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Naive Bayes classifier

• The attributes are conditionally independent given the
class value I(Ai , Aj |C).

cMAP = argmaxc∈ΩC p(c)

n
∏

i=1

p(ai |c)

• Time complexity :
• Training : O(tn)
• Classification : O(kn)

• Drawbacks:
× : It does not work properly in certain datasets.
× : Dependencies between attributes reduce, unavoidably, the

prediction capability of NB.
× : Not only interesting to be right in the classification in

certain applications.
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AODE classifier I

• AODE is significantly better in terms of error reduction
compared to the rest of semi-naive techniques.

C Aj

A1 A2 . . . Aj−1 Aj+1 . . . An

• MAP hypothesis:

argmaxc∈ΩC





n
∑

j=1,N(aj)>m

p(c, aj)

n
∏

i=1,i 6=j

p(ai |c, aj)
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AODE classifier II

• Time complexity :

• Training : O(tn2)

• Classification : O(kn2)
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AODE classifier II

• Time complexity :

• Training : O(tn2)

• Classification : O(kn2)

• Drawbacks:

× : Quadratic order time in classification .

× : High demand of RAM memory .

× :Only discrete variables.
GAODE/HAODE

ICML 09

• Attempts to improve AODE’s accuracy

• WAODE: Model weighting with MI(C, Aj).
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Motivation

• AODE is quadratic in training and classification time .

• Can be a handicap in many real applications where the
response time is critical .

• The memory required by AODE is quite large due to the
necessity to store the n models.

• Can be an important problem when the size of the database
(mainly the number of attributes) is very large.

• Real examples: microarrays or DNA chips or KDD 09
competition.

• Our solution: new classifier which estimates a new
variable which gathers the dependencies represented by
every superparent in AODE in a single model.
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HODE Classifier

C, H

A1 A2 · · · An

argmaxc∈ΩC

0

@

#H
X

j=1

p(c, hj)
n

Y

i=1

p(ai |c, hj)

1

A
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A1 A2 · · · An

argmaxc∈ΩC

0

@

#H
X

j=1

p(c, hj)
n

Y

i=1

p(ai |c, hj)

1

A

• Estimation of a new variable: hidden variable H .

• It gathers the suitable dependencies among the different
superparents and the rest of attributes.

• Instead of averaging the n SPODE classifiers, H ’s aim is to
represent the links existing in the n models .

• Necessary to estimate the probability of every attribute
value conditioned by the class and H.

• Expectation-Maximization algorithm .
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Application of the EM algorithm

• As the different values for H are not known .

• To obtain the maximum likelihood estimation of the
parameters .

Algorithm 1 EM algorithm adaptation to HODE.
1: Random initialization of weights;
2: {EM ALGORITHM }
3: while (!convergence()) do
4: {E-STEP}
5: Update prob. according to weights
6: {M-STEP}
7: for (j = 1 to j = numInstances) do
8: for (s = 0 to s < #H) do
9: w{c,hs,ai ,··· ,an}j

= P(c, hs)P(a1|c, hs) · · ·P(an|c, hs);
10: Normalize ~w ;
11: end for
12: end for
13: end while
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dataset
division



HODE:

Ana M. Martínez

Motivation

New proposal: Hidden
One-Dependence
Estimators
Application of the EM
algorithm

Number of states for the H
variable

Experimental
methodology and
results
Evaluation in Terms of
Accuracy

Evaluation in Terms of
Efficiency

Conclusions and
Future Work

References

14

Example I
A B C H w

a b c
h1 0,3
h2 0,7

a b c
h1 0,5
h2 0,5

a b c
h1 0,9
h2 0,1

a b c
h1 0,6
h2 0,4

a b c
h1 0,7
h2 0,3

a b c
h1 0,2
h2 0,8

Virtual
dataset
division

E-step



HODE:

Ana M. Martínez

Motivation

New proposal: Hidden
One-Dependence
Estimators
Application of the EM
algorithm

Number of states for the H
variable

Experimental
methodology and
results
Evaluation in Terms of
Accuracy

Evaluation in Terms of
Efficiency

Conclusions and
Future Work

References

14

Example I
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h1 0,9
h2 0,1

a b c
h1 0,6
h2 0,4

a b c
h1 0,7
h2 0,3

a b c
h1 0,2
h2 0,8

Virtual
dataset
division

Structure

A

C, H

B

P(A|C, H)

P(C, H)

P(B|C, H)

A priori probabilities

p(c, h1) =
0,3 + 0,9 + 0,6 + 0,2

6
= 0,33 p(c, h2) =

0,7 + 0,1 + 0,4 + 0,8

6
= 0,33

p(c, h1) =
0,5 + 0,7

6
= 0,2 p(c, h2) =

0,5 + 0,3

6
= 0,13

CPT for attributes A and B

p(a|c, h1) =
0,3 + 0,6 + 0,2

2
= 0,55 p(a|c, h1) =

0,5

1,2
= 0,42 p(b|c, h1) = 0,45 p(b|c, h1) = 0,58

p(a|c, h2) =
0,7 + 0,4 + 0,8

2
= 0,95 p(a|c, h2) =

0,5

0,8
= 0,625 p(b|c, h2) = 0,55 p(b|c, h2) = 0,375

E-step
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Example II

M-step
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Example II

Weights count

p(c, h1|a, b) =
p(c, h1)p(a|c, h1)p(b|c, h1)

PH
i=1

`

p(c, hi )p(a|c, hi )p(b|c, hi )
´

=
0,33 · 0,55 · 0,45

0,254
= 0,32

(1)

p(c, h2|a, b) =
p(c, h2)p(a|c, h2)p(b|c, h2)

PH
i=1

`

p(c, hi )p(a|c, hi )p(b|c, hi )
´

=
0,33 · 0,95 · 0,55

0,254
= 0,68

(2)

Weights modification after
M-step

A B C H w1 w2

a b c
h1 0,3 0,32
h2 0,7 0,68

a b c
h1 0,5 0,41
h2 0,5 0,59

a b c
h1 0,9 0,92
h2 0,1 0,08

a b c
h1 0,6 0,32
h2 0,4 0,68

a b c
h1 0,7 0,79
h2 0,3 0,21

a b c
h1 0,2 0,41
h2 0,8 0,59

M-step
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• The following E-step would use w2 and the cycle
continues until the algorithm converges .

• Convergence when difference from adjacent iterations is
lower than 5 thousandths .
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Number of states for the H variable

• Greedy technique :
• First step: #H = 1 (NB).
• Execution of EM algorithm and build models: #H = #H + 1.
• Evaluate model: if worse than previous model stop process.

• How is the fitness of the model evaluated?
• Log-likelihood (LL) :

LL =
I

X

i=1

log

0

@

#H
X

t=1

p(c i
, ai

1, · · · , ai
n, ht )

1

A=
I

X

i=1

log

0

@

#H
X

t=1

p(c i
, ht )

n
Y

r=1

p(ai
r |c

i
, ht )

1

A

• Penalization:
• Minimum Description Length :

C(M) =
n

X

i=1

((#H · #C)(#Ai − 1)) + #H · #C − 1

MDL = LL −

1

2
log I · C(M)

• Akaike Information Criterion or AIC :

AIC = LL − C(M) .
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Accuracy and #H with AIC and MDL penalization

Comparison between MDL and AIC penalization
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Evaluation in Terms of Accuracy I

Table: Main characteristics of the datasets: number of different values
of the class variable (k ), number of predictive variables (n), and number
of instances (I).

Id. Dataset k n I Id. Dataset k n I

1 anneal.ORIG 6 38 898 19 ionosphere 2 34 351
2 anneal 6 38 898 20 iris 3 4 150
3 audiology 24 69 226 21 kr-vs-kp 2 36 3196
4 autos 7 25 205 22 labor 2 16 57
5 balance-scale 3 4 625 23 letter 26 16 20000
6 breast-cancer 2 9 286 24 lymph 4 18 148
7 breast-w 2 9 699 25 mushroom 2 22 8124
8 colic.ORIG 2 27 368 26 primary-tumor 21 17 339
9 colic 2 27 368 27 segment 7 19 2310

10 credit-a 2 15 690 28 sick 2 29 3772
11 credit-g 2 20 1000 29 sonar 2 60 208
12 diabetes 2 8 768 30 soybean 19 35 638
13 glass 6 10 214 31 splice 3 61 3190
14 heart-c 2 13 303 32 vehicle 4 18 846
15 heart-h 2 13 294 33 vote 2 16 435
16 heart-statlog 2 13 270 34 vowel 11 13 990
17 hepatitis 2 19 155 35 waveform-5000 3 40 5000
18 hypothyroid 4 29 3772 36 zoo 7 17 101
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Evaluation in Terms of Accuracy II

Table: Accuracy results obtained with AODE and HODE classifiers.

Dataset AODE HODE #H Dataset AODE HODE #H

anneal.ORIG 93,3185 •94,0646 2, 2 ionosphere 92,9915 •93,9886 4, 4
anneal 98,196 •99,1203 2, 8 iris 93,2 •93,7333 1
audiology 71,6372 •78,5841 1 kr-vs-kp 91,0325 90,8229 9, 7
autos 81,3658 •82,0975 1, 9 labor 95,0877 94,9123 1
balance-scale 69,344 •71,088 1 letter 88,902 •91,117 9, 8
breast-cancer •72,7273 71,4336 1, 3 lymph •87,5 81,1487 1, 5
breast-w 96,9671 96,9814 2, 8 mushroom •99,9508 99,6824 6, 2
colic.ORIG •75,9511 73,0707 1 primary-tumor •47,8761 45,7227 1
colic •82,5543 81,5489 2, 1 segment 95,7792 •96,1732 4, 8
credit-a •86,5507 85,5942 4, 1 sick •97,3966 97,3118 4, 6
credit-g •76,33 74,94 2, 9 sonar •86,5865 83,0769 4, 3
diabetes •78,2292 77,8516 1, 2 soybean 93,3089 •94,3631 1, 9
glass •76,2617 74,0187 1, 6 splice •96,116 95,8872 3, 9
heart-c 83,2013 •83,4323 1 vehicle 72,3049 72,3522 4, 9
heart-h 84,4898 85,0 1 vote 94,5288 •95,5173 3, 1
heart-statlog 82,7037 •83,7037 1, 9 vowel •80,8788 79,0101 3, 9
hepatitis 85,4839 •86,6452 2, 3 waveform-5000 86,454 86,54 4, 2
hypothyroid 98,7513 •99,0668 4, 5 zoo 94,6535 •96,2376 1
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Evaluation in Terms of Accuracy III

• Summary with AIC: ( w/t/l, using a two-tailed t-test)

• 16/6/14 (with a 95 % confidence level).

• 15/8/13 (with a 99 % confidence level).

• No significant difference with Wilcoxon test.

• Summary with MDL:

• 11/7/18.
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What could make us vote for one or the other?
Time complexity

• At training time HODE is quadratic in the worst case :
• 1tn + 2tn + · · · + ntn
• AODE is usually faster in model construction (because of

EM).

• At classification time HODE is linear , whereas AODE’s
is quadratic.
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What could make us vote for one or the other?
Space complexity

• Lower than AODE’s , it needs to store less CPTs.

• O(kn#Hv) for HODE vs O(k(nv)2) for AODE.

• AODE demands more RAM memory, problems in large
databases with a high number of attributes or even
attributes with lots of states.

• Experiments in 7 datasets of microarrays or DNA chips.
Dataset k n I NB AODE HODE

colon 2 2000 62 93, 5484 91, 9355 96, 7742
DLBCL-Stanford 2 4026 47 100 100 100
GCM 14 16063 190 60, 5263 OutOfMem 70
leukemia 2 7129 72 100 OutOfMem 98, 6111
lungCancerHarvard2 2 12533 181 98, 895 OutOfMem 99, 4475
lymphoma 9 4026 96 96, 875 OutOfMem 75
prostate_tumorVS 2 12600 136 80, 1471 OutOfMem 95, 5882

• OutOfMem: problems of overflow with a maximum of 8 gigabytes.

• HODE terminated without problems, even with a lower need for memory.
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Conclusions and Future Work

• HODE: alternative to the AODE classifier:
• Results in terms of accuracy similar to AODE.
• Linear order in classification time.

• Lower time response in many real applications.
• Reduction in space complexity.

• Lower RAM consumption.

• HODE tested in a parallel environment : global optimum
for #H.

• Additional improvements:
• Direct adaptation for the imputation of missing values in

the dataset, use of EM.
• Average the constructed models and more.

• Clear alternative to AODE in many real applications:
KDD 09.
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Thank you
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