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Abstract

For embedded systems quality requirements are equally
if not even more important than functional requirements.
The foundation for the fulfillment of these quality require-
ments has to be set in the architecture design phase. How-
ever, finding a suitable architecture design is a difficult task
for software and system architects. Some of the reasons
for this are an ever-increasing complexity of today’s sys-
tems, strict design constraints and conflicting quality re-
quirements. To simplify the task, this paper presents an
extendable Eclipse-based tool, called ArcheOpterix, which
provides a framework to implement evaluation techniques
and optimization heuristics for AADL specifications. Cur-
rently, evolutionary strategies have been implemented to
identify optimized deployment architectures with respect to
multiple quality objectives and design constraints. Exper-
iments with a set of initial deployment architectures pro-
vide evidence that the tool can successfully find architecture
specifications with better quality.

Keywords: ArcheOpterix, Architecture Optimization,
AADL, Pareto Optimization, Evolutionary Algorithms.

1 Introduction

The quality of the architectural design is critical for the
successful development of an embedded system. Two com-
monly mentioned reasons are:

1. the architecture design sets the foundation for the suc-
cessful achievement of quality requirements and ful-
fillment of limited resource budgets [6, 3, 22, 30] and,

2. the architecture design helps to deal with the ever
increasing complexity of today’s embedded systems
[36].

The implications of the software and system architec-
ture on quality characteristics such as safety, availability,

reliability, maintainability and temporal correctness, just to
name a few, are well documented in the research literature
[3, 22] and affirmed in industrial practice. Decisions made
in the architecture design phase have a very large impact on
the cost and quality of the final system. An additional dif-
ficulty is that quality requirements can often conflict with
one another and with economic constraints.

The growing complexity of today’s embedded systems
is mainly induced by customers requiring more and more
functionality. However, another factor is that the design
of embedded systems such as vehicle control systems is
presently moving from standalone and partitioned systems
to functionally integrated architectures [5, 20]. In such ar-
chitectures, shared processors and communication channels
allow a large number of configuration options at design time
and a large number of reconfigurations options at runtime.

However, when a number of architectures can potentially
deliver the desired functionality of a system, designers are
faced with a difficult optimization problem. In most cases,
fulfilling all quality requirements is infeasible due to con-
flicting requirements and consequently one must find the
architecture or architectures that achieve the best possible
tradeoffs among quality attributes and cost. In the rare case,
that it is technically possible to fulfill all quality require-
ments, then the software engineer must find the architecture
that requires minimal development and lifecycle costs. It is
widely accepted that finding good architecture designs rep-
resents a hard, multi-objective optimization problems that
can only be approached systematically with the aid of opti-
mization techniques and computerized algorithms that can
effectively search for optimal solutions in large potential de-
sign spaces [21, 35].



This paper presents a tool called ArcheOpterix1 that
aims to help software architects with this difficult task.
ArcheOpterix is an Eclipse plug-in that provides a plat-
form to implement different architecture evaluation and op-
timization algorithms. The design allows extending the
tool with different quality evaluation algorithms and met-
rics. These evaluation algorithms should follow the princi-
ples of model-driven engineering [16] in that they allow to
reason about the quality attributes based on an abstract ar-
chitecture model. Furthermore, the optimization engine can
be exchanged, allowing to experiment with different opti-
mization heuristics and different optimization problems. In
this paper, we specifically focus on component deployment
problems; however, the tool is not limited to these problems.

Since the application domain of ArcheOpterix are em-
bedded and pervasive systems we have chosen AADL (Ar-
chitecture Analysis and Description Language) [13] as the
underlying architecture description language. AADL has
been designed on the foundation of the architecture descrip-
tion language MetaH [4] and the goal of AADL is to specifi-
cally support model-based quality analysis (e.g. safety with
a specific Error Annex [14, 24]) and specification of soft-
ware and system architectures for complex embedded sys-
tems. It has gained increasing attention by the industry in
this domain, especially in companies developing automo-
tive and avionic systems. The language itself has been stan-
dardized by Society of Automotive Engineers (SAE) in the
standard AS5506. Due to the use of AADL, the design of
ArcheOpterix is closely aligned with AADL’s development
environment OSATE (Open Source AADL Tool Environ-
ment) [12] and Eclipse [41].

In summary this paper contains the following contribu-
tions:

• a high-level description of the tool ArcheOpterix that
can be used to optimize AADL specifications,

• detailed information about implementations of some
early quality evaluation and architecture optimization
plug-ins, and

• results from a set of initial experiments on a set of spe-
cific deployment problems that show the suitability of
the tool to solve these problems.

The rest of the paper is organized as follows: Sec-
tion 2 gives and overview of the architecture and goals of
ArcheOpterix. Its basic capabilities and some current im-
plementations will be described. Section 3 presents early

1The name ArcheOpterix is derived from the species and fossil Ar-
chaeopteryx that lived in the Jurassic period. Archaeopteryx is transitional
species which represents evolutionary link between dinosaurs and birds.
Since the tool aims at architecture optimization and currently mostly evolu-
tionary algorithms have been implemented, we thought that ArcheOpterix
would be a suitable name for the tool

results of several experiments that have been performed to
test the capabilities ArcheOpterix. The tool ArcheOpterix
as well as the presented architecture optimization approach
based on AADL specifications is compared with related
work in Section 4 and we conclude with an outlook to future
work in Section 5.

2 Architecture and Tool Description

2.1 Overview of the Tool

The ArcheOpterix tool has been developed with Java and
Eclipse [41] and can be directly used as a plug-in for the
Open Source AADL Tool Environment; OSATE [12]. The
architecture of the framework is presented in Figure 1 fol-
lowed by a presentation of its major elements and their in-
teractions:

Figure 1. Architecture of ArcheOpterix

AADL Model Parser (AMP). The principle responsi-
bility of this element of the ArcheOpterix is to interpret
and extract model abstractions from an AADL specifica-
tion. The AADL Model Parser takes an AADL model as in-
put (.aaxl file) and accesses the root data structure of the in-
ternal model representation. The AMP is capable of captur-
ing AADL standard elements such as processors, processes,
networks etc, and further can be extended for more spe-
cific elements and domain specific parameters. The AADL
Parser acts as a mediator and supports the union of parame-
ter extraction functions required for the Architecture Anal-
ysis Module.

Architecture Analysis Module (AAM). This element
of the ArcheOpterix framework encompasses the abstrac-
tion of model parameters independently from the specifi-
cation language and application domain. Intuitively, the



AAM acts as the central database in the framework con-
taining all relevant information taken from the model spec-
ification in AADL and, acts as the hub with a common
interface for application specific implementation of other
modules in the framework. The AAM contains a Con-
text object, which encapsulates all relevant parameters ex-
tracted from the AADL file. For example, in the applica-
tion of the tool for deployment architecture optimization,
the Context object will be populated with hosts, compo-
nents, networks and interaction parameters. Quality eval-
uation of an architecture may use different techniques and
may be interested in different parameters in the model. In
ArcheOpterix, these quality evaluation functions are repre-
sented by AttributeEvaluator modules. An AAM may con-
tain an arbitrary number of extensible AttributeEvaluators,
where they communicate with the module using a generic
Quality Evaluation Interface. Each AttributeEvaluator im-
plements an Evaluate(Architecture,Context)
method and provides metrics for a given architecture in the
context of the AAM. Apart from the custom implementa-
tions of attribute evaluators, the AAM can also be used to
interact with OSATE itself to obtain in-built quality evalu-
ation capabilities. This can be done by wrapping the OS-
ATE in-built functions and interface them with the Qual-
ity Evaluation Interface. In addition to the quality evalua-
tion, a given architecture also needs to be validated with re-
spect to the constraints specified in the model specification.
The Architecture Constraint Validation Interface provides
a plug-in point for modules called Constraint Evaluators
that check a given architecture for a specific constraint in
a given context. The presented two interfaces for Attribute
and Constraint Evaluators are technically implemented with
the Strategy design pattern [18] that enables different imple-
mentations enforcing the common functions.

Architecture Optimization Interface (AOI). The main
contribution of ArcheOpterix is to enable the applicabil-
ity sophisticated algorithms which are abstract and do-
main independent by nature, for the purpose of archi-
tecture optimization. The AOI is the link proposed to
cater this objective, coupling architecture evaluation to-
gether with architecture unaware optimization algorithms.
Knowledge of the application context and the system at-
tributes will be hidden from the algorithms using the
AOI by enforcing two generic functions to communicate
with; namely Evaluate(Architecture,Context)
and Validate(Architecture, Context). The in-
terface is also implemented with a standard Strategy de-
sign pattern [18] and therefore different algorithmic opti-
mization strategies can be easily linked with the framework
by plugging them into the AOI. Different algorithms may
achieve optimization in their own approaches. But in com-
mon, any algorithm needs to check whether the newly gen-
erated architecture is valid with respect to its constraints

and fulfills its quality requirements. To achieving these two
objectives, AOI communicates with AAM using the afore-
mentioned two generic functions. The output will be a set of
architectures that can be optimal, near optimal, Pareto op-
timal or near Pareto optimal depending on the optimization
technique. ArcheOpterix provides the feature of transform-
ing the solutions back into application domain as AADL
specifications. For example, if the tool has been used for
optimizing deployment architectures, the output will be a
set of AADL specifications with deployment relevant code;
as an example an extract of the AADL deployment code is
given in listing 1.

Listing 1 A set of AADL specifications.
...
properties
Actual Processor Binding⇒ reference host1 applies to comp1;
Actual Processor Binding⇒ reference host1 applies to comp3;
Actual Processor Binding⇒ reference host2 applies to comp4;
Actual Processor Binding⇒ reference host2 applies to comp2;
...

AADL Model Generator (AMG). This feature has been
developed for the support of testing and rapid model gener-
ation purposes. AMG enables to generate AADL models
from a given set of input files that consists of different sys-
tem configurations. This module can also be used for gen-
erating discrete test cases during the validation of the tool
and convergence of optimization strategies.

2.2 The OSATE Interface: AADL Model
Parser (AMP)

The AADL Model Parser (AMP) accepts an AADL
model saved in the .aaxl file format. AMP reads the file
and extracts its significant parts. In the current implemen-
tation the AMP reads the Main property sets as well as
the names of the properties defining the network and inter-
action parameters (default Host::LocalisationList
and Component::CoLocalisationList).

The Network, Interaction, Host, and Component prop-
erty sets define the attribute of interest for the evaluation
of the model. The hosts and components are included in
the main system as subcomponents. The hosts are mod-
eled as AADL processors and the components are modeled
as processes. The communication channels are modeled as
connections. The subcomponents as well as the connec-
tions are adorned with properties defining their attributes.
Finally, the distribution of components on hosts is defined
by the Actual Processor Binding property.

2.3 Architecture Evaluation: Architec-
ture Analysis Module (AAM)

The AAM element of the presented ArcheOpterix frame-
work is the common abstraction for system parameter con-



tainers, system models and architecture evaluation/valida-
tion support. In the initial implementation, the AAM is used
in the domain of deployment architectures. The Context
of the AAM will be populated with host, component, net-
work and interaction parameters extracted from the AADL
parser. The Context object in the AAM is implemented as
a set of property maps where the keys of the maps are the
AADL properties. For example, host in a context contains
a map of host parameters as specified in AADL host defini-
tion. This has been used in order to grant extensibility and
flexibility of the usage of tool for different AADL model-
ing approaches. The AAM concepts has been implemented
supporting extensibility of the ArcheOpterix framework for
multiple architecture analysis purposes. Different tech-
niques used in quality evaluation of architectures are en-
capsulated by AttributeEvaluator modules. The AAM has
a pluggable interface for AttributeEvaluator modules and
keeps a list of them. The AttributeEvaluators implement a
common Evaluate(Architecture) interface func-
tion in the context specified at AAM’s Context object. Via
the Architecture Optimization Interface optimization algo-
rithms may request an architecture optimization providing
an architecture as an argument; in return a list of attributes
will be calculated for the architecture using AttributeEval-
uators linked to AAM. In the example of deployment ar-
chitecture optimization, the architecture will be represented
by a Deployment (an assignment of software components
to hardware nodes) and AttributeEvaluators are Deploy-
ment Metrics (measurements to evaluate a deployment). For
the initial experiments we have implemented two Attribute
Evaluators: Data Transmission Reliability and Communica-
tion Overhead to measure the goodness of a given deploy-
ment. These two attributes are evaluated using the schemes
presented by Malek [31] and Medvidovic et. al [32]:

Data Transmission Reliability (DTR)
This deployment dependent metric represents to what

extent the total data transmission for a given architecture
is reliable. For the evaluation of the metric, Sam Malek
[31] (this metric has been named as Availability in his the-
sis) presents following formula, which represents the sum
of the product of component interaction frequency and net-
work connection reliability for all component interactions.

DTR :=
n∑

i=1

n∑

j=1

IP (freq, ci, cj)NP (rel, Hci,Hcj)

Communication Overhead (CO)
As a different network and deployment dependent met-

ric, the overall communication overhead of the system is
used. First part of the equation to calculate the overall com-
munication overhead is the impact of network delay to com-
ponent interactions and the second part of the equation de-
scribes the impact of collision/retransmission enforced by

network parameters such as the bandwidth to the overall
communication.

CO :=
n∑

i=1

n∑

j=1

IP (freq, ci, cj)NP (td,Hci,Hcj)+

n∑

i=1

n∑

j=1

IP (freq, ci, cj) IP (evtsize, ci, cj)
NP (bw, Hci,Hcj)HP (rel, Hci,Hcj)

Where:
n = Number of components.
IP (freq, ci, cj) = Frequency of interaction between

component i and Component j.
IP (evtsize, ci, cj) = Message size of interaction be-

tween component i and Component j.
NP (rel,Hci, Hcj) = Reliability of network link be-

tween hosts of component i and j.
NP (td,Hci,Hcj) = Network delay in the network link

between hosts of component i and j.
NP (bw, Hci,Hcj) = Bandwidth in the network link be-

tween hosts of component i and j.
Since the Architecture Analysis Module contains the

union of system parameters together with component con-
figuration information, more sophisticated attribute evalu-
ation schemes such as Fault Tree analysis [34], or the use
of Markov models for performance evaluation [39], energy
consumption [37], error propagation and fault containment
[27] etc. can be implemented in this module. Different con-
straint evaluators can be also plugged into the AAM using
the common Architecture Constraint Validation Interface.
In the current implementation of ArcheOpterix in the de-
ployment architecture optimization context, three deploy-
ment constraint evaluators have been implemented; namely
localization, colocalisation and memory constraints. The
AAM will check for the satisfaction of all these constraints
in the event of validation requests from the optimization al-
gorithms though the AOI.

2.4 Architecture Optimization: Architec-
ture Optimization Module (AOM)

The development of architectures for embedded and per-
vasive systems requires consideration of multiple quality
objectives and several technical and economic constraints.
As a result, finding suitable architectures becomes a multi-
objective optimization problem with multiple constraints.
Traditional methods, which deal with single objective opti-
mization and find a single optimal solution for the problem,
are not useful in this case. To solve multi-objective opti-
mization problems Evolutionary Algorithms are commonly
used [8, 15, 26, 40, 44]. These evolutionary algorithms
implement mechanisms are inspired by biological concepts



such as reproduction, mutation, recombination, natural se-
lection and survival of the fittest, to find a final set of solu-
tions taking in consideration all of the objectives and con-
straints. In this section, first the basic principles of evo-
lutionary algorithms will be described and afterwards spe-
cific implemented strategies that are used in ArcheOpterix
will be introduced. Evolutionary algorithms is a robust op-
timization strategy that can be used to optimize complex
problems with multiple objectives [7]. Commonly an evo-
lutionary algorithm implements the following major steps:

1. Generating of the initial population and evaluate its
ranking based on their fitness functions

2. Selecting of the parents for the recombination process

3. Generating offspring solutions by applying a set of ge-
netic operators (e.g. Mutation or Genetic Crossover)

4. Inserting the new solutions to the population and rank-
ing them.

5. Repeating from the second step until reaching the ter-
mination criteria (e.g. a certain goal quality or a finite
number of iterations)

The ranking of the population is done with regard to
all objectives. The evolutionary algorithm implemented in
ArcheOpterix uses two approaches for the ranking of the
solutions:

• Mapping of all objectives into a single objective func-
tion.

• Finding a near Pareto front for the non-dominated so-
lutions.

The mapping of the objectives into a single objective
function is done by using a weighted sum function:

f :=
∑k

i=0 wiai

Where ai is the fitness value for the ith objective and wi

is its weight such that
∑k

i=0 wi = 1. The different weight
combinations represent different customer preferences. The
second approach uses the concept of non-dominance [29],
where a solution is called non-dominant when all its objec-
tives are not dominated by an other solution’s objectives and
the solution has at least one objective whose value exceeds
the other solutions. The Pareto front [29] is the collection
of non-dominated solutions plotted in the objective space
[7]. For complex problems it is almost impossible to find
all possible solutions of the Pareto front [29]. ArcheOpterix
draws the near Pareto front line, which contains all the non-
dominated solutions found by the Evolutionary Algorithm.
Furthermore, ArcheOpterix tries to preserve the diversity of
the population, which increases the chances to find a suffi-
ciently large set of [near] Pareto optimal solutions.

2.5 Test Case Generation: AADL Model
Generator (AMG)

The test case generation in the ArcheOpterix tool is per-
formed with the AADL Model Generator. This model gen-
erator can be used to generate AADL specification with a
predefined set of software components and hardware host.
The parameter for the quality characteristics and constraints
are chosen randomly within certain predefined bounds.

Alternatively, the AADL Model Generator (AMG) can
generate AADL models in accordance with an input file.
The grammar of the input file is given by listing 2, see list-
ing 3 for an example. The host and component lists define
the memory required by each host and component. The net-
work matrix defines the communication attributes between
the hosts. The interaction matrix defines the communica-
tion attributes between the components. The reserved word
nil is used to represent absence of communication links.

Listing 2 The Input File Grammar.
input file ⇒ hosts components networks interactions

localisations colocalisations
hosts ⇒ host : [ host list ]
host list ⇒ host | host list , host
host ⇒ host memory
host memory ⇒ integer constant
components ⇒ components : [ component list ]
component list ⇒ component | component list , component
component ⇒ component memory
component memory ⇒ integer constant
networks ⇒ networks : [ network matrix ]
network matrix ⇒ [ network row ] | network matrix ,
network row ⇒ network | network row , network
network ⇒ ( relability , delay , bandwidth ) | nil
relability ⇒ real constant
delay ⇒ real constant
bandwidth ⇒ real constant
interactions ⇒ interactions : [ interaction matrix ]
interaction matrix ⇒ [ interaction row ]

| interaction matrix , [ interaction row ]
interaction row ⇒ interaction | interaction row , interaction
interaction ⇒ ( frequency , event size ) | nil
frequency ⇒ real constant
event size ⇒ real constant
localisations ⇒ localisations : [ localisation matrix ]
localisation matrix ⇒ [ localisation row ]

| localisation matrix , [ localisation row ]
localisation row ⇒ localisation | localisation row , localisation
localisation ⇒ 0 | 1
colocalisations ⇒ colocalisations : [ colocalisation matrix ]
colocalisation matrix ⇒ [ colocalisation row ]

| colocalisation matrix , [ colocalisation row ]
colocalisation row ⇒ colocalisation

| colocalisation row , colocalisation
colocalisation ⇒ -1 | 0 | 1

The network, interaction, and co-localisation matrices
are square. AMG checks that the network matrix dimen-
sion equals the number of hosts, and that the interaction
and co-localisation matrix dimensions equal the number of
components. In the localisation matrix, the rows represent
hosts and the columns represent components. AMG checks
that the number or rows equals the number of hosts and that
the number of columns equals the number of components.



Listing 3 An Example of an Input File.
hosts: [64,128]
components: [8,16,32,64]

networks:
[[nil, (0.8,2.3,3.4)],
[(0.6,1.2,2.3), nil]]

interactions:
[[nil, (1.2,2.3), nil, (5.6,6.7)],
[(7.8,8.9), nil, (9.0,0.9), nil],
[(7.6,6.5), (5.4,4.3), nil, (3.2,2.1)],
[nil, (3.5,5.7), (7.9,2.4), nil]]

localisations:
[[1, 0, 1, 0],
[0, 1, 0, 1]]

colocalisations:
[[1, -1, 0, 0], [0, 1, -1, 0],
[1, 0, 1, -1], [1, -1, 0, 1]]

The localization matrix restricts the way components can
be distributed to hosts. The value 0 in row i and column j
prohibits the jth component to be placed in the ith host.
The value 1 allows (but do not forces) component j to be
placed in host i.

The co-localisation matrix restricts the way two compo-
nents can be distributed to the same host. The value −1 in
row i and column j prohibits component i and j to be dis-
tributed to the same host. The value 1 forces the component
to be distributed to the same host, and the value 0 allows
the component to be distributed to the same host or to two
different hosts.

3 First Experimental Results

This section presents a set of experiments and discusses
the results. For these experiments a diverse set of systems
has been generated to evaluate the ArcheOpterix tool. The
architectural problem presented for validation is a deploy-
ment optimization, focused on optimal allocation of soft-
ware components to the given hardware platform. In the
case, source data will be a set of software components in-
cluding their parameters, Interactions among components,
hardware nodes (hosts), host parameters and network links
across hosts including network parameters.The number of
host and components are changed for different test cases.
The network and interaction parameters are randomly gen-
erated and range in [0, 1]. The component parameters are
the required memory, which ranges in [23 − 24] kilobytes
and random colocalization list. Host parameters are the pro-
vided memory, which ranges in [24− 27] kilobytes and ran-
dom localization list.

After running the tool for the different test cases, we
made some observations in the following perspectives
which will be presented in the following:

• The convergence of the optimization algorithm and

ability to produce near Pareto-optimal solutions

• The convergence of the optimization algorithm with
respect to different population sizes

• The convergence of the optimization algorithm with
respect to different mutation rates

• The impact of constraints on the optimization results

• The performance impact of different population sizes
and mutation rates

As a first test case, 4 hosts and 10 components have been
chosen. The first population has been generated by ran-
domly assigning components to hosts. In Figure 2, it can be
observed that the average fitness of the population improves
distinguishingly during the iterations. The optimization of
the average fitness increases until some point and then flat-
tens out. This is an indication that we have obtained a local
or global optimum (e.g. the [near] Pareto-front line). Fig-
ure 3 shows the final Pareto set for the trade-off between the
Data Transmission Reliability and the inverse of Communi-
cation Overhead.
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Figure 2. Convergence of the average fitness.

Each of the solutions in Figure 3 is non-dominated by
the others. Consequently, a human decision maker selects
the solutions which suites him best. ArcheOpterix draws the
near Pareto front line, which contains all the non-dominated
solutions found by the Evolutionary Algorithm. The dis-
tance of the resulting non-dominated front to the Pareto-
optimal front should be minimized.

Different population sizes have an effect on the capabil-
ity to converge towards the Pareto-optimal front. In the next
experiment, three different population sizes have been taken
and their ability to converge to the final fittest population are
compared. In Figure 4, it can be observed that, if the popu-
lation size is increased, the fitness of population converges
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Figure 3. Near Pareto optimal solutions.

faster. When a higher number of individuals is generated for
each population, not only the slope of the average fitness to
iteration line, but also the average fitness of the last popu-
lation is better. As it can be observed in Figure 4, when a
population of size 20 is used, the average fitness converges
to a lower bound than when we use a population of size 40
and 60.

To provide enough diversity among the individuals, a
large population size should be chosen. It can be observed
in Figure 4, where the increase of population from 20 indi-
viduals to 40 does not have a distinguishable impact on the
performance of the algorithm. The increase of average fit-
ness of the population gets better when the population size
is increased to 60. However, these results cannot be gener-
alized, as different runs of the evolutionary algorithm may
result in a different quality increases, due to the random na-
ture of evolutionary algorithms.
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Figure 4. Impact of the population size on the
optimization of the average fitness.

The final outcome of the architecture optimization mod-

ule is the near Pareto-front solutions, which is shown in Fig-
ure 5. It can be noted that similar non-dominated solutions
exist in each case. Even though the average fitness growth
is significantly different in different populations as observed
in Figure 4, it is evident from Figure 5 that there are similar
final non-dominated solutions for each case.
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Figure 5. Near Pareto-front solutions for dif-
ferent population sizes.

Similar to the population size impact, in Figure 6, it can
be observed that when the number of offspring to be simu-
lated (mutation rate) is increased, the algorithm converges
faster to a fitter population. The mutation factor helps in
keeping the diversity of the population and producing new
fitter solutions. The mutation creates the necessary diver-
sity in the population and thereby facilitates novelty, while
selection acts as a force increasing the quality.
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Figure 6. Impact of the mutation rate on con-
vergence of the algorithm.

During the experiments, the effect of the constraints in
the development of the fitness line has been measured. In



Figure 7, it can be observed that we get fitter population
when the checking of constraints is deactivated by the op-
timization algorithm. This can be explained with the fact
that the lack of constraints may allow some solutions which
are not acceptable but have a high fitness value. Moreover,
the usage of constraints causes a slow convergence of the
algorithm.
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Figure 7. Impact of the constraints on conver-
gence of the algorithm.

During the experiments, an additional concern was the
performance of the ArcheOpterix tool and its optimization
algorithm. In Figure 8 and 9, it can be seen how the execu-
tion time of the algorithm increases by the increase of the
population size and mutation rate. It can be clearly observed
that the increasing of the mutation rate and population size
have a linear impact on the execution time. Due to this fact,
it can be assumed that to increase the performance of the
algorithm, a trade off should be made for relatively low mu-
tation rate in a reasonably large population.

4 Related Work

A considerable number of approaches have been devel-
oped over the past decade to tackle the problem of finding
optimal and near optimal architectures with respect to dif-
ferent non-function attributes. In this section we would like
to compare ArcheOpterix in two categories: (a) tools that
are publically available for optimization of architectures
and (b) architecture optimization methodologies in general.

In the tool category, ArcheOpterix should be compared
with the tools DeSi [33], ArchE [1, 10], DAnCE [9] and the
RACE framework [38]. The DeSi tool, developed by Mikic-
Rakic et al. [33] presents an tailorable environment for
specification, manipulation, visualization and attribute eval-
uation of deployment architectures. The tool has been de-
veloped as a stand-alone Eclipse application and allows run-

��������������������������������������������������	������������
� � 
� � 
� � 
� � 
� � 
� � 
� � 
���
 �
 ��� ��
 �

�� ��� ���
Figure 8. Impact of the population size on the
execution speed of the algorithm.
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Figure 9. Impact of the mutation rate on the
execution speed of the algorithm.

time deployment optimization via monitoring of live sys-
tems. The tool is very mature, but requires model specifi-
cations in a special format. ArcheOpterix currently imple-
ments similar analysis capabilities; however the future goal
of ArcheOpterix is to extends the coverage of use in con-
text of architecture optimization beyond deployment deci-
sion making. The ArchE tool [1] is a design assistant that
helps software architects to make decisions with respect to
relevant quality attributes. ArchE contains a rule-based ex-
pert systems that search the design space with so called rea-
soning frameworks. Each reasoning framework supports
one quality domain and currently a reasoning framework
is implemented for modifiability [1]. To allow the support
of other quality domains ArchE provides a well defined
interface to also generate reasoning frameworks for other
quality attributes [10]. The RACE framework presented by
Shankaran et al. [38] and the DAnCE implementation by



Deng et al. [9] addresses the needs of deployment deci-
sions at real-time. Both the above approaches have been
well succeeded in industry, but limitations exist for appli-
cability for static architecture optimization domain such as
they require implementations of specific system models and
lack of support for complex model analysis. All these tool
provide comparable capabilities to ArcheOpterix. However,
these tools need specialized formats for the input architec-
tures and its quality annotations. Often these input formats
are really restricted. In contrast ArcheOpterix uses with the
AADL an established architecture description language.

In the second category, ArcheOpterix is compared with
general architecture optimization methodologies. Most of
these approaches have also implemented tools, however
they are either just for demonstration and experiment pur-
poses or they are publically not available. Papadopoulos
and Grante [34] provide a novel technique for safety and
reliability analysis in automotive software. Their approach
consist of system modeling in Matlab Simulink [42], the ap-
proach combines fault tree analysis and genetic algorithms
to support the decisions of ”whether” and ”when” redun-
dancies are needed. Being able to link the system with Mat-
lab Simulink, they grant the opportunity for standard anal-
ysis capabilities. Our work presented in this paper gains
the similar advantage from the modeling perspective by us-
ing the standard AADL. Since our tool offers the attribute
evaluation module in the same tool, the presented approach
extends the [34] work from a semi-automated process into
one integrated, automated process.

Fredriksson et al. [17] presents a framework for allocat-
ing components to real time tasks, focusing on minimizing
the resource usage such as CPU time and memory. They
have formalized a model for components and tasks, derive
memory consumption, CPU overhead for task deployment
and propose to use existing scheduling and optimization
algorithms with real-time analysis to ensure feasible allo-
cation. While this approach works in a different domain,
ArcheOpterix can draw from this research and be extended
in the future to provide similar capabilities.

Deployment architecture decision making for highly
constrained environments, has been addressed by Kichka-
lyo et al. [28] and their approach is to use AI planning tech-
niques to find a feasible solution. The formalized general
model of a Component Placement Problem (CPP) has been
analyzed by their own algorithm called Sekitei. A major
novelty of ArcheOpterix in relation to [17, 28] is the abil-
ity to provide a set of non-dominated solutions instead of
obtaining just one feasible solution, which is common for
optimization approaches that just use a weighted sum func-
tion to translate a multi-objective optimization problem into
one with just a single objective.

5 Conclusions

This paper has presented a novel tool called
ArcheOpterix for optimization of architectures of em-
bedded systems. This tool uses the AADL as the
underlying architecture description language and provides
plug-in mechanisms to replace the optimization engine, the
quality evaluation algorithms and the constraints checking.
The complete presented framework has been implemented
and source code is available2 along with instantiation in
deployment architecture optimization domain. To validate
the tool a specific multi-objective, multiple constraints
component deployment problem has been used. For this
problem, similar to [33], two standard quality metrics
(data transmission reliability and communication overhead)
and three constraints (component location, component
collocation, and memory consumption) have been used.
The results gained from an early implementation of an
evolutionary algorithm [15] are encouraging; however,
there is still room for future improvements and there are
several interesting research questions to be solved.

In the future, ArcheOpterix should be extended by the
design team and other researchers with additional quality
evaluation procedures. Especially, procedures that eval-
uate quality attributes in quality domains that are rele-
vant for embedded systems, like safety, reliability, secu-
rity, performance, timeliness, and resource consumption
[2, 11, 19, 25, 23, 43].

Since ArcheOpterix should also serve as an experiment
platform for optimization algorithms the tool will be also
extended with additional optimization heuristics. The per-
formance of these heuristics can then be compared based on
their efficiency for benchmark problems. Furthermore, op-
timization algorithms should be implemented that can find a
good variety of solutions. Consequently, diversity improv-
ing and preserving factors have to be implemented as well
in these optimization algorithms.

Finally, ArcheOpterix has been currently implemented
as an independent Eclipse plug-in. However, to improve
the tool performance and to have access to more evaluation
methods a tight integration with OSATE would be benefi-
cial.
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