HODE:

Ana M. Martínez

Motivation

New proposal: Hidden One-Dependence Estimators

Application of the EM algorithm

Number of states for the H variable

Experimental methodology and results

Evaluation in Terms of Accuracy

Evaluation in Terms of Efficiency

Conclusions and Future Work

References

Presentation:

HODE: Hidden One-Dependence Estimator

ECSQARU 2009 on 01/07/2009

M. Julia Flores, José A. Gámez, Ana M. Martínez and José M. Puerta Computing Systems Department Albacete - UCLM - Spain

Outline

1 Motivation

2 New proposal: Hidden One-Dependence Estimators Application of the EM algorithm Number of states for the *H* variable

3 Experimental methodology and results Evaluation in Terms of Accuracy Evaluation in Terms of Efficiency

4 Conclusions and Future Work

5 References

HODE: Ana M. Martínez

Motivation

New proposal: Hidden One-Dependence Estimators

Application of the EM algorithm

Number of states for the H variable

Experimental methodology and results

Evaluation in Terms of Accuracy

Evaluation in Terms of Efficiency

Conclusions and Future Work

Outline

1 Motivation

2 New proposal: Hidden One-Dependence Estimators Application of the EM algorithm Number of states for the *H* variable

3 Experimental methodology and results Evaluation in Terms of Accuracy Evaluation in Terms of Efficiency

4 Conclusions and Future Work

5 References

HODE:

Ana M. Martínez

Motivatio

New proposal: Hidden One-Dependence Estimators

Application of the EM algorithm

Number of states for the H variable

Experimental methodology and results

Evaluation in Terms of Accuracy

Evaluation in Terms of Efficiency

Conclusions and Future Work

Data Mining

HODE:

Ana M. Martínez

Motivatio

New proposal: Hidden One-Dependence Estimators

Application of the EM algorithm

Number of states for the H variable

Experimental methodology and results

Evaluation in Terms of Accuracy

Evaluation in Terms of Efficiency

Conclusions and Future Work

Data Mining Clasification

$$f: X^n \to \{c_1, \ldots, c_k\}$$

HODE:

Ana M. Martínez

wotwation

New proposal: Hidden One-Dependence Estimators

Application of the EM algorithm

Number of states for the H variable

Experimental methodology and results

Evaluation in Terms of Accuracy

Evaluation in Terms of Efficiency

Conclusions and Future Work

HODE:

Ana M. Martínez

Motivatio

New proposal: Hidden One-Dependence Estimators

Application of the EM algorithm

Number of states for the H variable

Experimental methodology and results

Evaluation in Terms of Accuracy

Evaluation in Terms of Efficiency

Conclusions and Future Work

HODE:

Ana M. Martínez

New proposal: Hidden One-Dependence Estimators

Application of the EM algorithm

Number of states for the H variable

Experimental methodology and results

Evaluation in Terms of Accuracy

Evaluation in Terms of Efficiency

Conclusions and Future Work

HODE:

Ana M. Martínez

New proposal: Hidden One-Dependence Estimators

Application of the EM algorithm

Number of states for the H variable

Experimental methodology and results

Evaluation in Terms of Accuracy

Evaluation in Terms of Efficiency

Conclusions and Future Work

HODE:

Ana M. Martínez

New proposal: Hidden One-Dependence Estimators

Application of the EM algorithm

Number of states for the H variable

Experimental methodology and results

Evaluation in Terms of Accuracy

Evaluation in Terms of Efficiency

Conclusions and Future Work

HODE:

Ana M. Martínez

New proposal: Hidden One-Dependence Estimators

Application of the EM algorithm

Number of states for the H variable

Experimental methodology and results

Evaluation in Terms of Accuracy

Evaluation in Terms of Efficiency

Conclusions and Future Work

HODE:

Ana M. Martínez

New proposal: Hidden One-Dependence Estimators

Application of the EM algorithm

Number of states for the H variable

Experimental methodology and results

Evaluation in Terms of Accuracy

Evaluation in Terms of Efficiency

Conclusions and Future Work

HODE:

Ana M. Martínez

New proposal: Hidden One-Dependence Estimators

Application of the EM algorithm

Number of states for the H variable

Experimental methodology and results

Evaluation in Terms of Accuracy

Evaluation in Terms of Efficiency

Conclusions and Future Work

HODE:

Ana M. Martínez

Motivatio

New proposal: Hidden One-Dependence Estimators

Application of the EM algorithm

Number of states for the H variable

Experimental methodology and results

Evaluation in Terms of Accuracy

Evaluation in Terms of Efficiency

Conclusions and Future Work

HODE:

Ana M. Martínez

Motivatio

New proposal: Hidden One-Dependence Estimators

Application of the EM algorithm

Number of states for the H variable

Experimental methodology and results

Evaluation in Terms of Accuracy

Evaluation in Terms of Efficiency

Conclusions and Future Work

HODE:

Ana M. Martínez

Motivatio

New proposal: Hidden One-Dependence Estimators

Application of the EM algorithm

Number of states for the H variable

Experimental methodology and results

Evaluation in Terms of Accuracy

Evaluation in Terms of Efficiency

Conclusions and Future Work

HODE:

Ana M. Martínez

Motivatio

New proposal: Hidden One-Dependence Estimators

Application of the EM algorithm

Number of states for the H variable

Experimental methodology and results

Evaluation in Terms of Accuracy

Evaluation in Terms of Efficiency

Conclusions and Future Work

HODE:

Ana M. Martínez

Motivatio

New proposal: Hidden One-Dependence Estimators

Application of the EM algorithm

Number of states for the H variable

Experimental methodology and results

Evaluation in Terms of Accuracy

Evaluation in Terms of Efficiency

Conclusions and Future Work

HODE:

Ana M. Martínez

Motivatio

New proposal: Hidden One-Dependence Estimators

Application of the EM algorithm

Number of states for the H variable

Experimental methodology and results

Evaluation in Terms of Accuracy

Evaluation in Terms of Efficiency

Conclusions and Future Work

Naive Bayes classifier

• The attributes are conditionally independent given the class value *I*(*A_i*, *A_j*|*C*).

$$c_{MAP} = argmax_{c \in \Omega_{C}} p(c) \prod_{i=1}^{n} p(a_{i}|c)$$

- Time complexity:
 - Training: $\mathcal{O}(tn)$
 - Classification: O(kn)
- Drawbacks:
 - × : It does not work properly in certain datasets.
 - × : Dependencies between attributes reduce, unavoidably, the prediction capability of NB.
 - × : Not only interesting to be right in the classification in certain applications.

HODE:

Ana M. Martínez

Motivation

New proposal: Hidden One-Dependence Estimators

Application of the EM algorithm

Number of states for the H variable

Experimental methodology and results

Evaluation in Terms of Accuracy

Evaluation in Terms of Efficiency

Conclusions and Future Work

 AODE is significantly better in terms of error reduction compared to the rest of semi-naive techniques.

MAP hypothesis:

$$argmax_{c \in \Omega_{C}} \left(\sum_{j=1, N(a_{j}) > m}^{n} p(c, a_{j}) \prod_{i=1, i \neq j}^{n} p(a_{i} | c, a_{j}) \right)$$

HODE:

Ana M. Martínez

Motivation

New proposal: Hidden One-Dependence Estimators

Application of the EM algorithm

Number of states for the H variable

Experimental methodology and results

Evaluation in Terms of Accuracy

Evaluation in Terms of Efficiency

Conclusions and Future Work

- Time complexity:
 - Training: $\mathcal{O}(tn^2)$
 - Classification: $O(kn^2)$

HODE:

Ana M. Martínez

Motivation

New proposal: Hidden One-Dependence Estimators

Application of the EM algorithm

Number of states for the H variable

Experimental methodology and results

Evaluation in Terms of Accuracy

Evaluation in Terms of Efficiency

Conclusions and Future Work

- Time complexity:
 - Training: $\mathcal{O}(tn^2)$
 - Classification: $O(kn^2)$
- Drawbacks:

Ana M. Martínez

Motivation

New proposal: Hidden One-Dependence Estimators

Application of the EM algorithm

Number of states for the H variable

Experimental methodology and results

Evaluation in Terms of Accuracy

Evaluation in Terms of Efficiency

Conclusions and Future Work

- Time complexity:
 - Training: $\mathcal{O}(tn^2)$
 - Classification: $O(kn^2)$
- Drawbacks:
 - × : Quadratic order time in classification.
 - × : High demand of RAM memory.

Ana M. Martínez

Motivation

New proposal: Hidden One-Dependence Estimators

Application of the EM algorithm

Number of states for the H variable

Experimental methodology and results

Evaluation in Terms of Accuracy

Evaluation in Terms of Efficiency

Conclusions and Future Work

- Time complexity:
 - Training: $\mathcal{O}(tn^2)$
 - Classification: $O(kn^2)$
- Drawbacks:
 - × : Quadratic order time in classification.
 - × : High demand of RAM memory.
 - × :Only discrete variables.

HODE:

Ana M. Martínez

Motivation

New proposal: Hidden One-Dependence Estimators

Application of the EM algorithm

Number of states for the H variable

Experimental methodology and results

Evaluation in Terms of Accuracy

Evaluation in Terms of Efficiency

Conclusions and Future Work

- Time complexity:
 - Training: $\mathcal{O}(tn^2)$
 - Classification: $O(kn^2)$
- Drawbacks:
 - × : Quadratic order time in classification.
 - × : High demand of RAM memory.
 - × :Only discrete variables.

Ana M. Martínez

Motivation

New proposal: Hidden One-Dependence Estimators

Application of the EM algorithm

Number of states for the H variable

Experimental methodology and results

Evaluation in Terms of Accuracy

Evaluation in Terms of Efficiency

Conclusions and Future Work

- Time complexity:
 - Training: $\mathcal{O}(tn^2)$
 - Classification: $O(kn^2)$
- Drawbacks:
 - × : Quadratic order time in classification.
 - × : High demand of RAM memory.
 - × :Only discrete variables.

- Attempts to improve AODE's accuracy
 - WAODE: Model weighting with *MI*(*C*, *A_j*).

HODE

Motivation

New proposal: Hidden One-Dependence Estimators

Application of the EM algorithm

Number of states for the H variable

Experimental methodology and results

Evaluation in Terms of Accuracy

Evaluation in Terms of Efficiency

Conclusions and Future Work

- AODE is quadratic in training and classification time.
 - Can be a handicap in many real applications where the **response time** is **critical**.
- The **memory required** by AODE is quite **large** due to the necessity to store the *n* models.
 - Can be an important problem when the size of the database (mainly the number of attributes) is very large.
 - Real examples: microarrays or DNA chips or KDD 09 competition.
- <u>Our solution</u>: new classifier which **estimates a new variable** which gathers the dependencies represented by every superparent in AODE in *a single model*.

HODE:

Ana M. Martínez

Motivation

New proposal: Hidden One-Dependence Estimators

Application of the EM algorithm

Number of states for the H variable

Experimental methodology and results

Evaluation in Terms of Accuracy

Evaluation in Terms of Efficiency

Conclusions and Future Work

Outline

1 Motivation

2 New proposal: Hidden One-Dependence Estimators Application of the EM algorithm Number of states for the *H* variable

3 Experimental methodology and results Evaluation in Terms of Accuracy Evaluation in Terms of Efficiency

4 Conclusions and Future Work

5 References

HODE:

Ana M. Martínez

Motivation

New proposal: Hidden One-Dependence Estimators

Application of the EM algorithm

Number of states for the H variable

Experimental methodology and results

Evaluation in Terms of Accuracy

Evaluation in Terms of Efficiency

Conclusions and Future Work

HODE:

Ana M. Martínez

Motivation

New proposal: Hidden One-Dependence Estimators

Application of the EM algorithm

Number of states for the H variable

Experimental methodology and results

Evaluation in Terms of Accuracy

Evaluation in Terms of Efficiency

Conclusions and Future Work

HODE:

Ana M. Martínez

Motivation

New proposal: Hidden Dne-Dependence Estimators

Application of the EM algorithm

Number of states for the H variable

Experimental methodology and results

Evaluation in Terms of Accuracy

Evaluation in Terms of Efficiency

Conclusions and Future Work

HODE:

Ana M. Martínez

Motivation

New proposal: Hidden One-Dependence Estimators

Application of the EM algorithm

Number of states for the H variable

Experimental methodology and results

Evaluation in Terms of Accuracy

Evaluation in Terms of Efficiency

Conclusions and Future Work

HODE:

Ana M. Martínez

Motivation

New proposal: Hidden One-Dependence Estimators

Application of the EM algorithm

Number of states for the H variable

Experimental methodology and results

Evaluation in Terms of Accuracy

Evaluation in Terms of Efficiency

Conclusions and Future Work

HODE:

Ana M. Martínez

Motivation

New proposal: Hidden One-Dependence Estimators

Application of the EM algorithm

Number of states for the H variable

Experimental methodology and results

Evaluation in Terms of Accuracy

Evaluation in Terms of Efficiency

Conclusions and Future Work

HODE:

Ana M. Martínez

Motivation

New proposal: Hidden Dne-Dependence Estimators

Application of the EM algorithm

Number of states for the H variable

Experimental methodology and results

Evaluation in Terms of Accuracy

Evaluation in Terms of Efficiency

Conclusions and Future Work

$$\operatorname{argmax}_{c \in \Omega_{C}} \left(\sum_{j=1}^{\#H} p(c, h_{j}) \prod_{i=1}^{n} p(a_{i}|c, h_{j}) \right)$$

HODE:

Ana M. Martínez

Motivation

New proposal: Hidden One-Dependence Estimators

Application of the EM algorithm

Number of states for the H variable

Experimental methodology and results

Evaluation in Terms of Accuracy

Evaluation in Terms of Efficiency

Conclusions and Future Work

- Estimation of a new variable: hidden variable H.
 - It gathers the suitable dependencies among the different superparents and the rest of attributes.
 - Instead of averaging the *n* SPODE classifiers, *H*'s aim is to represent the links existing in the *n* models.
- Necessary to estimate the probability of every attribute value conditioned by the class and H.
 - Expectation-Maximization algorithm.

HODE:

Ana M. Martínez

Motivation

New proposal: Hidden One-Dependence Estimators

Application of the EM algorithm

Number of states for the H variable

Experimental methodology and results

Evaluation in Terms of Accuracy

Evaluation in Terms of Efficiency

Conclusions and Future Work

Outline

1 Motivation

2 New proposal: Hidden One-Dependence Estimators Application of the EM algorithm

Number of states for the H variable

3 Experimental methodology and results Evaluation in Terms of Accuracy Evaluation in Terms of Efficiency

4 Conclusions and Future Work

5 References

HODE:

Ana M. Martínez

Motivation

New proposal: Hidden One-Dependence Estimators

Application of the EM algorithm

Number of states for the H variable

Experimental methodology and results

Evaluation in Terms of Accuracy

Evaluation in Terms of Efficiency

Conclusions and Future Work

Application of the EM algorithm

- As the different values for *H* are not known.
- To obtain the **maximum likelihood estimation of the parameters**.

Algorithm 1 EM algorithm adaptation to HODE.

- 1: Random initialization of weights;
- 2: {EM ALGORITHM}
- 3: while (!convergence()) do
- 4: {**E-STEP**}
- 5: Update prob. according to weights

6: {**M-STEP**}

7: for
$$(j = 1 \text{ to } j = numInstances)$$
 do

- 8: **for** (s = 0 to s < #H) **do**
- 9: $w_{\{c,h_s,a_j,\cdots,a_n\}_j} = P(c,h_s)P(a_1|c,h_s)\cdots P(a_n|c,h_s);$
- 10: Normalize \vec{w} ;
- 11: end for
- 12: end for
- 13: end while

HODE:

Ana M. Martínez

Motivation

New proposal: Hidden One-Dependence Estimators

Application of the EM algorithm

Number of states for the H variable

Experimental methodology and results

Evaluation in Terms of Accuracy

Evaluation in Terms of Efficiency

Conclusions and Future Work

Virtual dataset division

HODE:

Ana M. Martínez

Motivation

New proposal: Hidden One-Dependence Estimators

Application of the EM algorithm

Number of states for the H variable

Experimental methodology and results

Evaluation in Terms of Accuracy

Evaluation in Terms of Efficiency

Conclusions and Future Work

HODE:

Ana M. Martínez

Motivation

New proposal: Hidden One-Dependence Estimators

Application of the EM algorithm

Number of states for the H variable

Experimental methodology and results

Evaluation in Terms of Accuracy

Evaluation in Terms of Efficiency

Conclusions and Future Work

_		_
	Virtual	
	dataset	
	division	
	uivision	

A	В	С	н	W
2	h	h c	h ₁	0,3
ŭ	b	U	h ₂	0,7
2	7	2	h ₁	0,5
u	D	U	h ₂	0,5
2	b	с	h ₁	0,9
u			h ₂	0,1
2	b	С	h ₁	0,6
a			h ₂	0,4
-	h	R	h ₁	0,7
a	b	U	h ₂	0,3
2	b	с	h_1	0,2
a			h_2	0,8

HODE:

Ana M. Martínez

Α	В	С	н	w
2	h	c	h ₁	0,3
	b	U	h ₂	0,7
2			h ₁	0,5
	D	U	h ₂	0,5
2	b	С	h ₁	0,9
u			h ₂	0,1
а	b	С	h ₁	0,6
			h ₂	0,4
-	h	R	h ₁	0,7
a	D	U	h ₂	0,3
а	b	с	h ₁	0,2
			h_2	0,8

E-step

Motivation

New proposal: Hidden One-Dependence Estimators

Application of the EM algorithm

Number of states for the H variable

Experimental methodology and results

Evaluation in Terms of Accuracy

Evaluation in Terms of Efficiency

Conclusions and Future Work

HODE:

Ana M. Martínez

New proposal: Hidden One-Dependence Estimators

Application of the EM algorithm

Number of states for the H variable

Experimental methodology and results

Evaluation in Terms of Accuracy

Evaluation in Terms of Efficiency

Conclusions and Future Work

References

_		_
(Virtual	
	Virtuar	
	dataset	
	division	
U		
_		

Α	В	С	Н	w
2	h	c	h ₁	0,3
u	5	U	h ₂	0,7
9	5	2	h ₁	0,5
u	D	U	h ₂	0,5
а	b	С	h ₁	0,9
			h ₂	0,1
а	b	с	h ₁	0,6
			h ₂	0,4
2	b	C	h ₁	0,7
a			h ₂	0,3
а	b	С	h_1	0,2
			h ₂	0,8

E-step

HODE:

Example II

M-step

Motivation

New proposal: Hidden One-Dependence Estimators

Application of the EM algorithm

Number of states for the H variable

Experimental methodology and results

Evaluation in Terms of Accuracy

Evaluation in Terms of Efficiency

Conclusions and Future Work

M-step Weights count Weights modification after ABCHW a b c $p(c, h_1|a, b) = \frac{p(c, h_1)p(a|c, h_1)p(b|c, h_1)}{\sum_{i=1}^{H} (p(c, h_i)p(a|c, h_i)p(b|c, h_i))} = \frac{0.33 \cdot 0.55 \cdot 0.45}{0.254} = 0.32$ a b c (1) \overline{a} \overline{b} cha a b c $p(c, h_2|a, b) = \frac{p(c, h_2)p(a|c, h_2)p(b|c, h_2)}{\sum_{i=1}^{H} (p(c, h_i)p(a|c, h_i)p(b|c, h_i))} = \frac{0.33 \cdot 0.95 \cdot 0.55}{0.254} = 0.68$ a b c (2) a b c

HODE:

Ana M. Martínez

Motivation

M-step

0.68

0,08

0.68

0.5 0.41

0.5 0.59

0.9 0.92

0.6 0.32

0.3 0.21

0.8 0.59 ha

04

0.7 0.79

0.2 0.41 New proposal: Hidden One-Dependence Estimators

Application of the EM algorithm

Number of states for the H variable

Experimental methodology and results

Evaluation in Terms of Accuracy

Evaluation in Terms of Efficiency

Conclusions and Future Work

M-step Weights count Weights modification after M-step ABCH a b c $p(c, h_1 | a, b) = \frac{p(c, h_1)p(a|c, h_1)p(b|c, h_1)}{\sum_{i=1}^{H} (p(c, h_i)p(a|c, h_i)p(b|c, h_i))} = \frac{0.33 \cdot 0.55 \cdot 0.45}{0.254} = 0.32$ 0.5 (1) \overline{a} \overline{b} c.9 abc $p(c, h_2|a, b) = \frac{p(c, h_2)p(a|c, h_2)p(b|c, h_2)}{\sum_{i=1}^{H} (p(c, h_i)p(a|c, h_i)p(b|c, h_i))} = \frac{0.33 \cdot 0.95 \cdot 0.55}{0.254} = 0.68$ a b c a b c (2) 0.8

- The following E-step would use w₂ and the cycle continues until the algorithm converges.
- Convergence when difference from adjacent iterations is lower than 5 thousandths.

HODE

Ana M Martínez

Motivation

0 41

0.92

0.08

0.79

0.21

0 41

0.59

New proposal: Hidden One-Dependence Estimators

Application of the EM algorithm

Number of states for the H variable

Experimental methodology and results

Evaluation in Terms of Accuracy

Evaluation in Terms of Efficiency

Conclusions and Euture Work

Outline

1 Motivation

2 New proposal: Hidden One-Dependence Estimators Application of the EM algorithm Number of states for the *H* variable

3 Experimental methodology and results Evaluation in Terms of Accuracy Evaluation in Terms of Efficiency

4 Conclusions and Future Work

5 References

HODE:

Ana M. Martínez

Motivation

New proposal: Hidden One-Dependence Estimators

Application of the EM algorithm

Number of states for the H variable

Experimental methodology and results

Evaluation in Terms of Accuracy

Evaluation in Terms of Efficiency

Conclusions and Future Work

Number of states for the *H* variable

Greedy technique:

- First step: #H = 1 (NB).
- Execution of EM algorithm and build models: #H = #H + 1.
- Evaluate model: if worse than previous model stop process.

• How is the fitness of the model evaluated?

• Log-likelihood (LL):

$$LL = \sum_{i=1}^{l} \log \left(\sum_{t=1}^{\#H} p(c^{i}, a_{1}^{i}, \cdots, a_{n}^{i}, h_{t}) \right) = \sum_{i=1}^{l} \log \left(\sum_{t=1}^{\#H} p(c^{i}, h_{t}) \prod_{r=1}^{n} p(a_{r}^{i} | c^{i}, h_{t}) \right)$$

- Penalization:
 - Minimum Description Length:

$$C(M) = \sum_{i=1}^{n} \left((\#H \cdot \#C)(\#A_i - 1) \right) + \#H \cdot \#C - 1$$

$$MDL = LL - \frac{1}{2}\log I \cdot C(M)$$

Akaike Information Criterion or AIC:

$$AIC = LL - C(M)$$

HODE:

Ana M. Martínez

Motivation

New proposal: Hidden One-Dependence Estimators

Application of the EM algorithm

Number of states for the H variable

Experimental methodology and results

Evaluation in Terms of Accuracy

Evaluation in Terms of Efficiency

Conclusions and Future Work

Accuracy and #H with AIC and MDL penalization

HODE:

Ana M. Martínez

Outline

1 Motivation

2 New proposal: Hidden One-Dependence Estimators Application of the EM algorithm Number of states for the *H* variable

Experimental methodology and results Evaluation in Terms of Accuracy Evaluation in Terms of Efficiency

4 Conclusions and Future Work

5 References

HODE:

Ana M. Martínez

Motivation

New proposal: Hidden One-Dependence Estimators

Application of the EM algorithm

Number of states for the H variable

Experimental

methodology and results

Evaluation in Terms of Accuracy

Evaluation in Terms of Efficiency

Conclusions and Future Work

Outline

1 Motivation

2 New proposal: Hidden One-Dependence Estimators Application of the EM algorithm Number of states for the *H* variable

3 Experimental methodology and results Evaluation in Terms of Accuracy Evaluation in Terms of Efficiency

4 Conclusions and Future Work

5 References

HODE:

Ana M. Martínez

Motivation

New proposal: Hidden One-Dependence Estimators

Application of the EM algorithm

Number of states for the H variable

Experimental methodology and results

Evaluation in Terms of Accuracy

Evaluation in Terms of Efficiency

Conclusions and Future Work

Evaluation in Terms of Accuracy I

Table: Main characteristics of the datasets: number of different values of the class variable (k), number of predictive variables (n), and number of instances (I).

ld.	Dataset	k	n	1	ld.	Dataset	k	n	Ι
1	anneal.ORIG	6	38	898	19	ionosphere	2	34	351
2	anneal	6	38	898	20	iris	3	4	150
3	audiology	24	69	226	21	kr-vs-kp	2	36	3196
4	autos	7	25	205	22	labor	2	16	57
5	balance-scale	3	4	625	23	letter	26	16	20000
6	breast-cancer	2	9	286	24	lymph	4	18	148
7	breast-w	2	9	699	25	mushroom	2	22	8124
8	colic.ORIG	2	27	368	26	primary-tumor	21	17	339
9	colic	2	27	368	27	segment	7	19	2310
10	credit-a	2	15	690	28	sick	2	29	3772
11	credit-g	2	20	1000	29	sonar	2	60	208
12	diabetes	2	8	768	30	soybean	19	35	638
13	glass	6	10	214	31	splice	3	61	3190
14	heart-c	2	13	303	32	vehicle	4	18	846
15	heart-h	2	13	294	33	vote	2	16	435
16	heart-statlog	2	13	270	34	vowel	11	13	990
17	hepatitis	2	19	155	35	waveform-5000	3	40	5000
18	hypothyroid	4	29	3772	36	Z00	7	17	101

HODE:

Ana M. Martínez

Motivation

New proposal: Hidden One-Dependence Estimators Application of the EM

Application of the EM algorithm

Number of states for the H variable

Experimental methodology and results

Evaluation in Terms of Accuracy

Evaluation in Terms of Efficiency

Conclusions and Future Work

Evaluation in Terms of Accuracy II

Dataset AODE HODE #HDataset AODE HODE #Hanneal ORIG 93.3185 94.0646 92 9915 93.9886 4 4 2.2 ionosphere 98,196 99,1203 2,8 93,2 •93,7333 anneal iris 71.6372 •78,5841 kr-vs-kp 91.0325 90.8229 9.7 audiology 81.3658 82.0975 1.9 labor 95.0877 94,9123 autos balance-scale 69.344 •71.088 88,902 •91,117 9,8 letter breast-cancer •72.7273 71.4336 1.3 lymph 87.5 81.1487 1.5 99.9508 breast-w 96.9671 96.9814 2.8 mushroom 99.6824 6.2 colic ORIG ●75.9511 73 0707 primary-tumor 47.8761 45.7227 1 colic 82.5543 81.5489 95,7792 96.1732 4.8 2.1 segment credit-a ●86.5507 85,5942 4,1 sick •97,3966 97.3118 4.6 •76.33 74.94 2.9 86.5865 83 0769 4.3 credit-a sonar 77.8516 1.2 94.3631 1.9 diabetes •78.2292 sovbean 93.3089 ●76.2617 74.0187 splice ●96.116 95.8872 3.9 alass 1.6 4.9 heart-c 83.2013 83.4323 vehicle 72.3049 72.3522 heart-h 84,4898 85.0 94,5288 95.5173 3.1 1 vote 79,0101 heart-statlog 82,7037 •83,7037 1.9 vowel 80.8788 3,9 hepatitis 85,4839 ●86,6452 waveform-5000 86.454 86.54 4.2 2.3 98.7513 99.0668 4.5 94.6535 ●96.2376 hypothyroid Z00 1

Table: Accuracy results obtained with AODE and HODE classifiers.

Ana M. Martínez

Motivation

New proposal: Hidden One-Dependence Estimators

Application of the EM algorithm

Number of states for the H variable

Experimental methodology and results

Evaluation in Terms of Accuracy

Evaluation in Terms of Efficiency

Conclusions and Future Work

Evaluation in Terms of Accuracy III

Summary with AIC: (w/t/l, using a two-tailed t-test)

- 16/6/14 (with a 95% confidence level).
- 15/8/13 (with a 99% confidence level).
- No significant difference with Wilcoxon test.
- Summary with MDL:
 - 11/7/18.

HODE:

Ana M. Martínez

Motivation

New proposal: Hidden One-Dependence Estimators

Application of the EM algorithm

Number of states for the H variable

Experimental methodology and results

Evaluation in Terms of Accuracy

Evaluation in Terms of Efficiency

Conclusions and Future Work

Outline

1 Motivation

2 New proposal: Hidden One-Dependence Estimators Application of the EM algorithm Number of states for the *H* variable

3 Experimental methodology and results Evaluation in Terms of Accuracy Evaluation in Terms of Efficiency

4 Conclusions and Future Work

5 References

HODE:

Ana M. Martínez

Motivation

New proposal: Hidden One-Dependence Estimators

Application of the EM algorithm

Number of states for the H variable

Experimental methodology and results

Evaluation in Terms of Accuracy

Evaluation in Terms of Efficiency

Conclusions and Future Work

What could make us vote for one or the other? Time complexity

- At training time HODE is quadratic in the worst case:
 - 1tn + 2tn + · · · + ntn
 - AODE is usually faster in model construction (because of EM).
- At classification time HODE is linear, whereas AODE's is quadratic.

HODE:

Ana M. Martínez

Motivation

New proposal: Hidden One-Dependence Estimators

Application of the EM algorithm

Number of states for the H variable

Experimental methodology and results

Evaluation in Terms of Accuracy

Evaluation in Terms of Efficiency

Conclusions and Future Work

What could make us vote for one or the other? Space complexity

- Lower than AODE's, it needs to store less CPTs.
- $\mathcal{O}(kn \# Hv)$ for HODE vs $\mathcal{O}(k(nv)^2)$ for AODE.
- AODE demands more RAM memory, problems in large databases with a high number of attributes or even attributes with lots of states.
- Experiments in 7 datasets of microarrays or DNA chips.

Dataset	k	n	1	NB	AODE	HODE
colon	2	2000	62	93, 5484	91,9355	96, 7742
DLBCL-Stanford	2	4026	47	100	100	100
GCM	14	16063	190	60, 5263	OutOfMem	70
leukemia	2	7129	72	100	OutOfMem	98,6111
lungCancerHarvard2	2	12533	181	98, 895	OutOfMem	99, 4475
lymphoma	9	4026	96	96, 875	OutOfMem	75
prostate_tumorVS	2	12600	136	80, 1471	OutOfMem	95, 5882

• OutOfMem: problems of overflow with a maximum of 8 gigabytes.

HODE terminated without problems, even with a lower need for memory.

HODE:

Ana M. Martínez

Motivation

New proposal: Hidden One-Dependence Estimators

Application of the EM algorithm

Number of states for the H variable

Experimental methodology and results

Evaluation in Terms of Accuracy

Evaluation in Terms of Efficiency

Conclusions and Future Work

Outline

1 Motivation

2 New proposal: Hidden One-Dependence Estimators Application of the EM algorithm Number of states for the *H* variable

3 Experimental methodology and results Evaluation in Terms of Accuracy Evaluation in Terms of Efficiency

4 Conclusions and Future Work

5 References

HODE:

Ana M. Martínez

Motivation

New proposal: Hidden One-Dependence Estimators

Application of the EM algorithm

Number of states for the H variable

Experimental methodology and results

Evaluation in Terms of Accuracy

Evaluation in Terms of Efficiency

Conclusions and Future Work

Conclusions and Future Work

- HODE: alternative to the AODE classifier:
 - Results in terms of accuracy similar to AODE.
 - Linear order in classification time.
 - Lower time response in many real applications.
 - Reduction in space complexity.
 - Lower RAM consumption.
- HODE tested in a **parallel environment**: global optimum for #*H*.
- Additional improvements:
 - Direct adaptation for the imputation of **missing values** in the dataset, use of **EM**.
 - · Average the constructed models and more.
- Clear alternative to AODE in many real applications: KDD 09.

Motivation

New proposal: Hidden One-Dependence Estimators

Application of the EM algorithm

Number of states for the H variable

Experimental methodology and results

Evaluation in Terms of Accuracy

Evaluation in Terms of Efficiency

Conclusions and Future Work

References

HODE:

HODE:

Ana M. Martínez

Motivation

New proposal: Hidden One-Dependence Estimators

Application of the EM algorithm

Number of states for the H variable

Experimental methodology and results

Evaluation in Terms of Accuracy

Evaluation in Terms of Efficiency

Conclusions and Future Work

References

Thank you

Outline

1 Motivation

2 New proposal: Hidden One-Dependence Estimators Application of the EM algorithm Number of states for the *H* variable

3 Experimental methodology and results Evaluation in Terms of Accuracy Evaluation in Terms of Efficiency

4 Conclusions and Future Work

5 References

HODE:

Ana M. Martínez

Motivation

New proposal: Hidden One-Dependence Estimators

Application of the EM algorithm

Number of states for the H variable

Experimental methodology and results

Evaluation in Terms of Accuracy

Evaluation in Terms of Efficiency

Conclusions and Future Work

References I

- Zheng, F., Webb, G.I.: A Comparative Study of Semi-naive Bayes Methods in Classification Learning. In: 4th Australasian Data Mining Conference (AusDM05), Simoff, S.J, Williams, G.J, Galloway, J., Kolyshkina, I. editors, pp. 141–156. University of Technology, Sydney (2005)
- Flores, M. J., Gámez, J. A., Martínez, A. M. and Puerta J. M.: GAODE and HAODE: Two Proposals based on AODE to Deal with Continuous Variables. In: 26th International Conference on Machine Learning: 40. Montreal, Canada (2009)
- Webb, G. I., Boughton, J. R., Wang, Z.: Not So Naive Bayes: Aggregating One-Dependence Estimators. J. Mach. Learn. 58 (1), 5-24 (2005)
 - Lowd, D., Domingos, P.: Naive Bayes models for probability estimation. In: 22nd international conference on Machine learning, pp. 529–536. ACM, Bonn (2005)

HODE:

Ana M. Martínez

Motivation

New proposal: Hidden One-Dependence Estimators

Application of the EM algorithm

Number of states for the H variable

Experimental methodology and results

Evaluation in Terms of Accuracy

Evaluation in Terms of Efficiency

Conclusions and Future Work

References II

HODE:

Ana M. Martínez

Motivation

New proposal: Hidden One-Dependence Estimators

Application of the EM algorithm

Number of states for the H variable

Experimental methodology and results

Evaluation in Terms of Accuracy

Evaluation in Terms of Efficiency

Conclusions and Future Work

References

Cheeseman, P., Stutz, J.: Bayesian classification (AutoClass): theory and results. Advances in knowledge discovery and data mining. pp. 153–180. AAAI Press (1996)