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Abstract. Redundancy allocation is a widely used method for the re-
liability improvement of complex embedded systems in the automotive
domain. The allocation of redundant components can affect other non-
functional quality attributes of the system, which are as important as
reliability and very often conflicting with each other, such as cost and re-
sponse time. Consequently, to find the good system design options, multi-
objective optimisation methods can be employed which find a trade-off
between these conflicting attributes. While cost and reliability have been
already studied in the context of an optimisation problem, the impact of
redundancy allocation to the response time has not yet been considered.
The approach taken in this paper, considers reliability, cost and response
time as optimisation criteria and employs a multi-objective Ant Colony
Optimisation algorithm to find the near optimal set of system designs.
Our approach has been implemented in the ArcheOpterix framework and
illustrated with a case study from the automotive industry.
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1 Introduction

The automotive industry has been significantly influenced by the development in
electronics and software systems during the last few decades [1]. Legacy mechan-
ical, electrical and manual systems are being replaced by embedded systems such
as Electronic Fuel Injection (EFI), Anti-lock Breaking (ABS), Intelligent Park-
ing Assistance, Airbag and Adaptive Cruise Control (ACC). Component based
architectures have been investigated and proposed by many researchers [2,3,4,5]
to address the design challenges in complexity, efficiency and cost pressure. In
finding better architecture alternatives, non-functional quality attributes, such
as safety, reliability, performance, maintainability are at least as important as
the functional requirements [6].

Reliability is one of the crucial aspects that should be considered when de-
signing embedded architectures of dependable, safety critical systems such as in
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the automotive domain [3]. Apart from improving the reliability in the level of
system components, redundancy allocation is one of the most popular system
reliability improvement techniques [7,8,9,10]. Unfortunately, employing redun-
dant components to increase the reliability of the system can have a negative
influence in the other non-functional quality attributes. This problem has been
addressed mostly in component based software architecture development, where
the trade-offs between cost and reliability were investigated. Apart from the cost,
when redundancy is employed in automotive systems, additional overheads in-
cur into the response time. Response time is also a critical and important aspect
of automotive systems, not only in safety critical sub-systems but also in user
interaction sub-systems, such as the navigation system [3].

The response time concerned on its own has already been the focus of an
extensive research in the embedded systems [11,12,13,14]. However, to the best
of our knowledge, an approach to tackle the trade-off between reliability and
response time has not yet been investigated. The approach in this paper finds
a set of non-dominated [15] architecture solutions for component redundancy
allocation considering reliability, response time and cost simultaneously, via an
automated process based on a multi-objective optimisation algorithm. As an op-
timisation method, the Ant Colony Optimisation (ACO) has been employed. To
illustrate our approach, a case-study from the automotive industry is taken. Since
the sub-system components which are also known as COTS (Commercial Off-
The-Shelf) components, are manufactured by external vendors, we consider them
as black-boxes where internal structure and behaviour is not known. The evalua-
tion models and optimisation algorithm are implemented into the ArcheOpterix
[16], an architecture optimiser tool which is able to analyse an existing system
specification in AADL(Architecture Analysis and Design Language). An auto-
motive case study of an ABS and ACC integrated system will be described as
the demonstration of our approach.

The paper is organised as follows: section 2 summarises the research contri-
butions in redundancy allocation, reliability and response time evaluations for
component based architectures together with the applicability of design space
exploration techniques. The system model for our presentation is described in
section 3. Section 4 presents the architecture quality evaluation models which
we have used in computing reliability, response time and cost. We present the
Ant Colony Algorithm for solving the redundancy allocation problem in section
5 and in section 6 we briefly describe the ArcheOpterix tool which has been used
for the implementation. The case study and the results are presented in section
7. Finally, the conclusions and our perspective future work is presented at the
end in section 8.

2 Related Work

There is a considerable amount of research available, which addresses the Redun-
dancy Allocation Problem (RAP)[17] in the systems architecture design. Com-
ponent redundancy allocation has been widely used as a reliability improvement
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technique for dependable embedded systems [10]. Coit et al. [17] introduced an
approach solving the redundancy allocation problem defined as the use of func-
tionally similar (but not necessarily identical) components in a way that if one
component fails, the redundant part performs required functionality without a
system failure. They have visualised the problem as the minimisation of cost
incurred for the redundancy allocation while satisfying a user defined system
reliability level. In [17], Genetic Algorithms have been proposed for the opti-
misation of component redundancy allocation, and Neural networks techniques
have also been integrated in [8]. Kulturel-Konak et al. [18] has also contributed
on the redundancy allocation problem and has presented Tabu Search as the
design space exploration strategy. The RAP has been adapted to Ant Colony
Optimisation (ACO) by Liang et al. [7]. Significant similarity on all the ap-
proaches is the view on the RAP as cost minimisation problem while satisfying
the predefined reliability criteria. Grunske [19] addressed RAP by integrating
multi-objective optimisation of the reliability and weight.

Response time for real-time embedded systems has been the focus of many
research groups in different aspects. Estimating Worst Case Execution Time
(WCET) for individual functions in the system is one of the key work carried
out in the context. Fredriksson et al. [12] worked on more realistic estimations
of WCET using the system model. Some approaches of architecture optimisa-
tion [13,20] have used WCET as a design constraint. The Palladio component
model [21], has significantly contributed in estimating the timing and scheduling
behaviour together with their sensitivity to the parameters of component based
systems. A number of path based, state based and Non-Homogeneous Poisson
Process (NHPP) based estimations of response time for software systems can be
seen in Sharma et al. [14]. The authors also presented an approach that can be
used to evaluate a single metric of response time when the system is expressed as
Discrete Time Markov Chain (DTMC). It is highlighted that the majority of the
approaches above considers the response time and performance of the system as
independent objectives, but not together with RAP. In this paper, we capture
the impact on response time of the system functionality in solving cost-reliability
trade-offs in RAP. In evaluation of response time for each redundancy allocation
alternative, we extend the work of Sharma et al. [14] by calculating the overhead
of redundancy to connected components. Instead of considering reliability as a
constraint, we provide the (near)optimal set of solutions having best trade-offs
in reliability, response time and cost.

Numerous research contributions have been developed on design space explo-
ration for system architecture design. In solving the RAP, most of the researches
have used specific implementations for the presentation [7,8,13,17,22]. A number
of generic approaches for design space exploration support has also been devel-
oped. Florontz et al. [23] developed a meta-model for architecture evaluation
and optimisation. Modelling support for automotive embedded systems has also
been the focus of many studies including [24,25]. In our approach, we take the
advantages of flexibility and strength of our previous work ArcheOpterix [16].
The implementation supports system specification in AADL which is specifically
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meant for embedded system architectures, resulting an enhanced applicability to
the automotive domain. Having the in-built modelling, optimisation and speci-
fication support in ArcheOpterix, we extend the work on redundancy allocation
problem as a multi-objective optimisation problem considering its impact on
response time.

3 System Model

The approach presented in this paper is focused on component-based systems in
the automotive domain. In this context, the term Component represents a system
element, which in our case is a special purpose Electronic Control Unit (ECU).
An ECU is a self-contained computer along with the software programmed in
it, and is dedicated to fulfil a specific functionality, such as getting input from
sensors and calculating the distance to the next vehicle. As the ECUs need to
communicate with each other during the operation, they are connected via buses.

Inter-component communication is modelled as an execution transfer from
one component to another. Most of the redundancy allocation work is focused
on Series-Parallel (S-P) systems [7,17,18], including logical constructs for both
serial and parallel execution. In the case of automotive systems, the models
can be viewed as overlapped sets of S-P models (for individual system-level
services), because the execution can start at different components (triggering
the services). We employ parallel-redundant components model [7,17,18,19] used
in S-P systems, where each component with its replicas connected in parallel
is considered as a single unit called subsystem. Then the interaction among
components (subsystems) can be formalised in terms of Discrete Time Markov
Chains (DTMC) [26], where nodes correspond to subsystems (or equivalently
components without replication) and transitions to execution passing among
them. The effect of replication is then added not to the markov chain, but to
the definitions of system-level properties (reliability, response time, cost).

The Figure 1 depicts the DTMC model of the system (left) and formation
of subsystems when redundancy levels1 are assigned for the components (right).
The arcs are annotated with probabilities relevant to the transition, while certain
nodes contain probabilities of execution initialisation. It should be noted that
transition and execution initialisation probabilities are directly applied from the
components to subsystems as the behaviour of the system is left unchanged with
the redundancy allocation.

For the formal notation of the system, let C = {c1, c2, ..., cn}, where n ∈
N, denote the set of all components (before replication), and I = {1, 2, ..., n}
denote the index set for components in C. An architecture alternative for the
redundancy allocation problem in our approach is an assignment of redundancy
levels for all components and is denoted as a. The set of all functions a is denoted
as A = {a | a : C → N} which represents the set of all redundancy allocation
candidates, where N = {n | 0 ≤ n ≤ nMax, n ∈ N0} delimits the redundancy

1 Number of additional components employed as redundancy
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Fig. 1. System Model

level of a component. Note that, since C and N are finite, A is also finite. A
component ci together with its redundancies form a subsystem Si, which can
be uniquely determined by ci, which we do along the formalization. Let the
parameters of the system architecture be given as follows:

– Component Cost, cst : C → N, is the price associated with a single compo-
nent; specified in ($)s.

– Failure Rate, λ : C → R+, is the failure intensity of the exponential distri-
bution of failure behaviour of a component [27]. Component failures in the
model are assumed independent.

– Estimated Time per Visit, et : C → N, is the estimated time taken by
component execution within a single visit of the component measured in
milliseconds (ms).

– Redundancy Overhead, δ : C × C → N, is the estimated additional execu-
tion time for each of other components (in ms) due to a unit increment in
redundancy level.

– Execution Initiation probability, q0 : C → [0, 1], is the probability of initial-
ising execution from that component.

∑
c∈C q0(c) = 1

– Transfer Probability, p : C × C → [0, 1], is the probability that execution
transits component Cj after component Ci.

Additionally, we define two derived parameters, the first parameterized with a
redundancy allocation function a.

– Sojourn Time per Visit, st : C → N, denotes the estimated time taken for a
single visit of the component, computed as:

sta(ci) = et(ci) +
∑

j∈I
δ(ci, cj) · a(ci) (1)

– Expected number of visits, v : C → R, quantifies the expected number of
visits of a component (subsystem) by system execution, defined as [28]:

v(ci) = q0(ci) +
∑

j∈I
(v(cj) · p(cj , ci)) (2)
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Using the above parameters and behavioural description, the system is mod-
elled as a DTMC, where components are represented by the nodes and the in-
teraction among them is represented by the arcs. Redundancy allocation is used
as the reliability improvement technique, where adding a new instance of a com-
ponent has an impact in the cost of the overall system and the communication
and processing overhead.

Since the component and interaction parameters in our model can be written
as vectors, resp.ṁatrixes, we use matrix operations to solve the above (2). When
the transfer probabilities p(ci, cj) and execution initiation probabilities of com-
ponents q0(ci) are transformed into matrix notation Pn×n and Qn×1 respectively.
The expected number of visits matrix Vn×1 can be expressed as follows.

V = Q + PT · V

By applying usual matrix operations, the above can be transformed into an
evaluatable format as,

I · V − PT · V = Q

(I − PT )V = Q

V = (I − PT )−1 ·Q
One basic requirement of our model is that the architect should provide

estimated time for a single visit inside a component. Moreover, redundant com-
ponents in a subsystem are assumed to be identical and the minimum number
of components in a subsystem is 1.

In consideration of redundancy allocation, the model also captures the im-
pact of redundant components to the execution behaviour of the system. This
is represented by the estimated additional overheads to the other components
that communicate with the duplicated instance. These overheads represent cu-
mulative effect of factors like communication and processing overheads due to
synchronisation, consistency check and fault tolerant data transmission to the
redundant components.

4 Evaluating Architecture Alternatives

To measure the quality of an architecture alternative a, the presented approach
comprises of quality attribute evaluations Q : A → R3, where Q(a) = (Ra, T a, Ca)
for Ra, T a, Ca defined below.

4.1 Reliability

It is required to compute a metric for reliability in each redundancy allocation
alternative a that is generated during the design space exploration. In estimating
the reliability of a single component, i.e. an ECU, we assume that failure of
a component has an exponential distribution [27], which is characterised by
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failure rate parameter λ. Accordingly, the reliability of a single component ci is
evaluated as:

R(ci) = e−λ·st(ci) (3)

When the redundancy levels are employed in the model, it is required to quan-
tify the reliability of the composite unit of components, which is referred as a
subsystem in section 3. With the assumption of replicating identical components
in parallel, the reliability of a subsystem Si for allocation a can be obtained as:

Ra(ci) = (1− (1−R(ci))a(i)+1) (4)

Having calculated the reliability of a subsystem, the next task is to obtain
the system reliability metric for a given redundancy allocation function a. As
we have modelled the architecture as a DTMC, we employ a well established
method of reliability estimation presented by Kubat [28,29]. When the reliability
of individual nodes are known in a DTMC model of a system, overall estimation
of the system can be computed as follows.

Ra ≈
∏

i∈I
(Ra(ci))v(ci) (5)

where v(ci) represents the expected number of visits of the component during
the execution as defined by (2).

4.2 Response Time

In the prediction of response time for each redundancy allocation candidate, we
use the DTMC model based approach presented in [14]. Since we describe the
system behaviour as a Markov model with probabilities of execution transfer
between components together with probabilities of execution initialisation at
each component, the expected number of visits can be obtained by (2).

Using (2) and (1) the response time T for a redundancy allocation candidate
a can be given as:

T a =
∑

i∈I
sta(ci) · v(ci) (6)

This metric gives an overall value of response time instead of representing
individual values for each trace of execution initiated at different components.
Since the expected number of visits for components represents relative usage
of them with respect to initialisation probabilities, the above summation (6)
indicates a weighted sum of response times for each execution trace from initiator
components to the actuators.

4.3 Cost

The cost of the system for each architecture alternative is evaluated as the sum
of the costs of individual components and respective redundancies as follows:

Ca =
∑

i∈I
cst(ci) · (a(ci) + 1) (7)
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5 Architecture Optimisation

To find a trade off between the conflicting quality attributes in Q : A → Rk,
where k represents the number of attributes, a multi-objective approach should
be employed. The redundancy allocation problem referred in this paper is a
NP optimisation problem [30]. No NP optimisation problem can be solved in
polynomial time, unless P = NP [30]. In these circumstances rather then look-
ing for optimality, which is not feasible, approximate solutions computable in
polynomial time are the best choice [30]. Consequently, in this paper we use Ant
Colony Optimisation (ACO) [31,7] as an optimisation meta-huristic, which is an
approximate method already used in the redundancy allocation problem. ACO
finds an approximate set of solutions A∗ ⊆ A that represent a trade-off among
the quality attributes being optimised, i.e. Reliability, Response Time and Cost.

The principle of ACO relies on finding high-quality solutions in a constructive
way, by building a probabilistic pheromone model. In our redundancy allocation
problem, the pheromone model is represented by a matrix PM : C × N → R
in which each cell PM(ci, rlj) represents the attractiveness of allocating re-
dundancy level rlj for component ci. For each quality attribute, a separate
pheromone matrix is constructed. The information from the pheromone ma-
trixes is used in such a way that evenly distributed weight combinations are
obtained in each iteration. The pheromone matrix is updated with values which
are representations of the quality of the constructed solutions. For the selection
of new candidates the pseudo-random-proportional rule [31] is employed. The
main steps of the algorithm are as follows:

1. The pheromone matrixes are initialised with an initial value τ0 = 1
2. Every solution is constructed by assigning redundancy levels to all compo-

nents of the system.
3. The assignment decision is based on the pseudo-random-proportional rule

with a 40% greedy approach, as follows:
3.1 Generate a pseudo random value q ∈ [0, 1].
3.2 If q < 0.4, select the redundancy level rl∗ with the maximal pheromone

value PM(ci, rl
∗) = max0<=j<=nMax for the component ci.

3.3 Otherwise, select a redundancy level based on the probability defined by
the ratio of pheromone values for each level, i.e. redundancy level that
has a higher pheromone value has a higher chance to be selected rather
than redundancy level that has a lower pheromone value.

4. Local pheromone update is performed after each assignment by reducing the
pheromone values of the constructed solutions as follows:

τ = (1− ρ) · τ + ρ · τ0 (8)

where ρ is the pheromone evaporation rate equal to 0.1.
5. The quality of the constructed solution is evaluated with Q.
6. The updated population is ranked according to each objective Ra, T a, Ca.
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7. For each objective, the pheromone matrix is updated according to the best
and second-best solutions, with ∆τb = 10 for the best and ∆τsb = 5 for the
second-best solution. The update rule is as follows:

τ = (1− ρ) · τ + ρ ·∆τ (9)

where ∆τ is the reward to indicate the quality of the solution.
8. After satisfactory number of iterations, the final approximate set of non-

dominated solutions is obtained.

6 Tool Support

The tool support for our approach has been implemented as a part of the
ArcheOpterix framework [16]. The framework has been developed with Java and
Eclipse [32] and can be directly used as a plug-in for the Open Source AADL Tool
Environment OSATE [33]. The ArcheOpterix tool provides a generic platform
which can be used to specify, evaluate and optimise embedded system architec-
tures. The architecture of the framework is presented in Figure 2, followed by a
description of its main elements.

OSATE

Architecture
 Optimization

Interface

Architecture Quality
Evaluation Interface

Architecture Constraint
Validation Interface

Evaluate
Attributes

Initial
Architecture

AADL
Model

AADL
Model

AADL
Model

AADL Model
Parser

Architecture
Analysis
Module

Constraint
Evaluators

Attribute
Evaluators

Optimization
Algorithms

AADL Model
Generator

Near-
Optimal

Solutions

Archeopterix Framework

Fig. 2. Architecture of ArcheOpterix framework
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ArcheOpterix provides a set of features to specify the embedded-system
model (the AADL Model Parser module), check for constraint satisfaction (the
Architecture Constraints Validation interface), evaluate the model (the Architec-
ture Quality Evaluation interface) and find the set of near optimal deployments
(the Architecture Optimisation interface).

AADL Model Parser interprets and extracts the system description from an
AADL specification. The module is capable of capturing AADL standard ele-
ments such as components, services, processors, busses, etc., and can be extended
to other elements and domain-specific parameters. The extracted parameters are
used as an input of the Architecture Analysis Module which supports the two
interfaces for analysing the model, i.e. Architecture Constraints Validation and
Architecture Quality Evaluation interfaces.

Architecture Constraints Validation Interface provides a plug-in point for Con-
straint Evaluator modules that check a given architecture for constraint satisfac-
tion. ArcheOpterix currently implements three Constraint Evaluator modules,
namely memory, localisation and collocation [34] constraints.

Architecture Quality Evaluation Interface is used to attach different quality eval-
uation functions. In ArcheOpterix, quality evaluation functions are represented
by Attribute Evaluator modules, which can be extended with respect to eval-
uated features. Besides Reliability and Response Time, the current version of
ArcheOpterix implements also Data Transmission Reliability and Communica-
tion Overhead.

Architecture Optimisation Interface provides the means for adding new opti-
misation algorithms to the framework. The current implementation of the tool
comprises Exact Algorithms, Genetic Algorithms and Ant Colony Optimisation.

ArcheOpterix allows translating solutions back into application domain as
AADL specifications.

7 Case Study

7.1 Automotive control system

An automotive control system is used as a case study for the demonstration of
the approach. The case study has been designed based on already published mod-
els [12,35]. We have used a composite system of an automotive Anti-lock Break
System (ABS) and Adaptive Cruise Control (ACC). Additional parameters re-
quired for the model are chosen to closely resemble the reality, like component
failure rates [36], estimated execution time per visit [23].

Anti-lock Break System (ABS): The ABS is currently used in most of mod-
ern cars to minimise hazards associated with skidding and loss of control due
to locked wheels during breaking. Proper rotation during break operations al-
lows better manoeuvrability and enhance the performance of breaking. Adaptive
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Cruise Control (ACC): Apart from automatic cruise control functionality, the
main aim of the ACC is to enable vehicle follow up and avoid crashes by re-
ducing speed once a slower vehicle in front is detected. The main components
used by the composite system and their interaction diagram are presented in
Figure 3. The ABS Main Unit is the major decision making unit regarding the
breaking levels for individual wheels, while the Load Compensator unit assists
with computing adjustment factors from the wheel load sensor inputs. Compo-
nents 4 and 5 represent the components that communicate with wheel sensors
while components 7 and 8 represent the ECUs that control the break actuators.
Break Paddle is the component that reads from the paddle sensor and sends the
data to the Emergency Stop Detection unit. Execution initialisation is possible
at the components that communicate with the sensors and user inputs. In this
case study the Wheel Sensors, Speed Limit, Object Recognition, Mode Switch
and Break Paddle components contribute to the triggering of the service. The
captured data from the sensors, will be processed by different components in the
system and triggers will be generated for the actuators like Break Actuators and
Human Machine Interface.

Fig. 3. Automotive composite system

Parameters of the elements of the considered system, and probabilities of
transferring execution from one component to another are illustrated in Table 1.
The AADL specification of the case study and complete implementation is avail-
able on the ArcheOpterix web site2.

7.2 Results

Even though the presented case study is a comparatively small segment of actual
automotive system architecture problem, the possible number of candidate ar-
chitectures is 415 ≈ 1.07 · 109(assuming nMax=3), which is too large to traverse
through an exact algorithm. We employed an Ant Colony Optimisation algo-
rithm as a guided constructive meta-heuristic to obtain (sub)optimal solutions
2 http://www.ict.swin.edu.au/personal/imeedeniya/archeopterix/
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Comp cst q0 λ et δ (ms)
ID $ (ms) (Array for all components)

0 15 0 4 · 10−6 50 0,0,0,1,1,1,3,2,0,0,0,0,0,0,0

1 8 0 6 · 10−6 30 0,0,1,3,0,0,0,0,0,0,0,0,0,0,0

2 10 0.3 5 · 10−6 10 0,1,0,0,0,0,0,0,0,3,0,0,0,0,0

3 10 0 8 · 10−6 40 2,2,0,0,2,2,0,0,0,0,0,0,0,0,0

4 8 0.1 8 · 10−6 10 2,0,0,3,0,0,0,0,0,0,0,0,0,0,0

5 8 0.1 8 · 10−6 10 2,0,0,3,0,0,0,0,0,0,0,0,0,0,0

6 8 0.1 8 · 10−6 10 2,0,0,0,0,0,0,0,0,0,0,0,0,0,0

7 8 0.1 8 · 10−6 10 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0

8 10 0.1 5 · 10−6 20 0,0,0,0,0,0,0,0,0,4,3,0,0,0,0

9 8 0 5 · 10−6 20 0,0,2,0,0,0,0,0,0,0,0,2,2,0,0

10 12 0 5 · 10−6 50 0,0,0,0,0,0,0,0,2,1,0,0,0,2,1

11 14 0 4 · 10−6 40 0,0,0,0,0,0,0,0,0,0,1,0,3,1,1

12 15 0 7 · 10−6 40 0,0,0,0,0,0,0,0,0,1,0,2,0,0,0

13 15 0.1 3 · 10−6 50 0,0,0,0,0,0,0,0,0,0,3,1,0,0,0

14 15 0.1 3 · 10−6 50 0,0,0,0,0,0,0,0,0,0,2,3,0,0,0

Trans. p(ci, cj)
ci → cj

0 → 7 0.5

0 → 6 0.5

1 → 3 1

2 → 1 0.75

3 → 0 1

4 → 0 0.7

4 → 3 0.3

5 → 0 0.7

5 → 3 0.3

2 → 9 0.25

8 → 9 0.6

8 → 10 0.4

9 → 0 0.2

9 → 11 0.4

9 → 12 0.6

10 → 9 1

11 → 12 1

13 → 10 0.5

13 → 11 0.5

14 → 10 0.5

14 → 11 0.5
Table 1. Parameters of Components and Interactions

in practically affordable time frame. The parameters of the algorithm have been
used as presented in the section 5.

The execution of the algorithm was set to 50 000 candidate evaluations, and
performed under a settings on a dual-core 2.26 GHz processor computer. The
algorithm took 82 seconds for the 50 000 function evaluations and generated
48 non-dominated solution architectures. The distribution of the (near)optimal
solutions which are graphically represented in Figure 4. The prevalence of the
solutions in the objective domain, together with their (sub)optimal trade-offs
are depicted in the graph, the designer will be privileged to make decisions on
suitable candidate solution.

Solution Redundancy Allocation Reliability Cost ($) Res. Time(ms)

A [1, 3, 3, 2, 0, 0, 1, 1, 2, 2, 1, 1, 1, 1, 0] 0.999968946 361 133.1950073

B [1, 3, 0, 2, 0, 0, 1, 2, 1, 1, 2, 2, 1, 1, 1] 0.999968946 362 129.9750061
Table 2. Example non-dominated solutions

Table 2 illustrates two closely related non-dominated solutions generated
by the optimisation process. The arrays in the second column represents the
redundancy levels for the components in the order of their ID. Note that the
reliability of both the solutions are identical and they are competitively better in
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ID Component Solution A Solution B Exp.Visits

2 Load Compensator 3 0 0.3

7 Actuator Control (Rear) 1 2 0.3

8 Speed Limiter 2 1 0.1

9 Mode Switch 2 1 0.3

10 Object Recognition 1 2 0.1

11 ACC Unit 1 2 0.2

14 Speed Detector 0 1 0.1
Table 3. Comparison of the two solutions

other two objectives. The differences in the redundancy levels in the two solutions
are presented in table 3. The column title ”Exp.visits” follows the definition of
expected number of visits presented in formula 2. It should be highlighted that,
the non-obvious changes from solution A to solution B has significantly reduced
the response time for a trade-off on small cost while keeping the system reliability
at the same level.

8 Conclusions and Future Work

Conclusions In this paper, we address the redundancy allocation problem in
embedded system architectures, focused on the nature of the problem in auto-
motive industry. The approach was capable of assisting the system architecture
designer providing (near)optimal set of solutions with respect to reliability, re-
sponse time and cost. We have employed an Ant Colony Optimisation algorithm
to guide the search and implementation has been carried out by extending the
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ArcheOpterix framework. Reliability, Response Time and Cost evaluation for
the model has been done by appropriate use of approaches from the literature.
An automotive case study of a composite system of Anti-lock Break System and
Adaptive Cruise Control has been used for the validation. A near-optimal set of
possible redundancy allocation decision has been obtained.

Future Work One key aspect in this paper is that the components are modelled
as COTS that are composites of both software and hardware. We expect to ex-
tend the approach in the case of general purpose ECUs and deploying software
components on them. Solving the described redundancy allocation problem to-
gether with obtaining optimum resource usage via deployment would be one of
our key future focus. In obtaining more realistic view on reliability for automo-
tive embedded systems, capturing the reliability implications to inter-component
communication is also important. We also wish to extend the approach by using
non-homogeneous components as redundancies. When the architect is provided
with a set of component selection alternatives, obtaining the best possible design
trade-offs with respect to user preferences will be also considered.
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