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Abstract 
 

Software design is a complex cognitive process in 
which reasoning plays a major role, but we have 
limited understanding of how human reasoning works 
in the identification of design problems and the 
formulation of design solutions. In this research, we 
have observed software designers at work and 
analyzed their design reasoning approaches, the 
effectiveness of design, in part, depends on how design 
problems are structured and how design reasoning is 
applied. We report on how reasoning techniques, such 
as design structuring, contextualization, co-evolution 
of problem-solution and inductive reasoning influence 
software design. 
 
1. Introduction 

 
Software design is a highly complex and 

demanding activity. A software designer often deals 
with changing requirements and technical 
environments. One often faces new problem domains 
where the knowledge about a design cannot be found 
readily. The characteristics and behaviors of the 
software and the hardware systems to be considered in 
the design are often unknown and the complexity in 
user and quality requirements is high. Under such 
complex environment, a software designer needs 
sound reasoning capabilities to make good design 
decisions and to devise a good design solution. 

Software practitioners and software engineering 
researchers have invented many processes, modeling 
techniques and first principles to guide software 
designers to create software products. There is, 
however, very little study and guidance on systematic 
software design reasoning and decision making. In 
reality, most of the software designers approach design 
based on personal preferences and habits, with various 
results in productivity and quality of the end-designs.  

Researchers in psychology have proposed that 
there are two distinct cognitive systems underlying 
reasoning: the heuristic system relies on prior 
knowledge and beliefs; the analytic system states that 

reasoning is according to logical standards [1]. Under 
this dual process theory, designers are said to use both 
systems. It seems that, however, designers rely heavily 
on prior beliefs and intuition rather than logical 
reasoning, causing designer a rational thinking failure 
[2]. The comprehension of an issue also dictates how 
people make decisions and rational choices [3]. The 
comprehension of design issues also depends on how 
designers frame or structure the design problems. 
Different ways to frame design problems may result in 
different design results. In this paper, we investigate 
how reasoning influences software design. 

The University of California, Irvine, prepared an 
experiment in which three pairs of software designers 
were given a set of requirements to design a traffic 
simulator. Their design activities were video recorded 
and transcript. Using those transcripts, we have 
analyzed their design reasoning activities in two levels: 
(a) structuring the design; (b) reasoning in terms of 
problem identification and solution formulation.  

From a design problem structuring perspective, an 
important question is how software designers organize 
design activities to achieve user and quality 
requirements. In this study, we have encoded protocols 
and created decision maps from the transcripts. From 
the qualitative analysis of these materials, we have 
found that proper structuring of design discussions 
improves design issue identification and reduces 
context switching. We also analyze reasoning 
techniques that have been used by the designers. We 
have found that systematic problem-solution co-
evolution, appropriate contextualization of design 
problems, explicit communication of design reasoning 
and application of inductive reasoning are important 
techniques to improve the effectiveness of software 
design. We have found that the level of inductive 
reasoning is related to the exploration of design 
problems, implying that it plays an important role in 
defining the design problem space.  

 
 

2. Related work 
 



Software design expertise is in part domain 
dependent, which is different to some design areas 
where the context of the domain is relatively constant. 
For instance, the issues faced by scientific system 
designers are quite different to that of transactional 
financial system designers. Therefore, an expert 
software designer may act differently when faced with 
unfamiliar domains and technologies. Cross suggests 
[4] that expert designers appear not to generate a wide 
range of alternatives. We have found in our earlier 
study that ‘experienced’ (depending on domain 
exposures) software designers intuitively rule out 
unviable design alternatives whereas ‘inexperienced’ 
software designers can benefit from explicitly 
considering design options [5]. 

Another characteristic of software design is the 
complexity of the design space. When software 
designers are unfamiliar with a domain, the detailed 
design problems can be difficult to define and the 
viability of a solution cannot be assessed easily. This is 
because the behavior of software and systems cannot 
be predicted easily, and design issues are complex, 
interrelated and conflicting.  

Although there are many studies on software 
engineering design, few of them study the cognitive 
aspects of the software designers. Recent studies 
address the use of design rationale [6-8] in software 
engineering, mostly from the perspective of 
documenting design decisions instead of a systematic 
approach to applying software design reasoning.  

Typically, software design methodologies employ a 
blackbox approach that emphasizes the development 
process and its resulting artifact with little exploration 
of the cognitive and psychological aspects of designers 
who use them. For instance, Hall et al. suggest that 
problem frames provide a means of analyzing and 
decomposing problems, enabling the designer to 
design by iteratively moving between the problem 
structure and the solution structure [9]. This method 
has a resounding similarity with the Mahler model of 
co-evolution between the problem and solution spaces, 
which is described by Dorst and Cross in [10]. They 
suggest that creative design is developing and refining 
together both the formulation of a problem space and 
ideas in the solution space (see Figure 1). A study by 
Zannier et al. has found that designers make use of 
both rational and naturalistic decision making tactics in 
decision making [11], designers make more use of a 
rational approach when the design problem is well 
structured, and inversely designers use a naturalistic 
approach when the problem is not well structured. 

Another similar representation of problem-solution 
co-evolution model is shown in Figure 2. The software 
architecture design rationale model of AREL 

represents the causal relationships between 
DesignConcerns such as the requirements, 
DesignDecision node representing the design problems 
and the decisions, and DesignOutcome node 
representing the design outcomes. The design 
outcomes become a design context or concern when a 
design is decomposed and interrelated design issues 
are linked to new design problems [12].  

 

 
Figure 1. Problem-solution co-evolution 

 
Figure 2. Causal relationships between design 

concern, decision and outcome 
 
Simon and Newell suggest six sources of 

information that can be used to construct a problem 
space [13], providing a context or a task environment 
for the problem space. So defining the context is an 
important aspect to formulating and identifying a 
problem. Similarly, we suggest that decisions are 
driven by decision inputs, or context to a design 
problem, and the results of a decision are some 
decision outcomes. AREL diagrams enable software 
designers to document and trace design decisions and 
design rationale from requirements to design artifacts. 

Given some software requirements, designers must 
look at how to structure the design problems and plan 
an approach to designing. Goel and Pirolli reported 
that on average 24% of statements made by the 
architects are devoted to problem structuring and this 
activity occur mostly at the beginning of the design 
task [14]. Therefore, design structuring or planning is 
an important aspect of design.  

Rittel and Webber [15] viewed deign as a process 
of negotiation and deliberation. They suggested that 
design is a “wicked problem” in which it does not have 
a well-defined set of potential solutions. Even though 
the act of design is a logical process, it is subject to 
how a designer handles this wicked problem. 
Goldschmidt and Weil describe design reasoning as 
the relationship between contents and structure [16]. 
They suggest that the process of reasoning as 
represented by design moves are double speared where 



one direction is to move forward with new design, 
another direction is to look backwards for consistency.  

Inductive reasoning, especially analogical 
reasoning, is a means of applying knowledge acquired 
in one context to new situations [17]. It promotes a 
creative process in which issues from how different 
pieces of information can be combined to form a new 
artifact [18]. There are different techniques of 
inductive reasoning [19] that software designers can 
use. One of them is the use of scenarios to analyze 
architecture design [20], and that agrees with the 
Klauer’s model of inductive thinking paradigm [19]. If 
design is a result of some forms of reasoning 
performed by a designer, then it is important to study 
the reasoning techniques and process relating to 
software design. 
 
3. Design study and analysis methods 
 
3.1. The design assignment 

The design task is to build a traffic simulation 
program that is going to be used by students to 
understand the relationships between traffic lights, 
traffic conditions and traffic flow. The topic of the 
study is common enough so that the designers would 
have no issues with its context, but specialized enough 
that general software designers are unlikely to have 
designed similar systems previously.  

 
Req- 
ments 

U/I Traffic 
Light 

Sim. 
Display 

Traffic 
Density 

NFR Design 
Outcome 

Explicit   4 6 4 2 4 7 
Derived 2 5 4 4 0 0 

Table 1. Number of requirements of the system 
 

The designers were given a Design Prompt or a 
brief specification on the problem where there are 
twenty explicit functional and non-functional 
requirements, and fifteen derived requirements (see 
Table 1). Derived requirements1 are requirements that 
are not specified in the Design Prompt but need to be 
addressed to complete the design. They are derived 
from analysis by the three teams of designers including 
the authors’ interpretation of the requirements. The 
Design Prompt explicitly specifies seven design 
outcomes. 

                                                           
1 Requirement coverage can be found in supporting document 
http://www.ict.swin.edu.au/personal/atang/ProfessionalSoftwareDesi
gnStudy/Requirements and derived requirements.pdf 
 

 
3.2. Purpose of the study 

We approach the analysis from the perspective of 
design reasoning. Software engineering research has 
been focusing on processes and methodologies without 
studying why and how these methods would work. In 
order to comprehend why a software engineering 
approach should work, we need to understand human 
cognition and design reasoning. Recently, software 
engineering researchers have started to study design 
rationale and decision making in this regard. This 
study examines design reasoning at two levels: firstly, 
structuring of design problems; secondly, reasoning 
and problem solving of design issues. 

 
3.3. The analysis method 

This is a case study of three teams of designers: 
Adobe (A), Anonymous (N) and Amberpoint (M), 
we’ll call them Team A, Team N and Team M 
respectively. Team A and M took two hours and Team 
N took just under one hour to complete the design 
tasks. Each team conducted the design activities in 
their own ways. We use a protocol coding scheme to 
analyze their dialogue with a process similar to [21] 
and [22]. After protocol encoding, we build a decision 
map using a graphical tool to relate design reasoning 
topics. 
 
3.3.1. Protocol analysis and coding schemas. To 
analyze the design process, we have a coding scheme 
that identifies reasoning activities. It helps dissect the 
activities of design framing and the design reasoning 
techniques used in solving individual design problems.  

 
Time Dialogue Space Reasoning 

Technique 
Ex/Im- 
plicit 

Reason 

Deci 
sion 

Time 
Link 

[0:12:
01.1] 

I don't think we 
need to make 
…the no of 
signals at each 
….  

SS S+I E C [0:11: 
45.3] 

Table 2. An example of the coding scheme  
 
Software designers typically start by summarizing 

the requirements, contextualizing the problems and 
prioritizing issues. This kind of problem structuring is 
breadth-first reasoning at a high-level of abstraction 
[23]. We then identify reasoning techniques for 
protocol coding. Techniques relating to the problem 
space are problem identification (G), contextualization 
(X), prioritization (R) and simplification (S). 
Reasoning techniques relating to the solution space are 
scenario construction (E), inductive reasoning (I), 
deductive reasoning (D), option identification (O), 
constraint identification (C), and trade-off analysis (T). 



Table 2 is an example of our protocol coding and the 
reasoning activities are coded in the 4th column.  

We codify the transcripts into problem space (PS) 
and solution space (SS) ( see 3rd column in Table 2). 
This enables us to study the co-evolution of problem 
and solution. Reasoning by designers can be made 
implicitly or explicitly, this is shown in the 5th column. 
The decision is coded according to status (6th column): 
(P)roposed, (C)onfirmed, (R)ejected and (I)terated. 
This coding enables us to analyze when and how 
designers make their decisions. Column 1 shows the 
protocol sequence in time, column 7 is a time linking 
the current dialogue to the related dialogue. It enables 
us to connect the line of reasoning. Column 2 
documents the dialogue.   
 
3.3.2. Decision map. After encoding the protocol, we 
build a decision map to represent the design activities. 
The decision map is based on the AREL model where 
design decision making are three nodes that consist of 
[design concern, design decision, design outcome] and 
the causal relationships between them. A Design 
concern node represents information that is relevant to 
the design issue, such as requirements, context or 
design outcome. Decision node represents the design 
problem. Design outcome node represents the solution 
of a decision. A decision map shows the progression of 
a design by connecting the problem space (decision 
node in rectangular boxes) to the solution space 
(design outcome in ovals). The contexts of the design 
are represented by rectangular boxes with double 
vertical lines. The nodes in the decision map are linked 
together by (a) the sequence of discussions, i.e. time; 
(b) the subject of the discussion. Figure 3 shows Team 
M’s design planning in the first five minutes of their 
discussions. The decision map depicts the following: 
(a) structuring of a design approach; (b) sequencing of 
design reasoning; (c) design problem framing and 
identification; (d) design justification. 2 
 
4. Data analysis  

 
Using the coded protocols and the decision maps, 

we analyze how the three teams reason with their 
designs. We approach the analysis from two primary 
perspectives: (a) overall structuring and sequencing of 
the design problems; (b) application of design 
reasoning techniques in specific design areas. 

 
                                                           
2 The decision maps are constructed with a UML tool Enterprise 
Architect version 7.00. Decision maps are available at 
http://www.ict.swin.edu.au/personal/atang/ProfessionalSoftwareDesi
gnStudy/decision-analysis-v1.6.eap.  

 
Figure 3. An extract of a decision map  

 
4.1. Design structuring and sequencing 

Each team performed some planning of their design 
activities. We use decision maps to do the analysis. 
The decision maps depict the design problems and the 
resulting solutions in a sequence of decisions that are 
related to the same topic. Although iterations and 
branching are common, the design problems and 
solutions are typically depicted in a sequential order. 
For instance, Team N focused on the topic of roads 
between [0:18:36.2] and [0:19:22.2] and they 
discussed its properties and design. From the visual 
maps, the design discussions can be identified easily. 
Based on the groupings, we analyze how their design 
activities are structured. 

 
4.1.1. Planning design approach. All three teams 
started off by planning their design approach, which 
involves assessing the requirements, identifying and 
structuring high-level design problems and making 
some implicit prioritization of problems. Team A spent 
about 1.5 minute ([0:05:11.0] till [0:06:41.1]) on 
planning and they identified representation and 
modeling of traffic flow, signal, intersection as their 
key design issues. Team N spent about 9 minutes 
([0:05:29.7] till [0:14:20.0]) on structuring their 
problems, i.e. they did an assessment of where the 
design complexity lie and concluded that the 
dependency was the signals and turning cars. They 
also pointed out that the user interface and the data 
structures of the system needed to be identified. Team 
M spent about 6.5 minutes ([0:06:08.9] till 
[[0:12:31.1]) on planning and they identified ten 
design issues. The three teams spent 1%, 19% and 6% 
of their total time, respectively, on problem 
structuring. In comparison, Goel and Poirolli found 
that on average 25% of statements was devoted to 



problem structuring mainly at the beginning of design 
[14]. 

Design planning has influenced how each team 
structures the rest of their design. The initial focus and 
prioritizations on specific areas dictate the structure of 
the rest of design discussions. Implicit design planning 
took place even though none of the teams explicitly 
mentioned it. For instance, Team A’s focal points were 
data structure, modeling and representation. They 
spent the next 40 minutes ([0:08:28.4] till [0:48:02.1]) 
on queue management before moving to the other 11 
discussion topics. Team N identified signaling as 
important and they immediately tackled this design 
problem after planning [0:15:38.5].  

Design re-planning were carried out by Team A 
and N during the design. At [1:17:59.15], Team A 
assessed their design status and realigned their focus 
on the design outcomes, and the rest of the design 
discussions followed this direction. Team N re-planned 
at [0:43:52.9] and they identified remaining design 
gaps that needed to be resolved and proceeded to solve 
them. 

 
4.1.2. Structuring design activities. Using the 
discussion grouping by design topics, we observe that 
the way each team explored the design space followed 
different reasoning structures. Team A used a semi-
structured approach. They started with a design 
discussion that focused on the premise of a queue and 
the push/pop operations, and they explored this 
solution concept extensively to design the traffic 
simulation system. Further, they continued the 
discussions about roads and cars ([0:42:40.4] till 
[0:52:15.7]) but without reaching either a solution or a 
clear identification of the next design problem, they 
moved to the topic on sensors ([0:54:33.6]). Such 
inconclusive design discussions continued until 
[1:17:59.15] when they stopped and planned their 
design approach. At that point the designers reassessed 
their design problems that guided them till the end of 
the design session. 

Team N used a compositional structuring 
approach. They firstly spent a short time to investigate 
each of the major components of the simulation, such 
as: (a) synchronization of signals ([0:15:38.5] till 
[0:17:04.7]); (b) traffic; (c) roads; (d) lanes; (e) left-
turn lane; (f) model; (g) intersection and map. After 
gaining a fair understanding of all the key components, 
they then composed the complex design from the basic 
components: (a) traffic ([0:34:25.9] till [0:39:48.0]); 
(b) simulation ([0:40:33.5] till [0:43:52.9]); (c) cars 
interacting with roads and intersections ([0:43:52.9] till 
[0:49:39.9]) and so on. This reasoning structure 
enables the designers to investigate simple objects 

before moving to design involving multiple design 
objects. 

Team M used a high-low structuring approach. 
Team M tackled the major design problems in-turn and 
when they concluded the design of the major 
problems, they addressed associated issues such as 
user interface. For instance, they started their design 
discussions by addressing the issue of traffic density 
[0:13:35.5]. At the end of the high-level design, they 
investigated the relevant but low-level issue regarding 
simulation interface [0:26:43.5]. Then they moved to 
another high-level critical problem on traffic light, and 
at the end of the discussions they again considered the 
low-level interface issue [0:41:13.3]. In doing so, the 
designers started with a high-level design problem, 
solved it and then tackled other small but related 
design problems.  

 
4.1.3. Reasoning structure and context switching. 
Based on the three types of reasoning structure, we 
have observed that designers’ focus shift according to 
the planning of the design and how the design issues 
are explored. Once design issues are explored, context 
switching, i.e. focusing and defocusing of a design 
issue, takes place between addressing related issues. 
Context switching is most noticeable in the semi-
structured approach. For instance, during the queue 
management discussion by Team A, the designers 
focused and defocused on traffic lights several times at 
[0:20:36.2], [0:39:17.8] and [0:49:41.0]. Then this 
topic was raised again at [0:55:28.8] and [1:49:44.0] 
but Team A did not have a clear and complete design 
for all issues related to traffic light.  It appears that the 
context switching affects the resolution of design 
issues. The more context switching that takes place, 
the less the designers follow a single line of thought to 
explore a design issue thoroughly. Therefore, even 
when the same issue was discussed many times, a clear 
solution was not necessarily devised. 

In contrast, Team M addressed traffic light 
[0:28:16.4] in a single discussion. There is no context 
switching to other design issues apart from brief visits 
to closely related issues, e.g. sensors [0:28:54.1]. The 
designers acknowledged the other design issue but 
quickly returned to the main topic of the design. As 
such, Team M explored related issues more 
thoroughly. Based on the observations, we argue that 
high context switching could lead to defocusing of a 
single issue, and designers may lose the context of the 
design, making it harder for designers to formulate the 
right design problems. 
 



4.2. Design reasoning techniques 
Design is a rational problem solving activity [10]. 

It is a process in which designers explore the design 
issues and search for rational solutions. It is well 
established by many that design rationale is one of the 
most important aspects in software design [6, 24]. 
However, the basic techniques that lead to rational 
design decisions are not well understood. Therefore, 
we explore different design reasoning techniques that 
are used by the three teams.  

 
4.2.1. Problem-solution co-evolution. Dorst and 
Cross have observed co-evolution of design between 
problem and solution spaces [10]. Tang et al. have 
reported on software design decision making in terms 
of expanding relationships between decision context, 
design issues and solutions [25]. The way the 
designers in the three teams conducted their designs 
was largely aligned with the co-evolution model. For 
instance, Team M demonstrated a co-evolution process 
where a problem was identified and solved, leading to 
the next problem-solution cycle (see Fig. 4). However, 
this model presumes a logical design reasoning 
behavior in which a solution is derived from well-
defined design problems. However, we have observed 
design behaviors that differ from this model. 

 

 
Figure 4. Example of a problem-solution co-

evolution in Team M design session  
 
Solution driven design. At a very early stage, Team A 
identified traffic flow and signal as design issues 
[0:06:10.6] and they decided that a queue should be 
used in the solution [0:08:28.4]. From this point 
onwards, Team A continued to make a series of 
decisions surrounding the operations of the queue. 
Some examples are [0:08:51.0] (shown in Fig. 5), 
[0:38:05.6] and [0:39:17.8]. The idea of the queue 
drove the discussions from [0:08:28.4] till [0:50:43.1]. 
The design plan and all subsequent reasoning are 
predominantly based on this solution concept that was 
decided up-front, without questioning whether this is 
the right approach or if there are alternative 
approaches. It is also evident that there is a lack of 
exploration or implicit assumption about the problem 

space. This case demonstrates that when designers take 
a solution driven approach, the preconceived solution 
becomes the dominant driver of the design process, 
and the rest of the solutions evolves from the 
preconceived solution. Such design behavior has been 
observed previously. Rowe [26] observed that a 
dominant influence was exerted by the initial design 
even when severe problems were encountered. Tang et 
al. found that for some software designers, the first 
solution that came to mind dominated their entire 
design thinking, especially when the designers did not 
explicitly reason with their design decisions [5]. 

 

 
Figure 5. Example of a solution driven design by 

Team A 
 

Absent or ambiguous design solution. There are 
cases where designers identified design issues in the 
problem space without conclusions. When Team M 
was examining traffic light control for a left-turn signal 
[0:40:07.0], the discussion led to identification of other 
issues such as how to deal with the user interface and 
timing of changing colors of adjacent traffic light. 
Both unsolved issues were relevant in the simulation 
but before concluding with a design the discussion 
drifted to the next topic [0:41:23.8]. 

From the analysis, there was no definitive evidence 
to indicate why the discussion drifted before a solution 
was reached. We assume that the designers might 
either feel that they had to move on to higher priority 
design; or the problems are too-hard to contemplate at 
the time; or simply distraction. Similarly, examples can 
be found in Team A’s design session. 
 
4.2.2. Contextualizing problems. Contextualization is 
the process of attaching a meaning and interpreting a 
phenomenon to a design problem. Well reasoned 
arguments state the context of the problem, i.e. what 
and how the context influences the design. By 
identifying the context at the right level of abstraction, 
it helps to frame the design issues [13], identify the 
assumptions of the situation and the constraints on the 



potential solution. So how designers contextualize a 
design problem would influence the design outcome. 

All teams contextualize their problems in different 
ways, we counted the number of nodes in the decision 
map where they discuss the context of the problem and 
state the details that can influence the potential 
solution. We identified 26 nodes for Team A and 23 
nodes for Team M. Although the number of nodes is 
similar between the two teams, Team M is more 
thorough in articulating the context. An example is 
when Team M examines the traffic lights [0:28:16.4]. 
The designers spell out 3 relevant contexts of the 
problem, i.e. the timing of the cycle, the impact of the 
sensors and the left-turn arrow. Their discussion of the 
design problem using those contexts happened at the 
same time frame, as such it provides a focal point for 
investigating a design problem comprehensively.     

On the other hand Team A contextualizes their 
design problems in a sporadic and uncoordinated way. 
For example, when Team A discussed traffic signals, 
they did not consider all relevant contexts at the same 
time. The designers discussed signal rules at 
[0:12:31.1], they revisited the subject of traffic signals 
with respect to lanes at [0:25:37.4]. Later they decided 
that it is the intersection which is relevant to traffic 
signals [0:30:41.9]. At [0:56:06.7] they discussed how 
signals could be specified by the students. Twenty-one 
minutes later [1:17:58.4] their discussion went to the 
subject of sensor and left signal. Since 
contextualization impacts on design problem framing, 
the difference between how the two teams use 
contextualization affects the information that is 
available for the reasoning of a design problem. 
 
4.2.3. Scenario construction. Using scenarios 
enhances the comprehension of the problem and 
facilitates communication between designers. 
Constructing scenario is a way to instantiate an 
abstract design problem and evaluate if the abstract 
design is fit for the real-world problem [20]. For 
example Team A built a scenario of how the 
simulation could work, talking about the possibility of 
having a slider to control the timing of lights and car 
speed [0:48:20.4]. Using this scenario, the designers 
highlighted a number of related design problems, e.g. 
the average wait time of a car going through the city 
streets; car speeds; traffic light control etc. 

Scenario construction technique was used in 7 
cases by Team M and 22 cases by Team A. This shows 
that the approaches used by the two teams are very 
different. Team A considered the design problems by 
expressing them in real world examples, whereas 
Team M remains at an abstract design level. Even 
though Team A used a lot of scenarios in their design 

reasoning, they often did not arrive at a design 
conclusion to cater for the scenario, e.g. [1:26:00.0]. 
Team M, on the other hand, worked at an abstract level 
of the design, and using scenarios to test the abstract 
idea, e.g. [0:32:27.5]. Thus it appears that the 
effectiveness of applying scenarios depends on the 
construction of an abstract design. 
 
4.2.4. Implicit or explicit reasoning. Explicit reasons 
are explicated arguments to support or reject a design 
problem and a solution choice, but implicit design 
reasons are decisions made without communicating an 
explicit reason. When explicit reasons are absent, 
people other than the designers themselves make 
assumptions about why the decision takes place. 
Without explicit reasoning, it is difficult for the 
designer, the design team or reviewers to identify if 
there are any omissions. In this study, explicit reasons 
can be identified with the word “because” in the 
protocol and the arguments to support the 
explanations.  An example of explicit reasoning is 
where the designers of Team M clearly state the reason 
for their solution [0:25:35.1].  

However reasoning is often not verbalized for a 
number of reasons: (a) the designers may have reasons 
that they do not express explicitly; (b) the reasoning is 
the assumption made in the discussion of the subject or 
the context; (c) they have omitted the reasoning. An 
example of implicit reasoning is when Team A 
discussed about push/pop [0:41:36.0] putting all traffic 
complexity in these two actions, without explicitly 
saying why they chose to do so, and how they will 
implement it. Moreover, it is implicitly decided that the 
actual direction of cars while pushed and popped will 
be handled by a random number generator. When 
Team A decided that observations should be taken 
from the simulation [1:31:25.2], they assumed without 
any reasoning that metrics such as average wait time of 
cars, average capacity of the roads, etc. are available to 
support their decisions. When we analyzed the 
protocols of Team M and Team A, Team M made 33 
cases of implicit reasoning and 87 cases of explicit 
reasoning, Team A made 47 cases of implicit 
reasoning and 52 cases of explicit reasoning. Team M 
provided more explicit explanation of how they 
designed. Team A provided less explanation of their 
design ideas, the implicit reasons required 
interpretation to appreciate why they designed in a 
certain way, therefore there are opportunities for the 
others to misinterpret the design ideas.  
4.2.5. Inductive and Deductive Reasoning. Inductive 
reasoning is a type of reasoning that generalizes 
specific facts or observations to create a theory to be 
applied to another situation whereas deductive 



reasoning uses commonly known situations and facts 
to derive a logical conclusion. While inductive 
reasoning is exploratory and helps develop new 
theories, deductive reasoning is used to find a 
conclusion from the known facts.  

Let us consider first how both teams have used 
inductive reasoning. We have counted 15 induction 
cases for Team A and 30 induction cases for Team M. 
Team M has used twice as many inductive reasoning 
as Team A. It indicates that Team M employs a more 
investigative strategy, inspecting the relevant facts to 
explore new design problems and solutions. As an 
example, Team M discussed the relationships between 
the settings of traffic lights to prevent collision 
[0:34:30.6]. From the observations that cars can run a 
yellow light and to prevent collision, they induce that 
there should be a slight overlap when all traffic lights 
facing different directions should be red 
simultaneously. Then they reason inductively about the 
manual settings for the timing of the lights and whether 
the users should be allowed to set all four lights 
manually. Since the users should not be allowed to set 
the traffic lights to cause collisions, the designers 
reason that there should be a rule in which the setting 
of a set of lights would imply the behavior of the other 
traffic lights. Team M in this case found new design 
problems from some initial observations. 

On the other hand, deductive reasoning is used 
more times by Team A than Team M, with 20 and 10 
times respectively. For instance, Team A started off by 
predicating on the basic components used in the 
solution, i.e. queue and cop etc., and deduced the 
solution from that. They used deductive reasoning at 
[0:30:19.3]. They said that a lane is a queue, so 
multiple lanes would be represented by multiple 
queues. Since they also predicated on the use of a 
traffic cop, so they deduced that the cop would look 
after the popping and pushing of multiple queues. 
Team A was fixed in the basic design of the system 
from the beginning, so although the logical deduction 
is correct, the design options that have been explored 
are limited. 

 
5. Discussion on Findings 
 

Although design experience in software is highly 
important, it is also domain specific. In this 
experiment, designers are highly experienced and they 
possess the general knowledge about the problem 
domain, but they do not appear to have the detailed 
design knowledge in this area. So designers have relied 
on their general design knowledge and reasoning to 
create their solutions. All designers were given two 

hours to design, which was insufficient time to 
exhaustively explore all possible solution branches to 
provide a complete solution. Therefore, their design is 
measured by how effective the designers have been 
analyzing the problems and formulating the solutions.  

We cannot evaluate the quality of each team’s 
design because: (a) the criteria we use in design quality 
reviews can have a bias on the analysis done; (b) the 
created solutions are incomplete; (c) designers in some 
cases have not sufficiently explained a design decision. 
In order to understand how reasoning influences their 
design outcomes, we investigate the requirement 
coverage. Design coverage is defined as the number of 
definitive solutions that are provided to address the 
requirements, derived requirements and design 
outcomes. Table 3 indicates the coverage that each 
team provided for each category of the requirements 
and derived requirements. The numbers [4,2] in the 
user interface (U/I) cell, title row, indicates the total 
number of requirements and derived requirements in 
the user interface category from Table 1. The number 
in the cells for each team indicates if a concrete design 
solution has been provided for the requirement. For 
instance, Team A covered 3 out of the 4 U/I 
requirements and 1 out of the 2 derived U/I 
requirements. In total, Team M has the highest 
requirement and derive requirement coverage (40 out 
of 42), followed by Team A (28 out of 42) and then 
Team N (23 out of 42).  

 
Team U/I 

[4,2] 
T/L 
[6,5] 

S/D 
[4,4] 

T/D 
[2,4] 

NFR 
[4] 

D/O 
[7] 

Total 
[42] 

A  3,1 4,3 1,4 2,4 1 5 28
N 3,2 4,4 0,3 0,4 0 3 23
M 4,2 6,4 3,4 2,4 4 7 40

Table 3. Solution coverage by Team A, N and M 
 

Team N completed their design within an hour, and 
although they did a lot of analysis, they did not 
articulate their design solution in concrete terms, and 
thus their requirement coverage is the lowest. Since 
Team N spent only half the designated time on their 
design, and to avoid this time bias we based our 
analysis mainly on Team A and M. 

Design structuring performed by the three teams 
resulted in varying level of details. Team A took the 
least time and provided the briefest plan, Team N and 
Team M took longer time to structure their design 
plans, which were more comprehensive than Team A’s 
plan. As a result, Team N and M performed a more 
structured design analysis with less context switching. 
In the case of Team M, they have a higher requirement 
coverage than Team A given that both teams spent two 
full hours. Comparing the coverage of Team N and A, 



although Team N had slightly less requirement 
coverage, they spent only half the time of Team A.  

Kruger and Cross [27] suggest that in a solution-
driven design more solutions are generated. However, 
when the design problem space is not well explored, 
the generated solution alternatives are also limited. 
Team A took a solution-driven approach and they were 
fixated on a given solution from the beginning. The 
focus of pushing/popping a queue by Team A dictated 
their design discussions for about an hour. This 
solution-driven design approach limited the discovery 
of new design issues and therefore limited the design 
alternatives that could have been considered. 

Contextualization of a problem must be 
comprehensive in order to be useful. A systematic 
exploration of the context or design concerns helps 
software designers to identify design issues. A key 
challenge in software design is to find all relevant 
software design problems that arise from a 
combination of requirements, constraints, and quality 
attributes. The exploration of the problem space in an 
unknown domain by designers depends on effectively 
identifying related design concerns that lead to the 
identification of relevant design problems, i.e. finding 
out what you need to know. This process works in a 
spiral or co-evolution manner because the design 
solutions themselves become the context to next level 
of design. 

Team M explored the design contexts substantially 
in relation to a design problem, whereas Team A 
discussed a certain context and switched to another 
design area before revisiting it again. The contexts of a 
design problem represent different aspects or concerns 
that influence the design problem, and they have to be 
considered together in order to define a single design 
problem properly. The sporadic treatment by Team A 
caused them to context switch before returning their 
focus to the key problem, making it ineffective in 
problem solving. This is also a sign of the lack of 
design structuring by Team A. The different 
approaches in design structuring and contextualization 
taken by Team A and M appeared to have influenced 
the effectiveness of software design. This observation 
supports in part the design reasoning theory in which 
Goldschmidt and Weil suggest that the coordination of 
contents and structure are important in design 
reasoning [16]. 

Our study has identified that Team A used more 
scenario-driven reasoning than Team M but Team M 
had higher requirement coverage than Team A. 
Studying the protocols, we have found that even 
though scenarios help design analysis, they do not lead 
directly to a design solution. A scenario by itself is 
inherently insufficient to formulate a complete 

solution, a scenario serves to give an example of how 
software may behave, and help to evaluate if an 
abstract design idea would work under different 
circumstances. Therefore, designers need to work in 
two levels of abstraction simultaneously, i.e.  (a) 
instantiating scenarios to test an abstract design and (b) 
creating and refining an abstract design idea based on 
the scenarios. Having suggested that the two levels of 
abstraction are both important, we however cannot 
conclude how often scenario reasoning should be used. 
We postulate that this type of reasoning depends on the 
individual and the design problem involved, based on 
how well a designer can deal with the abstract design 
problem in a particular context. 

Team M used more explicit reasoning than Team 
A. The two designers in Team M communicated their 
ideas typically through a cycle of problem proposition 
and solution formulation. In their discussions, they 
often explained themselves by using “because”. We 
suggest that such explicit reasoning help them to (a) 
clearly focus and align the discussion of a problem; (b) 
reduce any miscommunication of ideas. Examples of 
Team M’s explicit reasoning are at [0:18:46.1], 
[0:24:31.2], [0:30:42.8]. We further suggest that this 
makes the design process more effective and thus, it 
improves design effectiveness. 

The proportion of inductive reasoning and 
deductive reasoning used by Team A and M were quite 
different. Team M used inductive reasoning to help 
them explore and find new design problems. The 
application of inductive reasoning appears to explain 
how new design problems are identified, which is 
important in software design since design problem 
identification is essential in the exploration of the 
problem space. Such exploration is essential in 
creating and finding suitable solutions for wicked 
design problems. 

 
6. Research Validity 

 
Protocol coding was done in three passes by the two 

authors with one week time between each pass to 
reduce coding errors. Since this work investigates 
different reasoning techniques, we need to interpret the 
reasoning techniques in the protocol coding, which are 
new and not well-defined. The interpretation process, 
especially on concepts such as inductive and deductive 
reasoning, thus required deliberations by the 
researchers. In each coding pass, we adjusted our 
interpretations of the reasoning techniques according 
to our improved understanding. The result was 
recoding the protocols. The decision maps were 
created based on the subject and the sequence of the 



discussion. They have provided visual support to 
analyze problem structuring. 

The findings from the protocol analysis and the 
decision maps have highlighted different aspects of 
design reasoning and their interplays. Our findings in 
areas such as problem structuring and problem-
solution co-evolution are consistent with other design 
theories, which provide external validation to this 
work. Although interviews of the designers after the 
design sessions were made available, we decided not 
to view them before we had completed our analysis so 
that we would not be biased by designers’ self-
reporting.  
 
7. Conclusion 

 
Human design reasoning plays a major role in 

software design, but there is a limited understanding 
on how it works effectively. The use of reasoning 
techniques is important in software design at least in 
two ways: (a) design structuring influences the amount 
of context switching in design, thus affecting design 
effectiveness; (b) identification of relevant problems 
through inductive reasoning and other reasoning 
techniques helps designers create better design. 

Common in the software industry, software 
designers use different reasoning techniques to design, 
with different design results. We have preliminary 
evidence to show that the appropriate use of 
contextualization helps designers to focus and explore 
key design problems effectively. Creating scenarios 
helps verify abstract design ideas, and explicit 
reasoning facilitates communication of design ideas. 
Inductive reasoning is essential in helping designers 
identify design problems in the problem space, thus 
facilitating design problem-solution co-evolution. 
Further exploration of inductive reasoning and other 
reasoning techniques will improve the way we design 
software because of the improved understanding of 
how we think and solve software design problems. 
This is fundamental to the software development 
processes. 
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