complexity.
 - Can entail a more reliable computation of statistics, only class conditioned.
 - × : Restricted to continuous datasets.
- HAODE: discretizes the superparents.
 - ✓ Significantly better than AODE in continuous datasets (6 19 1).
 - \checkmark Able to deal with **all kind of datasets**.
 - × : Clear preference for datasets with continuous attributes and absence of missing data.
- As future line of work: application of Kernel-based distributions, **Mixtures of Truncated Exponentials** (MTEs) and other approaches.

GAODE and HAODE:

Ana M. Martínez

Motivation

Conditional Gaussian Networks

New proposals

Gaussian AODE (GAODE) classifier

Hybrid AODE (HAODE) classifier

Experimental Methodology and Results

Datasets with only continuous attributes

Hybrid Datasets

GAODE and HAODE:

Ana M. Martínez

Motivation

Conditional Gaussian Networks

New proposals

Gaussian AODE (GAODE) classifier

Hybrid AODE (HAODE) classifier

Experimental Methodology and Results

Datasets with only continuous attributes

Hybrid Datasets

Conclusions and Future Work

Thank you