
Human Reasoning and Software Design: An Analysis

Antony Tang, Aldeida Aleti
Swinburne University of Technology

{atang,aaleti}@swin.edu.au

Abstract

Software design is a complex cognitive process in
which reasoning plays a major role, but we have
limited understanding of how human reasoning works
in the identification of design problems and the
formulation of design solutions. In this research, we
have observed software designers at work and
analyzed their design reasoning approaches, the
effectiveness of design, in part, depends on how design
problems are structured and how design reasoning is
applied. We report on how reasoning techniques, such
as design structuring, contextualization, co-evolution
of problem-solution and inductive reasoning influence
software design.

1. Introduction

Software design is a highly complex and

demanding activity. A software designer often deals
with changing requirements and technical
environments. One often faces new problem domains
where the knowledge about a design cannot be found
readily. The characteristics and behaviors of the
software and the hardware systems to be considered in
the design are often unknown and the complexity in
user and quality requirements is high. Under such
complex environment, a software designer needs
sound reasoning capabilities to make good design
decisions and to devise a good design solution.

Software practitioners and software engineering
researchers have invented many processes, modeling
techniques and first principles to guide software
designers to create software products. There is,
however, very little study and guidance on systematic
software design reasoning and decision making. In
reality, most of the software designers approach design
based on personal preferences and habits, with various
results in productivity and quality of the end-designs.

Researchers in psychology have proposed that
there are two distinct cognitive systems underlying
reasoning: the heuristic system relies on prior
knowledge and beliefs; the analytic system states that

reasoning is according to logical standards [1]. Under
this dual process theory, designers are said to use both
systems. It seems that, however, designers rely heavily
on prior beliefs and intuition rather than logical
reasoning, causing designer a rational thinking failure
[2]. The comprehension of an issue also dictates how
people make decisions and rational choices [3]. The
comprehension of design issues also depends on how
designers frame or structure the design problems.
Different ways to frame design problems may result in
different design results. In this paper, we investigate
how reasoning influences software design.

The University of California, Irvine, prepared an
experiment in which three pairs of software designers
were given a set of requirements to design a traffic
simulator. Their design activities were video recorded
and transcript. Using those transcripts, we have
analyzed their design reasoning activities in two levels:
(a) structuring the design; (b) reasoning in terms of
problem identification and solution formulation.

From a design problem structuring perspective, an
important question is how software designers organize
design activities to achieve user and quality
requirements. In this study, we have encoded protocols
and created decision maps from the transcripts. From
the qualitative analysis of these materials, we have
found that proper structuring of design discussions
improves design issue identification and reduces
context switching. We also analyze reasoning
techniques that have been used by the designers. We
have found that systematic problem-solution co-
evolution, appropriate contextualization of design
problems, explicit communication of design reasoning
and application of inductive reasoning are important
techniques to improve the effectiveness of software
design. We have found that the level of inductive
reasoning is related to the exploration of design
problems, implying that it plays an important role in
defining the design problem space.

2. Related work

Software design expertise is in part domain
dependent, which is different to some design areas
where the context of the domain is relatively constant.
For instance, the issues faced by scientific system
designers are quite different to that of transactional
financial system designers. Therefore, an expert
software designer may act differently when faced with
unfamiliar domains and technologies. Cross suggests
[4] that expert designers appear not to generate a wide
range of alternatives. We have found in our earlier
study that ‘experienced’ (depending on domain
exposures) software designers intuitively rule out
unviable design alternatives whereas ‘inexperienced’
software designers can benefit from explicitly
considering design options [5].

Another characteristic of software design is the
complexity of the design space. When software
designers are unfamiliar with a domain, the detailed
design problems can be difficult to define and the
viability of a solution cannot be assessed easily. This is
because the behavior of software and systems cannot
be predicted easily, and design issues are complex,
interrelated and conflicting.

Although there are many studies on software
engineering design, few of them study the cognitive
aspects of the software designers. Recent studies
address the use of design rationale [6-8] in software
engineering, mostly from the perspective of
documenting design decisions instead of a systematic
approach to applying software design reasoning.

Typically, software design methodologies employ a
blackbox approach that emphasizes the development
process and its resulting artifact with little exploration
of the cognitive and psychological aspects of designers
who use them. For instance, Hall et al. suggest that
problem frames provide a means of analyzing and
decomposing problems, enabling the designer to
design by iteratively moving between the problem
structure and the solution structure [9]. This method
has a resounding similarity with the Mahler model of
co-evolution between the problem and solution spaces,
which is described by Dorst and Cross in [10]. They
suggest that creative design is developing and refining
together both the formulation of a problem space and
ideas in the solution space (see Figure 1). A study by
Zannier et al. has found that designers make use of
both rational and naturalistic decision making tactics in
decision making [11], designers make more use of a
rational approach when the design problem is well
structured, and inversely designers use a naturalistic
approach when the problem is not well structured.

Another similar representation of problem-solution
co-evolution model is shown in Figure 2. The software
architecture design rationale model of AREL

represents the causal relationships between
DesignConcerns such as the requirements,
DesignDecision node representing the design problems
and the decisions, and DesignOutcome node
representing the design outcomes. The design
outcomes become a design context or concern when a
design is decomposed and interrelated design issues
are linked to new design problems [12].

Figure 1. Problem-solution co-evolution

Figure 2. Causal relationships between design

concern, decision and outcome

Simon and Newell suggest six sources of

information that can be used to construct a problem
space [13], providing a context or a task environment
for the problem space. So defining the context is an
important aspect to formulating and identifying a
problem. Similarly, we suggest that decisions are
driven by decision inputs, or context to a design
problem, and the results of a decision are some
decision outcomes. AREL diagrams enable software
designers to document and trace design decisions and
design rationale from requirements to design artifacts.

Given some software requirements, designers must
look at how to structure the design problems and plan
an approach to designing. Goel and Pirolli reported
that on average 24% of statements made by the
architects are devoted to problem structuring and this
activity occur mostly at the beginning of the design
task [14]. Therefore, design structuring or planning is
an important aspect of design.

Rittel and Webber [15] viewed deign as a process
of negotiation and deliberation. They suggested that
design is a “wicked problem” in which it does not have
a well-defined set of potential solutions. Even though
the act of design is a logical process, it is subject to
how a designer handles this wicked problem.
Goldschmidt and Weil describe design reasoning as
the relationship between contents and structure [16].
They suggest that the process of reasoning as
represented by design moves are double speared where

one direction is to move forward with new design,
another direction is to look backwards for consistency.

Inductive reasoning, especially analogical
reasoning, is a means of applying knowledge acquired
in one context to new situations [17]. It promotes a
creative process in which issues from how different
pieces of information can be combined to form a new
artifact [18]. There are different techniques of
inductive reasoning [19] that software designers can
use. One of them is the use of scenarios to analyze
architecture design [20], and that agrees with the
Klauer’s model of inductive thinking paradigm [19]. If
design is a result of some forms of reasoning
performed by a designer, then it is important to study
the reasoning techniques and process relating to
software design.

3. Design study and analysis methods

3.1. The design assignment

The design task is to build a traffic simulation
program that is going to be used by students to
understand the relationships between traffic lights,
traffic conditions and traffic flow. The topic of the
study is common enough so that the designers would
have no issues with its context, but specialized enough
that general software designers are unlikely to have
designed similar systems previously.

Req-
ments

U/I Traffic
Light

Sim.
Display

Traffic
Density

NFR Design
Outcome

Explicit 4 6 4 2 4 7
Derived 2 5 4 4 0 0

Table 1. Number of requirements of the system

The designers were given a Design Prompt or a
brief specification on the problem where there are
twenty explicit functional and non-functional
requirements, and fifteen derived requirements (see
Table 1). Derived requirements1 are requirements that
are not specified in the Design Prompt but need to be
addressed to complete the design. They are derived
from analysis by the three teams of designers including
the authors’ interpretation of the requirements. The
Design Prompt explicitly specifies seven design
outcomes.

1 Requirement coverage can be found in supporting document
http://www.ict.swin.edu.au/personal/atang/ProfessionalSoftwareDesi
gnStudy/Requirements and derived requirements.pdf

3.2. Purpose of the study

We approach the analysis from the perspective of
design reasoning. Software engineering research has
been focusing on processes and methodologies without
studying why and how these methods would work. In
order to comprehend why a software engineering
approach should work, we need to understand human
cognition and design reasoning. Recently, software
engineering researchers have started to study design
rationale and decision making in this regard. This
study examines design reasoning at two levels: firstly,
structuring of design problems; secondly, reasoning
and problem solving of design issues.

3.3. The analysis method

This is a case study of three teams of designers:
Adobe (A), Anonymous (N) and Amberpoint (M),
we’ll call them Team A, Team N and Team M
respectively. Team A and M took two hours and Team
N took just under one hour to complete the design
tasks. Each team conducted the design activities in
their own ways. We use a protocol coding scheme to
analyze their dialogue with a process similar to [21]
and [22]. After protocol encoding, we build a decision
map using a graphical tool to relate design reasoning
topics.

3.3.1. Protocol analysis and coding schemas. To
analyze the design process, we have a coding scheme
that identifies reasoning activities. It helps dissect the
activities of design framing and the design reasoning
techniques used in solving individual design problems.

Time Dialogue Space Reasoning

Technique
Ex/Im-
plicit

Reason

Deci
sion

Time
Link

[0:12:
01.1]

I don't think we
need to make
…the no of
signals at each
….

SS S+I E C [0:11:
45.3]

Table 2. An example of the coding scheme

Software designers typically start by summarizing

the requirements, contextualizing the problems and
prioritizing issues. This kind of problem structuring is
breadth-first reasoning at a high-level of abstraction
[23]. We then identify reasoning techniques for
protocol coding. Techniques relating to the problem
space are problem identification (G), contextualization
(X), prioritization (R) and simplification (S).
Reasoning techniques relating to the solution space are
scenario construction (E), inductive reasoning (I),
deductive reasoning (D), option identification (O),
constraint identification (C), and trade-off analysis (T).

Table 2 is an example of our protocol coding and the
reasoning activities are coded in the 4th column.

We codify the transcripts into problem space (PS)
and solution space (SS) (see 3rd column in Table 2).
This enables us to study the co-evolution of problem
and solution. Reasoning by designers can be made
implicitly or explicitly, this is shown in the 5th column.
The decision is coded according to status (6th column):
(P)roposed, (C)onfirmed, (R)ejected and (I)terated.
This coding enables us to analyze when and how
designers make their decisions. Column 1 shows the
protocol sequence in time, column 7 is a time linking
the current dialogue to the related dialogue. It enables
us to connect the line of reasoning. Column 2
documents the dialogue.

3.3.2. Decision map. After encoding the protocol, we
build a decision map to represent the design activities.
The decision map is based on the AREL model where
design decision making are three nodes that consist of
[design concern, design decision, design outcome] and
the causal relationships between them. A Design
concern node represents information that is relevant to
the design issue, such as requirements, context or
design outcome. Decision node represents the design
problem. Design outcome node represents the solution
of a decision. A decision map shows the progression of
a design by connecting the problem space (decision
node in rectangular boxes) to the solution space
(design outcome in ovals). The contexts of the design
are represented by rectangular boxes with double
vertical lines. The nodes in the decision map are linked
together by (a) the sequence of discussions, i.e. time;
(b) the subject of the discussion. Figure 3 shows Team
M’s design planning in the first five minutes of their
discussions. The decision map depicts the following:
(a) structuring of a design approach; (b) sequencing of
design reasoning; (c) design problem framing and
identification; (d) design justification. 2

4. Data analysis

Using the coded protocols and the decision maps,

we analyze how the three teams reason with their
designs. We approach the analysis from two primary
perspectives: (a) overall structuring and sequencing of
the design problems; (b) application of design
reasoning techniques in specific design areas.

2 The decision maps are constructed with a UML tool Enterprise
Architect version 7.00. Decision maps are available at
http://www.ict.swin.edu.au/personal/atang/ProfessionalSoftwareDesi
gnStudy/decision-analysis-v1.6.eap.

Figure 3. An extract of a decision map

4.1. Design structuring and sequencing

Each team performed some planning of their design
activities. We use decision maps to do the analysis.
The decision maps depict the design problems and the
resulting solutions in a sequence of decisions that are
related to the same topic. Although iterations and
branching are common, the design problems and
solutions are typically depicted in a sequential order.
For instance, Team N focused on the topic of roads
between [0:18:36.2] and [0:19:22.2] and they
discussed its properties and design. From the visual
maps, the design discussions can be identified easily.
Based on the groupings, we analyze how their design
activities are structured.

4.1.1. Planning design approach. All three teams
started off by planning their design approach, which
involves assessing the requirements, identifying and
structuring high-level design problems and making
some implicit prioritization of problems. Team A spent
about 1.5 minute ([0:05:11.0] till [0:06:41.1]) on
planning and they identified representation and
modeling of traffic flow, signal, intersection as their
key design issues. Team N spent about 9 minutes
([0:05:29.7] till [0:14:20.0]) on structuring their
problems, i.e. they did an assessment of where the
design complexity lie and concluded that the
dependency was the signals and turning cars. They
also pointed out that the user interface and the data
structures of the system needed to be identified. Team
M spent about 6.5 minutes ([0:06:08.9] till
[[0:12:31.1]) on planning and they identified ten
design issues. The three teams spent 1%, 19% and 6%
of their total time, respectively, on problem
structuring. In comparison, Goel and Poirolli found
that on average 25% of statements was devoted to

problem structuring mainly at the beginning of design
[14].

Design planning has influenced how each team
structures the rest of their design. The initial focus and
prioritizations on specific areas dictate the structure of
the rest of design discussions. Implicit design planning
took place even though none of the teams explicitly
mentioned it. For instance, Team A’s focal points were
data structure, modeling and representation. They
spent the next 40 minutes ([0:08:28.4] till [0:48:02.1])
on queue management before moving to the other 11
discussion topics. Team N identified signaling as
important and they immediately tackled this design
problem after planning [0:15:38.5].

Design re-planning were carried out by Team A
and N during the design. At [1:17:59.15], Team A
assessed their design status and realigned their focus
on the design outcomes, and the rest of the design
discussions followed this direction. Team N re-planned
at [0:43:52.9] and they identified remaining design
gaps that needed to be resolved and proceeded to solve
them.

4.1.2. Structuring design activities. Using the
discussion grouping by design topics, we observe that
the way each team explored the design space followed
different reasoning structures. Team A used a semi-
structured approach. They started with a design
discussion that focused on the premise of a queue and
the push/pop operations, and they explored this
solution concept extensively to design the traffic
simulation system. Further, they continued the
discussions about roads and cars ([0:42:40.4] till
[0:52:15.7]) but without reaching either a solution or a
clear identification of the next design problem, they
moved to the topic on sensors ([0:54:33.6]). Such
inconclusive design discussions continued until
[1:17:59.15] when they stopped and planned their
design approach. At that point the designers reassessed
their design problems that guided them till the end of
the design session.

Team N used a compositional structuring
approach. They firstly spent a short time to investigate
each of the major components of the simulation, such
as: (a) synchronization of signals ([0:15:38.5] till
[0:17:04.7]); (b) traffic; (c) roads; (d) lanes; (e) left-
turn lane; (f) model; (g) intersection and map. After
gaining a fair understanding of all the key components,
they then composed the complex design from the basic
components: (a) traffic ([0:34:25.9] till [0:39:48.0]);
(b) simulation ([0:40:33.5] till [0:43:52.9]); (c) cars
interacting with roads and intersections ([0:43:52.9] till
[0:49:39.9]) and so on. This reasoning structure
enables the designers to investigate simple objects

before moving to design involving multiple design
objects.

Team M used a high-low structuring approach.
Team M tackled the major design problems in-turn and
when they concluded the design of the major
problems, they addressed associated issues such as
user interface. For instance, they started their design
discussions by addressing the issue of traffic density
[0:13:35.5]. At the end of the high-level design, they
investigated the relevant but low-level issue regarding
simulation interface [0:26:43.5]. Then they moved to
another high-level critical problem on traffic light, and
at the end of the discussions they again considered the
low-level interface issue [0:41:13.3]. In doing so, the
designers started with a high-level design problem,
solved it and then tackled other small but related
design problems.

4.1.3. Reasoning structure and context switching.
Based on the three types of reasoning structure, we
have observed that designers’ focus shift according to
the planning of the design and how the design issues
are explored. Once design issues are explored, context
switching, i.e. focusing and defocusing of a design
issue, takes place between addressing related issues.
Context switching is most noticeable in the semi-
structured approach. For instance, during the queue
management discussion by Team A, the designers
focused and defocused on traffic lights several times at
[0:20:36.2], [0:39:17.8] and [0:49:41.0]. Then this
topic was raised again at [0:55:28.8] and [1:49:44.0]
but Team A did not have a clear and complete design
for all issues related to traffic light. It appears that the
context switching affects the resolution of design
issues. The more context switching that takes place,
the less the designers follow a single line of thought to
explore a design issue thoroughly. Therefore, even
when the same issue was discussed many times, a clear
solution was not necessarily devised.

In contrast, Team M addressed traffic light
[0:28:16.4] in a single discussion. There is no context
switching to other design issues apart from brief visits
to closely related issues, e.g. sensors [0:28:54.1]. The
designers acknowledged the other design issue but
quickly returned to the main topic of the design. As
such, Team M explored related issues more
thoroughly. Based on the observations, we argue that
high context switching could lead to defocusing of a
single issue, and designers may lose the context of the
design, making it harder for designers to formulate the
right design problems.

4.2. Design reasoning techniques
Design is a rational problem solving activity [10].

It is a process in which designers explore the design
issues and search for rational solutions. It is well
established by many that design rationale is one of the
most important aspects in software design [6, 24].
However, the basic techniques that lead to rational
design decisions are not well understood. Therefore,
we explore different design reasoning techniques that
are used by the three teams.

4.2.1. Problem-solution co-evolution. Dorst and
Cross have observed co-evolution of design between
problem and solution spaces [10]. Tang et al. have
reported on software design decision making in terms
of expanding relationships between decision context,
design issues and solutions [25]. The way the
designers in the three teams conducted their designs
was largely aligned with the co-evolution model. For
instance, Team M demonstrated a co-evolution process
where a problem was identified and solved, leading to
the next problem-solution cycle (see Fig. 4). However,
this model presumes a logical design reasoning
behavior in which a solution is derived from well-
defined design problems. However, we have observed
design behaviors that differ from this model.

Figure 4. Example of a problem-solution co-

evolution in Team M design session

Solution driven design. At a very early stage, Team A
identified traffic flow and signal as design issues
[0:06:10.6] and they decided that a queue should be
used in the solution [0:08:28.4]. From this point
onwards, Team A continued to make a series of
decisions surrounding the operations of the queue.
Some examples are [0:08:51.0] (shown in Fig. 5),
[0:38:05.6] and [0:39:17.8]. The idea of the queue
drove the discussions from [0:08:28.4] till [0:50:43.1].
The design plan and all subsequent reasoning are
predominantly based on this solution concept that was
decided up-front, without questioning whether this is
the right approach or if there are alternative
approaches. It is also evident that there is a lack of
exploration or implicit assumption about the problem

space. This case demonstrates that when designers take
a solution driven approach, the preconceived solution
becomes the dominant driver of the design process,
and the rest of the solutions evolves from the
preconceived solution. Such design behavior has been
observed previously. Rowe [26] observed that a
dominant influence was exerted by the initial design
even when severe problems were encountered. Tang et
al. found that for some software designers, the first
solution that came to mind dominated their entire
design thinking, especially when the designers did not
explicitly reason with their design decisions [5].

Figure 5. Example of a solution driven design by

Team A

Absent or ambiguous design solution. There are
cases where designers identified design issues in the
problem space without conclusions. When Team M
was examining traffic light control for a left-turn signal
[0:40:07.0], the discussion led to identification of other
issues such as how to deal with the user interface and
timing of changing colors of adjacent traffic light.
Both unsolved issues were relevant in the simulation
but before concluding with a design the discussion
drifted to the next topic [0:41:23.8].

From the analysis, there was no definitive evidence
to indicate why the discussion drifted before a solution
was reached. We assume that the designers might
either feel that they had to move on to higher priority
design; or the problems are too-hard to contemplate at
the time; or simply distraction. Similarly, examples can
be found in Team A’s design session.

4.2.2. Contextualizing problems. Contextualization is
the process of attaching a meaning and interpreting a
phenomenon to a design problem. Well reasoned
arguments state the context of the problem, i.e. what
and how the context influences the design. By
identifying the context at the right level of abstraction,
it helps to frame the design issues [13], identify the
assumptions of the situation and the constraints on the

potential solution. So how designers contextualize a
design problem would influence the design outcome.

All teams contextualize their problems in different
ways, we counted the number of nodes in the decision
map where they discuss the context of the problem and
state the details that can influence the potential
solution. We identified 26 nodes for Team A and 23
nodes for Team M. Although the number of nodes is
similar between the two teams, Team M is more
thorough in articulating the context. An example is
when Team M examines the traffic lights [0:28:16.4].
The designers spell out 3 relevant contexts of the
problem, i.e. the timing of the cycle, the impact of the
sensors and the left-turn arrow. Their discussion of the
design problem using those contexts happened at the
same time frame, as such it provides a focal point for
investigating a design problem comprehensively.

On the other hand Team A contextualizes their
design problems in a sporadic and uncoordinated way.
For example, when Team A discussed traffic signals,
they did not consider all relevant contexts at the same
time. The designers discussed signal rules at
[0:12:31.1], they revisited the subject of traffic signals
with respect to lanes at [0:25:37.4]. Later they decided
that it is the intersection which is relevant to traffic
signals [0:30:41.9]. At [0:56:06.7] they discussed how
signals could be specified by the students. Twenty-one
minutes later [1:17:58.4] their discussion went to the
subject of sensor and left signal. Since
contextualization impacts on design problem framing,
the difference between how the two teams use
contextualization affects the information that is
available for the reasoning of a design problem.

4.2.3. Scenario construction. Using scenarios
enhances the comprehension of the problem and
facilitates communication between designers.
Constructing scenario is a way to instantiate an
abstract design problem and evaluate if the abstract
design is fit for the real-world problem [20]. For
example Team A built a scenario of how the
simulation could work, talking about the possibility of
having a slider to control the timing of lights and car
speed [0:48:20.4]. Using this scenario, the designers
highlighted a number of related design problems, e.g.
the average wait time of a car going through the city
streets; car speeds; traffic light control etc.

Scenario construction technique was used in 7
cases by Team M and 22 cases by Team A. This shows
that the approaches used by the two teams are very
different. Team A considered the design problems by
expressing them in real world examples, whereas
Team M remains at an abstract design level. Even
though Team A used a lot of scenarios in their design

reasoning, they often did not arrive at a design
conclusion to cater for the scenario, e.g. [1:26:00.0].
Team M, on the other hand, worked at an abstract level
of the design, and using scenarios to test the abstract
idea, e.g. [0:32:27.5]. Thus it appears that the
effectiveness of applying scenarios depends on the
construction of an abstract design.

4.2.4. Implicit or explicit reasoning. Explicit reasons
are explicated arguments to support or reject a design
problem and a solution choice, but implicit design
reasons are decisions made without communicating an
explicit reason. When explicit reasons are absent,
people other than the designers themselves make
assumptions about why the decision takes place.
Without explicit reasoning, it is difficult for the
designer, the design team or reviewers to identify if
there are any omissions. In this study, explicit reasons
can be identified with the word “because” in the
protocol and the arguments to support the
explanations. An example of explicit reasoning is
where the designers of Team M clearly state the reason
for their solution [0:25:35.1].

However reasoning is often not verbalized for a
number of reasons: (a) the designers may have reasons
that they do not express explicitly; (b) the reasoning is
the assumption made in the discussion of the subject or
the context; (c) they have omitted the reasoning. An
example of implicit reasoning is when Team A
discussed about push/pop [0:41:36.0] putting all traffic
complexity in these two actions, without explicitly
saying why they chose to do so, and how they will
implement it. Moreover, it is implicitly decided that the
actual direction of cars while pushed and popped will
be handled by a random number generator. When
Team A decided that observations should be taken
from the simulation [1:31:25.2], they assumed without
any reasoning that metrics such as average wait time of
cars, average capacity of the roads, etc. are available to
support their decisions. When we analyzed the
protocols of Team M and Team A, Team M made 33
cases of implicit reasoning and 87 cases of explicit
reasoning, Team A made 47 cases of implicit
reasoning and 52 cases of explicit reasoning. Team M
provided more explicit explanation of how they
designed. Team A provided less explanation of their
design ideas, the implicit reasons required
interpretation to appreciate why they designed in a
certain way, therefore there are opportunities for the
others to misinterpret the design ideas.
4.2.5. Inductive and Deductive Reasoning. Inductive
reasoning is a type of reasoning that generalizes
specific facts or observations to create a theory to be
applied to another situation whereas deductive

reasoning uses commonly known situations and facts
to derive a logical conclusion. While inductive
reasoning is exploratory and helps develop new
theories, deductive reasoning is used to find a
conclusion from the known facts.

Let us consider first how both teams have used
inductive reasoning. We have counted 15 induction
cases for Team A and 30 induction cases for Team M.
Team M has used twice as many inductive reasoning
as Team A. It indicates that Team M employs a more
investigative strategy, inspecting the relevant facts to
explore new design problems and solutions. As an
example, Team M discussed the relationships between
the settings of traffic lights to prevent collision
[0:34:30.6]. From the observations that cars can run a
yellow light and to prevent collision, they induce that
there should be a slight overlap when all traffic lights
facing different directions should be red
simultaneously. Then they reason inductively about the
manual settings for the timing of the lights and whether
the users should be allowed to set all four lights
manually. Since the users should not be allowed to set
the traffic lights to cause collisions, the designers
reason that there should be a rule in which the setting
of a set of lights would imply the behavior of the other
traffic lights. Team M in this case found new design
problems from some initial observations.

On the other hand, deductive reasoning is used
more times by Team A than Team M, with 20 and 10
times respectively. For instance, Team A started off by
predicating on the basic components used in the
solution, i.e. queue and cop etc., and deduced the
solution from that. They used deductive reasoning at
[0:30:19.3]. They said that a lane is a queue, so
multiple lanes would be represented by multiple
queues. Since they also predicated on the use of a
traffic cop, so they deduced that the cop would look
after the popping and pushing of multiple queues.
Team A was fixed in the basic design of the system
from the beginning, so although the logical deduction
is correct, the design options that have been explored
are limited.

5. Discussion on Findings

Although design experience in software is highly
important, it is also domain specific. In this
experiment, designers are highly experienced and they
possess the general knowledge about the problem
domain, but they do not appear to have the detailed
design knowledge in this area. So designers have relied
on their general design knowledge and reasoning to
create their solutions. All designers were given two

hours to design, which was insufficient time to
exhaustively explore all possible solution branches to
provide a complete solution. Therefore, their design is
measured by how effective the designers have been
analyzing the problems and formulating the solutions.

We cannot evaluate the quality of each team’s
design because: (a) the criteria we use in design quality
reviews can have a bias on the analysis done; (b) the
created solutions are incomplete; (c) designers in some
cases have not sufficiently explained a design decision.
In order to understand how reasoning influences their
design outcomes, we investigate the requirement
coverage. Design coverage is defined as the number of
definitive solutions that are provided to address the
requirements, derived requirements and design
outcomes. Table 3 indicates the coverage that each
team provided for each category of the requirements
and derived requirements. The numbers [4,2] in the
user interface (U/I) cell, title row, indicates the total
number of requirements and derived requirements in
the user interface category from Table 1. The number
in the cells for each team indicates if a concrete design
solution has been provided for the requirement. For
instance, Team A covered 3 out of the 4 U/I
requirements and 1 out of the 2 derived U/I
requirements. In total, Team M has the highest
requirement and derive requirement coverage (40 out
of 42), followed by Team A (28 out of 42) and then
Team N (23 out of 42).

Team U/I

[4,2]
T/L
[6,5]

S/D
[4,4]

T/D
[2,4]

NFR
[4]

D/O
[7]

Total
[42]

A 3,1 4,3 1,4 2,4 1 5 28
N 3,2 4,4 0,3 0,4 0 3 23
M 4,2 6,4 3,4 2,4 4 7 40

Table 3. Solution coverage by Team A, N and M

Team N completed their design within an hour, and
although they did a lot of analysis, they did not
articulate their design solution in concrete terms, and
thus their requirement coverage is the lowest. Since
Team N spent only half the designated time on their
design, and to avoid this time bias we based our
analysis mainly on Team A and M.

Design structuring performed by the three teams
resulted in varying level of details. Team A took the
least time and provided the briefest plan, Team N and
Team M took longer time to structure their design
plans, which were more comprehensive than Team A’s
plan. As a result, Team N and M performed a more
structured design analysis with less context switching.
In the case of Team M, they have a higher requirement
coverage than Team A given that both teams spent two
full hours. Comparing the coverage of Team N and A,

although Team N had slightly less requirement
coverage, they spent only half the time of Team A.

Kruger and Cross [27] suggest that in a solution-
driven design more solutions are generated. However,
when the design problem space is not well explored,
the generated solution alternatives are also limited.
Team A took a solution-driven approach and they were
fixated on a given solution from the beginning. The
focus of pushing/popping a queue by Team A dictated
their design discussions for about an hour. This
solution-driven design approach limited the discovery
of new design issues and therefore limited the design
alternatives that could have been considered.

Contextualization of a problem must be
comprehensive in order to be useful. A systematic
exploration of the context or design concerns helps
software designers to identify design issues. A key
challenge in software design is to find all relevant
software design problems that arise from a
combination of requirements, constraints, and quality
attributes. The exploration of the problem space in an
unknown domain by designers depends on effectively
identifying related design concerns that lead to the
identification of relevant design problems, i.e. finding
out what you need to know. This process works in a
spiral or co-evolution manner because the design
solutions themselves become the context to next level
of design.

Team M explored the design contexts substantially
in relation to a design problem, whereas Team A
discussed a certain context and switched to another
design area before revisiting it again. The contexts of a
design problem represent different aspects or concerns
that influence the design problem, and they have to be
considered together in order to define a single design
problem properly. The sporadic treatment by Team A
caused them to context switch before returning their
focus to the key problem, making it ineffective in
problem solving. This is also a sign of the lack of
design structuring by Team A. The different
approaches in design structuring and contextualization
taken by Team A and M appeared to have influenced
the effectiveness of software design. This observation
supports in part the design reasoning theory in which
Goldschmidt and Weil suggest that the coordination of
contents and structure are important in design
reasoning [16].

Our study has identified that Team A used more
scenario-driven reasoning than Team M but Team M
had higher requirement coverage than Team A.
Studying the protocols, we have found that even
though scenarios help design analysis, they do not lead
directly to a design solution. A scenario by itself is
inherently insufficient to formulate a complete

solution, a scenario serves to give an example of how
software may behave, and help to evaluate if an
abstract design idea would work under different
circumstances. Therefore, designers need to work in
two levels of abstraction simultaneously, i.e. (a)
instantiating scenarios to test an abstract design and (b)
creating and refining an abstract design idea based on
the scenarios. Having suggested that the two levels of
abstraction are both important, we however cannot
conclude how often scenario reasoning should be used.
We postulate that this type of reasoning depends on the
individual and the design problem involved, based on
how well a designer can deal with the abstract design
problem in a particular context.

Team M used more explicit reasoning than Team
A. The two designers in Team M communicated their
ideas typically through a cycle of problem proposition
and solution formulation. In their discussions, they
often explained themselves by using “because”. We
suggest that such explicit reasoning help them to (a)
clearly focus and align the discussion of a problem; (b)
reduce any miscommunication of ideas. Examples of
Team M’s explicit reasoning are at [0:18:46.1],
[0:24:31.2], [0:30:42.8]. We further suggest that this
makes the design process more effective and thus, it
improves design effectiveness.

The proportion of inductive reasoning and
deductive reasoning used by Team A and M were quite
different. Team M used inductive reasoning to help
them explore and find new design problems. The
application of inductive reasoning appears to explain
how new design problems are identified, which is
important in software design since design problem
identification is essential in the exploration of the
problem space. Such exploration is essential in
creating and finding suitable solutions for wicked
design problems.

6. Research Validity

Protocol coding was done in three passes by the two

authors with one week time between each pass to
reduce coding errors. Since this work investigates
different reasoning techniques, we need to interpret the
reasoning techniques in the protocol coding, which are
new and not well-defined. The interpretation process,
especially on concepts such as inductive and deductive
reasoning, thus required deliberations by the
researchers. In each coding pass, we adjusted our
interpretations of the reasoning techniques according
to our improved understanding. The result was
recoding the protocols. The decision maps were
created based on the subject and the sequence of the

discussion. They have provided visual support to
analyze problem structuring.

The findings from the protocol analysis and the
decision maps have highlighted different aspects of
design reasoning and their interplays. Our findings in
areas such as problem structuring and problem-
solution co-evolution are consistent with other design
theories, which provide external validation to this
work. Although interviews of the designers after the
design sessions were made available, we decided not
to view them before we had completed our analysis so
that we would not be biased by designers’ self-
reporting.

7. Conclusion

Human design reasoning plays a major role in

software design, but there is a limited understanding
on how it works effectively. The use of reasoning
techniques is important in software design at least in
two ways: (a) design structuring influences the amount
of context switching in design, thus affecting design
effectiveness; (b) identification of relevant problems
through inductive reasoning and other reasoning
techniques helps designers create better design.

Common in the software industry, software
designers use different reasoning techniques to design,
with different design results. We have preliminary
evidence to show that the appropriate use of
contextualization helps designers to focus and explore
key design problems effectively. Creating scenarios
helps verify abstract design ideas, and explicit
reasoning facilitates communication of design ideas.
Inductive reasoning is essential in helping designers
identify design problems in the problem space, thus
facilitating design problem-solution co-evolution.
Further exploration of inductive reasoning and other
reasoning techniques will improve the way we design
software because of the improved understanding of
how we think and solve software design problems.
This is fundamental to the software development
processes.

8. References
[1] W. De Neys, "Implicit conflict detection during decision

making," in Proceedings of the Annual Conference of the
Cognitive Science Society, 2007, pp. 209-214.

[2] J. S. Evans, "In two minds: dual-process accounts of reasoning,"
Trends in Cognitive Sciences, vol. 7 (10), pp. 454-459, 2003.

[3] A. Tversky and D. Kahneman, "Rational Choice and the
Framing of Decisions," The Journal of Business, vol. 59 (4 Part
2), pp. S251-S278, 1986.

[4] N. Cross, "Expertise in Design: An Overview," Design Studies,
vol. 25 (5), pp. 427-441, 2004.

[5] A. Tang, M. H. Tran, J. Han, and H. van Vliet, "Design
Reasoning Improves Software Design Quality," in Proceedings
of the Quality of Software-Architectures (QoSA 2008), 2008.

[6] A. Tang, M.A. Barbar, I. Gorton, and J. Han, "A survey of
architecture design rationale," Journal of Systems and Software,
vol. 79 (12), pp. 1792-1804, 2006.

[7] J. Tyree and A. Akerman, "Architecture Decisions:
Demystifying Architecture," IEEE SOFTWARE, vol. 22 (2), pp.
19-27, 2005.

[8] A. Dutoit, R. McCall, I. Mistrik, and B. Paech, Eds., Rationale
Management in Software Engineering. Springer, 2006 pp. 432.

[9] J. G. Hall, M. Jackson, R. C. Laney, B. Nuseibeh, and L.
Rapanotti, "Relating Software Requirements and Architectures
Using Problem Frames," in IEEE Joint International Conference
on Requirements Engineering, 2002, pp. 137-144.

[10] K. Dorst and N. Cross, "Creativity in the design space: co-
evolution of problem-solution," Design Studies, vol. 22 (5), pp.
425-437, 2001.

[11] C. Zannier, M. Chiasson, and F. Maurer, "A model of design
decision making based on empirical results of interviews with
software designers," Information and Software Technology, vol.
49 (6), pp. 637-653, 2007.

[12] A. Tang, Y. Jin, and J. Han, "A rationale-based architecture
model for design traceability and reasoning," Journal of Systems
and Software, vol. 80 (6), pp. 918-934, 2007.

[13] H. Simon and A. Newell, "Human Problem Solving: The State
of The Theory in 1970," Carnegie-Mellon University1972.

[14] V. Goel and P. Pirolli, "The Structure of Design Problem
Spaces," Cognitive Science, vol. 16 (3), pp. 395-429, 1992.

[15] H. W. J. Rittel and M. M. Webber, "Dilemmas in a general
theory of planning," Policy Sciences, vol. 4 (2), pp. 155-169,
1973.

[16] G. Goldschmidt and M. Weil, "Contents and Structure in Design
Reasoning," Design Issues, vol. 14 (3), pp. 85-100, 1998.

[17] B. Csapó, "The Development of Inductive Reasoning:
Crosssectional Assessments in an Educational Context,"
International Journal of Behavioral Development, vol. 20 (4),
pp. 609-626, 1997.

[18] M. Simina and J. Kolodner, "Creative design: Reasoning and
understanding," in Case-Based Reasoning Research and
Development. vol. 1266/1997, ed: Springer Berlin / Heidelberg,
1997, pp. 587-598.

[19] K. J. Klauer, "Teaching Inductive Thinking to Highly Able
Children," in Fostering the growth of high ability: European
perspectives, A. J. Cropley and D. Dehn, Eds., ed: Greenwood
Publishing Group, 1996, pp. 175-191.

[20] R. Kazman, G. Abowd, L. Bass, and P. Clements, "Scenario-
Based Analysis of Software Architecture," IEEE Software, vol.
13 (6), pp. 47-55, 1996.

[21] J. Gero and T. McNeill, "An Approach to the Analysis of Design
Protocols," Design Studies, vol. 19 (1), pp. 21-61, 1998.

[22] R. Yin, Case Study Research Design and Methods, 3rd ed.: Sage
Publications, 2003.

[23] D. A. Schön, "Designing: rules, types and worlds," Design
Studies, vol. 9 (3), pp. 181-190, 1988.

[24] B. S. Shum and N. Hammond, "Argumentation-Based Design
Rationale: What Use at What Cost?," International Journal of
Human-Computer Studies, vol. 40 (4), pp. 603-652, 1994.

[25] A. Tang, J. Han, and R. Vasa, "Software Architecture Design
Reasoning: A Case for Improved Methodology Support," IEEE
Software, vol. Mar/Apr 2009 pp. 43-49, 2009.

[26] P. G. Rowe, Design thinking: Cambridge, Mass.:MIT Press,
1987.

[27] C. Kruger and N. Cross, "Solution driven versus problem driven
design: strategies and outcomes," Design Studies, vol. 27 (5), pp.
527-548, 2006.

