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Component deployment is a combinatorial optimisation problem in software engineering that aims at finding

the best allocation of software components to hardware resources in order to optimise quality attributes,

such as reliability. The problem is often constrained due to the limited hardware resources, and the commu-

nication network, which may connect only certain resources. Due to the non-linear nature of the reliability

function, current optimisation methods have focused mainly on heuristic or metaheuristic algorithms. These

are approximate methods, which find near-optimal solutions in a reasonable amount of time. In this paper,

we present a mixed integer linear programming (MILP) formulation of the component deployment problem.

We design a set of experiments where we compare the MILP solver to methods previously used to solve

this problem. Results show that the MILP solver is efficient in finding feasible solutions even where other

methods fail, or prove infeasibility where feasible solutions do not exist.
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1. Introduction

Finding the best way to allocate software components to hardware resources is a complex software

engineering problem. Objective functions are often non-linear, e.g. reliability (Fredriksson et al.

2005), and the problem is highly constrained, with limited available memory, restricted availability

of communication networks, and colocalisation restrictions (Aleti et al. 2013). For instance, memory

constraints restrict the allocation of software components to hardware resources in such a way

that the sum of memory requirements for software components should not exceed the available

capacity in the hardware resources. Software systems are usually large. A typical system may

consists of more than 30 hardware resources, and more than 400 software functions, which creates
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30400 possible configurations. The large number of variants has to be handled technically, a task

that can take years for a software engineer.

To handle the complex task of designing software systems, recent research has focused on au-

tomating the design of software systems using stochastic search methods, such as genetic algorithms

(GA) and ant colony system (ACS) (Aleti et al. 2013). These methods operate at the design phase

of system implementation, and search for an optimal software architecture that maximises or min-

imises the quality of the system, and satisfies given constraints. The area is broadly known as search

based software engineering (SBSE) (Harman 2007a). SBSE can be applied to different stages of the

development of software systems, such as requirements engineering (Zhang et al. 2008), predictive

modelling (Afzal and Torkar 2011), design (Aleti et al. 2013), program comprehension (Harman

2007b), and software testing (McMinn 2004, Mantere and Alander 2005, Aleti and Grunske 2015).

The component deployment problem has previously been solved with a population-based ant

colony optimisation (P-ACO) (Guntsch and Middendorf 2003) in the multiobjective form, which

was found to outperform NSGA-II (Moser and Montgomery 2011) when combined with a suitable

local search method. P-ACO is essentially a multiobjective extension of ACS, one of the most

successful ACO applications, which is used as a benchmark method in this work. Some other

approaches focus on the satisfaction of user requirements (Martens and Koziolek 2009, Calinescu

and Kwiatkowska 2009), software quality attributes (Medvidovic and Malek 2007, Sharma et al.

2005, Fredriksson et al. 2005), or both (Mikic-Rakic et al. 2004, Medvidovic and Malek 2007,

Fredriksson et al. 2005, Lukasiewycz et al. 2008).

Thiruvady et al. (2014) applied constraint programming coupled with ant colony system (CP-

ACS) to optimise the component deployment problem. The work introduced a novel way to deal

with constraints, focusing on memory, colocation and communication constraints. Memory con-

straint restricted the allocation of software components to hardware units based on memory re-

quirements. Colocation constraint enforced the deployment of redundant components into different

hardware hosts for safety reasons. Finally, communication constraint checked whether interacting

components were allocated into communicating hardware units. Despite the difficulty of constraints,

ACS was the most effective method, winning over the CP-ACS method.

Stochastic search finds approximate results where exact approaches cannot be devised and opti-

mal solutions are hard to find. Search methods can be used by practitioners in a fairly ‘black box’

way without mastering advanced theory, whereas more sophisticated solvers (e.g. mixed integer

linear programming solvers) are tailored to the specific mathematical structure of the problem at

hand, and can become completely inapplicable if small aspects of the problem change. On the other

hand, the applicability of stochastic search methods to highly constrained problems is limited,

due to the computational cost in initialising the search with feasible solutions. This has motivated
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our work in investigating the applicabitily of mixed integer linear programming solvers to the

component deployment problem.

Several mixed integer linear programming formulations have been applied to the component

deployment problem (Bowen et al. 1992, Ernst et al. 2003, 2006, Hadj-Alouane et al. 1999), however

none of these consider reliability. Reliability is one of the most crucial quality attributes in safety-

critical software systems, such as the ones used in the automotive domain. It is defined as a function

of failure rates of software components, and is inherently non-linear. In this paper, we present a

mixed integer linear programming (MILP) model of the reliability optimisation in the component

deployment problem and test its efficiency. The results from the MILP optimisation are compared

with results from ant colony optimisation, and the CP-ACS, on a set of experiments designed with

problems of different levels of constraint difficulty, and problem instance size.

2. Previous Work

The deployment of software components to distributed hosts presents itself as an optimisation

problem in many domains. In many cases, the reliability of the resulting system is one of the

core criteria for the success of the software allocations. Dimov and Punnekkat (2005) provide a

comprehensive overview of reliability models in software component deployments. Most models

consider foremost the reliabilities of the components themselves (Cheung 1980, Krishnamurthy and

Mathur 1997, Reussner et al. 2003), which some authors derive from the usage profile (Hamlet

et al. 2001, Reussner et al. 2003), while Gokhale et al. (1996) infers it from the test coverage of

the components. Most models also include the reliability of component calls (Krishnamurthy and

Mathur 1997) or the connections between the components (Singh et al. 2001).

Heydarnoori and Mavaddat (2006) formulated the problem of deploying software in a distributed

system as a multi-way cut problem, in which system reliability depends on the reliability of the

network between the communicating components. Their approach assigns components determin-

istically to hosts according to the connectivity the host provides, obtaining a polynomial-time

approximation of the optimum.

The majority of reliability studies in distributed systems view the deployment of software as

temporary task allocation rather than permanent deployment. Assayad et al. (2004) describe a

scheduling problem in which reliability refers to the probability of no component failing during the

execution of the workflow. Their biobjective formulation weighs reliability against total runtime

(makespan). Similarly, Kartik and Murthy (1997) presented a deterministic algorithm which assigns

tasks to heterogeneous processors according to the most-constrained-first principle: tasks which

communicate frequently are assigned first. Several MILP formulations have been applied to the
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task allocation problem (Bowen et al. 1992, Ernst et al. 2003, 2006, Hadj-Alouane et al. 1999),

however none of these consider reliability.

Hadj-Alouane et al. (1999) is arguable the only work that focuses on the task allocation problem

in the automotive domain. The goal was to minimise the cost that arises from installing microcom-

puters and high-speed or low-speed communication links between those. The quadratic 0-1 MILP

formulation was compared to a generic algorithm adaptation, which outperformed the MILP by

approximately 4% in the quality of the solutions, while using only a fraction of the CPU time (less

than one-twentieth) required by the MILP. The data sets used contained 20 tasks and 6 processors

and 40 tasks and 12 processors respectively.

Harris (2013) has recently provided a comprehensive overview of the usage of electronics in

modern vehicles. The author illustrates how the electronic content of cars has increased over the

last 20 years, facilitated by a shift from dedicated devices and wires to ECUs and Ethernet cables.

Climate control, ABS and speed control systems have become standard equipment in contemporary

cars. In 2002, Leen (2002) pointed out that 23% of the cost of a new car stems from electronics,

and 80% of all innovations are software related.

Despite this strong motivation, relatively few researchers have addressed the problem of com-

ponent deployment in automotive systems. In a comprehensive approach by Papadopoulos and

Grante (2005), the functionalities to include in a new vehicle model were first selected with the use

of an evolutionary algorithm. The functionalities were then implemented as software components

considering profit and cost. The subsequent deployment to hardware modules was optimised with

the help of an evolutionary algorithm, with the optimisation focussing on reliability.

Aleti et al. (2009) formulated component deployment as a biobjective problem where data trans-

mission reliability and communication overhead were optimised. Due to the multitude of constraints

- memory capacity, location and colocation constraints were considered - a constructive heuristic

was chosen (Guntsch and Middendorf 2003, P-ACO) in addition to an evolutionary algorithms

(Fonseca et al. 1993, MOGA). P-ACO was found to produce better solutions in the initial opti-

misation stages, whereas MOGA continued to produce improved solutions long after P-ACO had

stagnated.

Using incremental heuristics on such a constrained problem requires constraint handling proce-

dures to overcome infeasible space. Moser and Mostaghim (2010) found that repairing infeasible

solutions produced better results than eliminating or penalising solutions evolved by NSGA-II.

In the work by Aleti and Meedeniya (2011), a Bayesian approach was adapted to the formulation

of (Aleti et al. 2009), and found to outperform NSGA-II (Deb et al. 2000) as well as P-ACO on

the hypervolume indicator. A formulation by Meedeniya et al. (2012) treated response time and

reliability as probability distributions and presented solutions which are robust with regards to
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the uncertainty. Given different external factors, invocations of components can lead to different

effects.

Component allocation in distributed systems is often explored from the point of view of re-

dundancy allocation, which was studied by Aleti (2015), who considered response time, reliability

and cost of the system in a triobjective formulation optimised using GA. Sheikhalishahi et al.

(2013) applied a hybrid between a genetic algorithm and particle swarm optimisation (PSO) to

a multiobjective problem which minimises cost, system volume and weight while maximising sys-

tem reliability. The GA optimises the number of redundancies for a subsystem, whereas the PSO

optimises the reliability of these redundancies a GA solution at a time. Liang and Smith (1999)

adapted Ant System to the redundancy allocation problem, adding a mutation operator instead of

a local search phase and a penalty function to discourage constraint violations. Kumar et al. (2009)

argued that redundancy should not be applied at the component level alone, but also consider the

redundancy of modules. Using a hierarchical GA to this formulation, the authors conclude that

optimising redundancy on multiple levels yields more reliable configurations.

3. The Component Deployment Problem

The architecture of an embedded system represents a model or an abstraction of the real elements

of the system, such as software components, hardware units, interactions of software components,

communications between hardware units, and their properties. The set of software components

C = {c1, c2, ..., cn} is annotated with the following properties:

(i) szi: memory size of component ci, expressed in KB (kilobytes).

(ii) wli: computational requirement of component ci, expressed in MI (million instructions).

(iii) qi: the probability that the execution of a system starts from component ci.

The execution of the software system is initiated in one software component with a given proba-

bility qi. During the execution of the software system many other components are activated through

interactions, which are assigned transition probabilities (Kubat 1989). Software interactions are

specified for each link from component ci to cj with the following properties:

(i) dsij: the amount of data sent from software component ci to cj during a single communication

event, expressed in KB (kilobytes).

(ii) pij: the probability that the execution of component ci ends with a call to component cj.

Software components and their interactions are illustrated in fig. 1.

The hardware architecture is composed of a distributed set of hardware hosts, denoted as H=

{h1, h2, ..., hm}, where m∈N, with different memory capacities, processing power, access to sensors

and other peripherals. Each hardware host has the following properties:

(i) cpi: memory capacity of the hardware host hi, expressed in KB (kilobytes).
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c4

Figure 1 Software components and interactions.

(ii) psi: the instruction-processing capacity of hardware unit hi, expressed in MILPS (million

instructions per second) (Feiler and Rugina 2007).

(iii) fri: characterises the probability of a single hardware unit failure (Assayad et al. 2004).

The hardware hosts are connected via network links, which are used by interacting components,

and denoted as N = {n1, n2, ...ns}. Network links have the following properties:

(i) drij: the data transmission rate of the bus that connect hardware units hi, hj, expressed in

KBPS (kilobytes per second).

(ii) frij: failure rate of the bus that connects hardware units hi, hj characterizes the probability

network failing to transmit the data.

The architecture of a system with three hardware hosts and one network link is shown in fig. 2.

n1

h1 h2 h3

Figure 2 Hardware hosts and network links.

The Component Deployment Problem (CDP) refers to the allocation of software components

to the hardware nodes, and the assignment of inter-component communications to network links.

Formally, the component deployment problem is defined as D = {d | d : C → H}, where D is the

set of all functions assigning components to hardware resources. One possible assignment of the

software components in fig. 1 is shown in fig. 3.

n1

h1 h2 h3

c1 c2 c3
c4

Figure 3 The deployment architecture of software components in fig. 1 and hardware resources in fig. 2.
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The way the components are deployed affects many aspects of the final system, such as the

processing speed of the software components, how much hardware is used or the reliability of the

execution of different functionalities (Meedeniya et al. 2011, Aleti et al. 2009). In this paper, we

focus on reliability, since it is one of the most important quality attributes in safety-critical software

systems, and at the same time, one of the most complex attributes, expressed with a non-linear

function. Reliability can be defined as the probability that the software system produces the correct

output Goševa-Popstojanova and Trivedi (2001). In a component deployment system, reliability is

a function of the failure rates of software component and hardware architecture.

Two types of failures can occur in a component deployment problem. First, a failure may occur

in hardware hosts during the execution of a software component, which affects the reliability of

the software modules running on that host. Combined with the fixed and deterministic scheduling

strategy, any failure that happens in a host while a software component is executing or queued

leads to a system execution failure. The second type of failures happens in data communication

channels (network). The communication between two software components over the communication

network can cause a failure in the service that depends on this communication. Both failure types

are considered into the failure model, and the failure behaviours are used in the computation of

reliability.

3.1. Reliability Model for the Component Deployment Problem

The reliability evaluation obtains the mean and variance of the number of executions of components,

and combines this information with the failure parameters of the components. Failure rates of

execution elements can be obtained from the hardware parameters, and the time taken for the

execution is defined as a function of the software-component workload and processing speed of

its hardware host. The reliability of a component ci can be computed by Equation 1, where d(ci)

denotes the hardware host where component ci is deployed.

Ri = e
−frd(ci)·

wli
psd(ci) . (1)

where d(ci) is the deployment function that returns the hardware host where component ci has been

deployed. The reliability of a communication element is characterised by the failure rates of the

hardware buses and the time taken for communication, defined as a function of the bus data rates

dr and data sizes ds required for software communication. The reliability of the communication

between component ci and cj is defined as

Rij = e
−frd(ci)d(cj)·

dsij
drd(ci)d(cj) . (2)
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The probability that a software system produces the correct output depends on the number

of times it is executed. For this reason, we calculate the expected number of executions for each

component v :C→R≥0 as follows:

vi = qi +
∑
j∈I

vj · pji, (3)

where I denotes the index set of all components. The transfer probabilities pji can be written

in a matrix form Pn×n, where n is the number of components. Similarly, the execution initiation

probabilities qi can be expressed with matrix Qn×1. The matrix of expected number of executions

for all components Vn×1 can be calculated as V =Q+P T ·V .

The reliability of a system is also affected by the failure rate of the network. The more frequently

the network is used, the higher is the probability of producing an incorrect output. It should be

noted that the execution of a software system is never initiated in a network link, and the only

predecessor of link lij is component ci. Hence, the expected number of executions of network links

v :C ×C→R≥0 is calculated as follows:

vij = vi · pij. (4)

Using the expected number of executions and reliabilities of the communication elements, the

reliability of a deployment architecture d∈D is calculated as:

R=
n∏

i=1

Rvi
i

∏
i,j (if used)

R
vij
ij . (5)

We can convert the reliability function defined in Equation 1 into an integer programming

model by introducing decision variables. Initially, we define a binary variable xij∀i∈ {1, . . . , n}, j ∈
{1, . . . ,m}, such that

xij =

{
1 if the software component i is deployed on the hardware unit j
0 otherwise

(6)

The decision variable is used to define the failure rate of a hardware unit hosting the software

component as follows:

frd(ci) =
m∑
j=1

xijfrj, (7)

where frj is the failure rate of hardware unit j. For the same purpose, the processing speed of a

hardware unit is defined as

psd(ci) =
m∑
j=1

xijpsj, (8)
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where psj is the processing speed of hardware unit j. By substituting these two equations in the

original reliability model for a software component defined in Equation 1, we obtain the following

integer programming model:

Ri = e

−
m∑

j=1
xij frj

wli
m∑

j=1
xijpsj

. (9)

Originally, the reliability of a communication element is characterized by the failure rates of

the hardware buses and the time taken for the communication, as defined in Equation 2. Since

a software component cu can be deployed into only one hardware unit,
m∑
j=1

xuj = 1, and
m∑
j=1

jxuj

will result in the index of the hosting hardware unit. As a result,
m∑

k=1

m∑
l=1

frkl xik xjl will give the

failure rate of the network link which connects hardware unit hosting software component ci with

the hardware unit hosting cj. This is also valid for data rate considerations, i.e.
m∑

k=1

m∑
l=1

drkl xik xjl

estimates the data rate between the hardware hosts that contain components ci and cj. As a result,

the integer programming equivalent of the reliability for communication elements is equal to

Rij = e

−
m∑

k=1

m∑
l=1

frkl xik xjl
dsij

m∑
k=1

m∑
l=1

drkl xik xjl
, (10)

where dsij is the communication load from software component i to the software component j.

3.2. Constraints

The problem is naturally constrained, since not all possible deployment architectures can be feasi-

ble. For the purpose of this work, we consider four constraints: allocation, colocalisation, memory

and communication. These constraints are defined using the decision variable presented in eq. 6.

Allocation constraint takes care of the allocation of all software components into hardware re-

sources. Formally, this constraint is modelled as

m∑
j=1

xij = 1, ∀i= 1, . . . , n. (11)

Colocation constraint restricts the allocation of two software components to the same hardware

hosts for safety reasons, or forces two components to be deployed into the same hardware unit.

For example, in the case when software components c2 and c3 are not allowed to be in the same

hardware unit, this can be expressed as x2j + x3j ≤ 1 ∀j = 1, . . . ,m. On the other hand, if they

should be deployed into the same hardware unit, the following constraint should be included:

x2j − x3j ≤ 0 ∀j = 1, . . . ,m. For the general case, we define a colocation matrix Cn×n, such that

Cab = −1 means that the software components a and b cannot be in the same hardware unit,



Nazari, Thiruvady, Aleti, Moser: MILP for Reliability Optimisation in the Component Deployment Problem
10 Journal of the Operational Research Society 00(0), pp. 000–000, c© 0000 INFORMS

Cab = 1 means that the software components a and b should be deployed into the same hardware

unit, and Cab = 0 is used when we do not care. In essence, the following predicate should be satified

at all times:

(Cab ==−1∧ (xaj +xbj <= 1))∨ (Cab == 1∧ (xaj −xbj <= 0)),∀a, b∈ n,∀j ∈m (12)

Hardware memory capacity deals with the memory requirements of software components and

makes sure that there is available memory in the hardware units. Processing units have limited

memory, which enforces a constraint on the possible components that can be deployed into each

hardware host. Formally, the memory constraint is defined as

n∑
i=1

szixij ≤ cpj, ∀j ∈ {1, . . . ,m}. (13)

Communication constraint is responsible for the communication between software components.

If the transition probability between two software components i and j is positive, pij > 0, these two

components will communicate with a certain probability. Therefore, either they should be deployed

on the same hardware unit, or on different units that are connected with a communication link

(bus) with a positive data rate, drij > 0. This is modelled as follows:

xik +xjl ≤ 1, if pij > 0 and drkl ≤ 0. (14)

4. A Mixed Integer Linear Programming Model for Reliability Optimisation in
the Component Deployment Problem

The reliability function defined is Equation 5 and the non-linear integer programming version in

Equation 10 have to be linearised in order to apply linear programming techniques. To do this, we

first take the log of both sides of Equation 5, which results in the following equation:

log(R) = log
( n∏
i=1

Rvi
i

)
+ log

( ∏
i,j (if used)

R
vij
ij

)
=

n∑
i=1

vi log(Ri) +
∑

i,j (if used)

vij log(Rij).

(15)

The application of the concave log function is possible in this case, since the objective function

is the product of positive terms. The linearisation changes tge values of the objective function,

however, the optimal solution will be the same, despite the change in its objective value.

From Equations 9 and Equation 10, we know that

Ri = e

−
m∑

j=1
xij frj

wli
m∑

j=1
xijpsj

, and Rij = e

−
m∑

k=1

m∑
l=1

frkl xik xjl
dsij

m∑
k=1

m∑
l=1

drkl xik xjl
,
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hence, log(Ri) and log(Rij) are equal to

log(Ri) =−
m∑
j=1

xijfrj
wli

m∑
j=1

xijpsj

,

log(Rij) =−
m∑

k=1

m∑
l=1

frkl xik xjl
dsij

m∑
k=1

m∑
l=1

drkl xik xjl

.

(16)

Substituting log(Ri) and log(Rij) in eq. 15 with the respective expressions in eq. 16, we get the

following expression:

log(R) =
n∑

i=1

vi

− m∑
j=1

xijfrj
wli

m∑
j=1

xijpsj

+
∑

i,j (if used)

vij

− m∑
k=1

m∑
l=1

frkl xik xjl
dsij

m∑
k=1

m∑
l=1

drkl xik xjl

 .
By rearranging the terms that are not indexed by the summation, the objective function can be

rewritten in a more compact form as:

log(R) =−
n∑

i=1

vi wli
m∑
j=1

frj xij

m∑
j=1

psj xij

−
∑

i,j (if used)

vij dsij
m∑

k=1

m∑
l=1

frkl xik xjl

m∑
k=1

m∑
l=1

drkl xik xjl

. (17)

The products of the terms in Equation 17 (e.g. xik xjl) are the reasons why the function is still

non-linear. To convert the reliability function into its equivalent linear programming representation,

we perform linearisation transformations based on the product of binary variables and the product

of a bounded continuous variable with a binary variable. To linearise the product of the two binary

variables xik and xjl, a new binary variable yijkl is introduced, defined as:

yijkl = xikxjl

yijkl ≤ xik, yijkl ≤ xjl

yijkl ≥ xik +xjl− 1
yijkl ∈ {0,1}.

(18)

The new constraints introduced above are required to ensure the equivalence between the ex-

pressions. With the new variable the objective function is equal to

log(R) =−
n∑

i=1

vi wi

m∑
j=1

frj xij

m∑
j=1

psj xij

−
∑
(i,j)

vij dsij
m∑

k=1

m∑
l=1

frkl yijkl

m∑
k=1

m∑
l=1

drkl yijkl

(19)

To linearise the quotient expressions in Equation 19, two sets of continuous variables ui and zij

are introduced:

log(R) =−
n∑

i=1

ui−
∑
(i,j)

zij, (20)
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where

ui =

vi wi

m∑
j=1

frj xij

m∑
j=1

psj xij

(21)

zij =

vij dsij
m∑

k=1

m∑
l=1

frkl yijkl

m∑
k=1

m∑
l=1

drkl, yijkl

. (22)

This makes Equation 20 linear. In the next step, we linearise Equation 21, or equivalently,

vi wi

m∑
j=1

frj xij −
m∑
j=1

psj xijui = 0, (23)

where

0≤ ui ≤
vi wli max

j
frj

min
j

psj
and 0≤ zij ≤

vij dsij max
k,l

frkl

min
k,l

drkl
, (24)

where max
j

frj is the maximum failure rate of components, and max
k,l

frkl is the maximum failure

rate of network links. To convert the product of a binary variable into a continuous variable (i.e.

xijui), we introduce a continuous variable ūij = xijui. Since the lower bound is equal to 0 and the

upper bound is equal to
vi wli max

j
frj

min
j

psj
, the constraints on ūij can be written as

ūij ≤
vi wli max

j
frj

min
j

psj
xij, ūij ≤ ui, ūij ≥ ui−

vi wli max
j

frj

min
j

psj
(1−xij). (25)

To linearise Equation 22, we first write it in the following form:

vij dsij

m∑
k=1

m∑
l=1

frkl yijkl−
m∑

k=1

m∑
l=1

drkl yijklzij = 0. (26)

The only non-linear part in Equation 26 is yijklzij, which is the product of a binary variable

with a bounded continuous variable. Given that 0≤ zij ≤
vij dsij max

k,l
frkl

min
k,l

drkl
, we introduce a new set of

continuous variables z̄ijkl = yijklzij, and three sets of constraints, defined as

z̄ijkl ≤
max
k,l

frkl

min
k,l

drkl
yijkl, z̄ijkl ≤ zij, z̄ijkl ≥ zij −

max
k,l

frkl

min
k,l

drkl
(1− yijkl), ∀i, j, k. (27)

This final transformation makes the reliability function, a mixed integer linear program. To sum-

marise, the mixed integer linear programming model for reliability optimisation in the component

deployment problem is defined as:
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MILP



max log(R) =−
n∑

i=1

ui−
m∑

i,j (if used)

zij

such that
m∑
j=1

xij = 1, ∀i= 1, . . . , n Assignment

xaj +xbj ≤ 1, ∀j = 1, . . . ,m, ∀a, b, if cab =−1 Colocalization

xaj −xbj = 0, ∀j = 1, . . . ,m, ∀a, b, if cab = 1 Colocalization

xik +xjl ≤ 1, if pij > 0 and drkl ≤ 0 Communication
n∑

i=1

szixij ≤ cpj, ∀j ∈ {1, . . . ,m} Memory

vi wli
m∑
j=1

frj xij −
m∑
j=1

psj ūij = 0

vij dsij
m∑

k=1

m∑
l=1

frkl yijkl−
m∑

k=1

m∑
l=1

drkl z̄ijkl = 0

yijkl ≤ xik, ∀i, j, k, l
yijkl ≤ xjl, ∀i, j, k, l
yijkl ≥ xik +xjl− 1, ∀i, j, k, l

ūij ≤
vi wli max

j
frj

min
j

psj
xij, ∀i, j

ūij ≤ ui, ∀i, j

ūij ≥ ui−
vi wli max

j
frj

min
j

psj
(1−xij), ∀i, j

z̄ijkl ≤
vij dsij max

k,l
frkl

min
k,l

drkl
yijkl, ∀i, j, k, l

z̄ijkl ≤ zij, ∀i, j, k, l

z̄ijkl ≥ zij −
vij dsij max

k,l
frkl

min
k,l

drkl
(1− yijkl), ∀i, j, k, l

z̄ijkl ≥ 0, ∀i, j, k, l
yijkl ∈B, ∀i, j, k, l, where B is the Binary set {0,1}
ūij ≥ 0, ∀i, j
ui ≥ 0, ∀i
zij ≥ 0, ∀i, j
xij ∈ {0,1}, ∀i, j

Linearity is obtained by introducing extra variables and constraints.

5. Experimental Evaluation

The transformation of the nonlinear programming formulation of CDP into MILP introduced more

variables and constraints. Hence, we conducted a set of experiments to analyse whether the MILP

formulation is competitive with previously known solutions for this problem (Thiruvady et al.

2014). Since the values produced by the new MILP formulation are the log of the ones produced
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by the original objective function, the results returned by the MILP solver are converted back to

the original non-linear form. This allows a direct comparison with the previous study (Thiruvady

et al. 2014).

The MILP was implemented in C++ using CPLEX 12.5 (www-01.ibm.com/software/

commerce/optimization/cplex-optimizer), which is an efficient tool for solving large mixed in-

teger programs, and widely used in the idustry. Fifteen minutes of execution time was allowed for

each instance, which was found to be sufficient to identify optimal solutions when feasibility is

found. The experiments were carried out on all the problem instances used by Thiruvady et al.

(2014). These problems consist of a number of randomly generated instances with varying complex-

ity and constrainedness. The memory constraint takes its tightness from the ratio of components

to hardware hosts - the fewer hosts, the less ‘space’ there is for components. The smallest instances

consist of 15 ECUs and 23 software components whereas the largest instances consist of 60 ECUs

and 220 software components. As the emphasis of this work is the ability of the solvers to pro-

duce feasible solutions under varying degrees of constraints, the percentages of components with a

mutually exclusive colocation constraint was also varied between 10%, 25%, 50%, 75% and 100%.

There is no guarantee that feasible solutions exist.

5.1. Benchmark Methods

The results from the MILP solver were compared against ant colony system (ACS) and a hybrid

algorithm of constraint programming and ant colony system (CP-ACS). Ant Colony System (ACS)

was identified as one of the most successful ACO algorithms (Dorigo and Stűtzle 2004). It uses the

pseudo-random proportional rule to determine the next decision in the construction process. In

the case of the CDP, a component is chosen randomly and a host is assigned according to Eq. 28,

where q is a random number and q0 a parameter in the range [0,1], while τij denotes the pheromone

value between component i and ECU j.

hk =

{
arg max

j∈H
τij, if q≤ q0,

ĥ, otherwise.
(28)

ĥ uses the distributions determined by the pheromone values P (hj) = τij/
∑
j∈H

τij. A solution

here is represented by π where the πi represents the ith software component and its value is a

hardware unit, i.e., πi = j is equivalent to d(i) = j. The pseudo-random-proportional decision rule

is used in the method. A predefined number of n solutions are constructed and added to S. The

iteration-best solution is identified and replaces the known best if it is an improvement. If a new

solution violates fewer constraints, it replaces the current solution if its fitness is no worse.
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Only the component assignments of the best-known solution have their values updated in the

pheromone matrix as τij = τij · ρ+ δ, where δ = δ̂ × f(s∗), where f(s∗) is the fitness of the best

solution, and δ̂ is a predefined constant δ ∈ [0.01,0.1]. Note that the violations are not considered

in the pheromone updates. The parameter ρ is set to 0.1 according to recommendations (Dorigo

and Stűtzle 2004) and preliminary testing. Each time an ECU j is selected for component i, a local

pheromone update which is typically used with ACS, is applied as τij = τij · ρ.

Constraint Programming (CP) models a problem by means of variables and constraints between

the variables Marriott and Stuckey (1998). The variables and constraints are maintained by a

constraint solver. The solver allows enforcing restrictions on the variables and provides feedback

on whether these restrictions were consistent with the existing constraints. The feedback is either

success (if consistent) or failure (if inconsistent) when a new constraint is added. If successful,

the variables’ domains are pruned and further constraints may be inferred by filtering algorithms

within the CP solver.

As with ACS, software components are incrementally assigned to hardware components. How-

ever, when a hardware component is selected, it is tested for feasibility. Here, CP filtering algorithms

within the CP solver automatically reduce the domains of current and future components given the

past assignments. This amounts to inferring additional constraints which become a part of the set

of constraints held in the solver. If successful, the assignment is accepted and discarded otherwise.

The tuning of the parameter values for ACS was performed using a sequential parameter op-

timisation process (Bartz-Beielstein et al. 2005), which tests each parameter combination using

several runs. To decrease the number of tests required, we employ a racing technique, which uses a

variable number of runs depending on the performance of the parameter configuration. Parameter

configurations are tested against the best configuration so far, using at least the same number of

function evaluations as employed for the best configuration.

ACS and CP-ACS are stochastic methods, which may produce different results for the same

problem. For this reason, we granted these two algorithms 30 trials, and reported the best solutions

and means over the 30 runs. All methods ACS, CP-ACS and MILP were allowed the same amount of

time. The implementation, problem instances and results can be downloaded from users.monash.

edu.au/~aldeidaa/MILP.

5.2. Computational Results

Table 1 shows the results of the MILP model on all the instances (last column). The original ACS

and CP-ACS results are shown in the first six columns. The last two columns show the results

from the MILP solver and the time needed to solve the model. ‘-’ implies that no feasible solution

was found, whereas ‘infeasible’ means that feasible solutions do not exist.
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Table 1 Results for the instances by percentage of interacting components. The original ACS and

CP-ACS results are shown in the first six columns. The last two columns show the results from the MILP

solver and the time needed to solve the model. ‘-’ implies that no feasible solution was found, whereas

‘infeasible’ means that feasible solutions do not exist.

Problem instance
CP-ACS ACS

MILP Time
Best Mean Failed Best Mean Failed

10
%

In
te

ra
ct

io
n

s 15 hosts, 23 component 1 0.9999 0% 1 0.9999 3% 0.9998 0.06

15 hosts, 34 component 0.9999 0.9998 0% 0.9999 0.9999 60% 0.9973 0.05

33 hosts, 47 component 0.9999 0.9997 0% 1 1 5% 0.9998 0.53

33 hosts, 51 component 0.9998 0.9996 0% 1 1 0% 0.9996 0.64

33 hosts, 67 component 0.9994 0.999 5% 1 0.9999 0% 0.9997 1.38

60 hosts, 120 component 0.9994 0.9989 5% 1 1 0% 0.9992 709.35

60 hosts, 220 component - - 100% - - 100% 0.9993 294.6

25
%

In
te

ra
ct

io
n

s 15 hosts, 23 components 0.9999 0.9999 0% 1 0.9999 0% 0.9968 0.06

15 hosts, 34 components 0.9999 0.9998 7% 0.9999 0.9998 0% 0.9996 0.1

33 hosts, 47 components 0.9992 0.9989 0% 1 0.9999 0% 0.9993 0.95

33 hosts, 51 components 0.9997 0.9993 0% 1 0.9999 0% 0.9995 1.14

33 hosts, 67 components 0.9988 0.9983 71% 0.9999 0.9998 0% 0.9983 2.2

60 hosts, 120 components - - 100% 1 0.9999 0% 0.9991 46.79

60 hosts, 220 components - - 100% - - 100% infeasible 898.25

50
%

In
te

ra
ct

io
n

s 15 hosts, 23 components 0.9998 0.9998 0% 1 1 0% 0.9999 0.04

15 hosts, 34 components 0.9999 0.9999 73% 1 1 0% 0.9997 0.14

33 hosts, 47 components 0.9992 0.9985 2% 1 0.9999 0% 0.9991 1.87

33 hosts, 51 components 0.9986 0.998 17% 1 0.9999 0% 0.9993 2.21

33 hosts, 67 components - - 100% 1 0.9999 0% 0.9995 15.52

60 hosts, 120 components - - 100% 1 0.9998 0% 0.9989 138.5

60 hosts, 220 components - - 100% - - 100% infeasible 900.7

75
%

In
te

ra
ct

io
n

s 15 hosts, 23 component - - 100% 0.9999 0.9998 0% 0.9986 0.07

15 hosts, 34 component - - 100% 0.9999 0.9998 23% 0.9986 0.21

33 hosts, 47 component - - 100% 0.9999 0.9999 0% 0.9996 2.26

33 hosts, 51 component - - 100% 0.9999 0.9999 0% 0.9993 3.01

33 hosts, 67 component - - 100% 0.9998 0.9995 0% 0.9983 6.59

60 hosts, 120 components - - 100% 0.9999 0.9997 0% 0.9976 231.92

60 hosts, 220 components - - 100% - - 100% infeasible 901.18

10
0%

In
te

ra
ct

io
n

s 15 hosts, 23 components - - 100% 1 0.9999 0% 0.9987 0.06

15 hosts, 34 components - - 100% 0.9994 0.9991 3% 0.9937 0.23

33 hosts, 47 components - - 100% 0.9999 0.9999 0% 0.9973 2.87

33 hosts, 51 components - - 100% 0.9999 0.9999 0% 0.9972 3.01

33 hosts, 67 components - - 100% 0.9999 0.9998 0% 0.9991 48.28

60 hosts, 120 components - - 100% 0.9999 0.9998 0% 0.9969 248.26

60 hosts, 220 components - - 100% - - 100% infeasible 901.1
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As the number of colocation exclusions increases, ACS find feasible solutions even when the

hybrid CP-ACS does not. The solutions founds by ACS are usually of better quality than those

returned by CP-ACS and MILP solver. This can be explained by the fact that when feasibility is

strictly preserved, many attempts at constructing a solution fail when no assignments are possible

due to previous conflicting assignments. When infeasible solutions are allowed, like in ACS, the

pheromone allocations have a chance of guiding from infeasible to feasible areas incrementally,

where solutions of better quality may be found. This advantage only seems to disappear when the

search space becomes unmanageably large. Whenever both algorithms find a feasible solution, the

quality provided by ACS is at least as good as, and in most cases better. When solution spaces are

very constrained, the feasible areas form isolated islands between which the algorithm has difficulty

navigating unless it is allowed to traverse the infeasible space. This property of very constrained

problems has been observed before (Deb 2001).

Unlike CP-ACS and ACS, the MILP solver finds feasible solutions for all instances where feasible

solutions exist. For instance, in one of the larger instances (60 hosts, 220 software components, and

10% interactions), where both CP-ACS and ACS fail at finding any feasible solution, the MILP

solver finds a feasible solution of very high quality. The MILP solver takes only 300 seconds to find

an optimal solution for this problem instance. In general, the time required for the MILP solver

to find solutions is relatively small, which suggests that larger instances may be tackled with the

MILP formulation and solved at a reasonable amount of time. However, in the case of the infeasible

runs, the entire 15 minutes is used to prove infeasibility. An advantage of the MILP formulation is

that it tells us which instances do not have any feasible solutions (c.f. the cells marked as ‘infeasible’

in Table 1). Regarding solution quality, we find that if solutions are found, ACS is always superior.

Hence, we can conclude that the MILP solver is superior to ACS and CP-ACS with respect to

dealing with constraints, and is slightly worse with respect to finding solutions of high quality.

6. Conclusions

The reliability optimisation in the component deployment problem that poses itself in software

engineering is inherently non-linear. In this study, we presented a mixed integer linear programming

model of this problem. Three constraints were considered, one that ensures the memory requirement

of a software component is met, a second constraint which restricts the deployment of redundant

components to the same host, and a third constraint which enforces that communication between

software components is possible. The second constraint leads to ‘cul-de-sacs’ in the construction of

deployments if feasibility is preserved at all costs.

There are two main experimental results relating to feasibility and solution quality. The im-

plementation of the MILP model shows that complex constraints can be solved effectively using
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the MILP model, by either finding optimal solutions in relatively short time-frames, or proving

infeasibility. The experiments also showed that the quality of the solutions found by solvers in the

MILP formulation are usually worse than those found by the ant colony system method.

This is a first step towards modelling the problem presented in this paper as an MILP, hence

there is a potential in improving the approximation. As a first improvement, we aim to modify this

model to ensure that the optimal objective is achieved. This should help bridge the gap with ACO

and improve upon it. Additionally, much larger problems could be considered. In this situation,

other heuristics or MILP-based decompositions could prove effective for this problem.

Acknowledgments

The authors gratefully acknowledge the constructive comments and helpful feedback from the anonymous

reviewers, which have improved the quality of this work. This research was supported under Australian

Research Council’s Discovery Projects funding scheme, project number DE 140100017.

References

Afzal, Wasif, Richard Torkar. 2011. On the application of genetic programming for software engineering

predictive modeling: A systematic review. Expert Systems with Applications 38(9) 11984–11997.

Aleti, Aldeida. 2015. Designing automotive embedded systems with adaptive genetic algorithms. Automated

Software Engineering 22(2) 199–240.

Aleti, Aldeida, Barbora Buhnova, Lars Grunske, Anne Koziolek, Indika Meedeniya. 2013. Software architec-

ture optimization methods: A systematic literature review. IEEE Transactions on Software Engineering

39(5) 658–683.

Aleti, Aldeida, Lars Grunske. 2015. Test data generation with a kalman filter-based adaptive genetic algo-

rithm. Journal of Systems and Software 103 343 – 352.

Aleti, Aldeida, Lars Grunske, Indika Meedeniya, I. Moser. 2009. Let the ants deploy your software - an ACO

based deployment optimisation strategy. International Conference on Automated Software Engineering

(ASE’09). IEEE Computer Society, 505–509.

Aleti, Aldeida, Indika Meedeniya. 2011. Component deployment optimisation with bayesian learning. Pro-

ceedings of the International ACM Sigsoft Symposium on Component Based Software Engineering .

ACM, 11–20.

Assayad, Ismail, Alain Girault, Hamoudi Kalla. 2004. A bi-criteria scheduling heuristic for distributed embed-

ded systems under reliability and real-time constraints. Dependable Systems and Networks (DSN’04).

IEEE Computer Society, 347–356.

Bartz-Beielstein, Thomas, Christian Lasarczyk, Mike Preuss. 2005. Sequential parameter optimization. IEEE

Congress on Evolutionary Computation. IEEE, 773–780.



Nazari, Thiruvady, Aleti, Moser: MILP for Reliability Optimisation in the Component Deployment Problem
Journal of the Operational Research Society 00(0), pp. 000–000, c© 0000 INFORMS 19

Bowen, N.S., C.N. Nikolaou, A. Ghafoor. 1992. On the assignment problem of arbitrary process systems to

heterogeneous distributed computer systems. Computers, IEEE Transactions on 41(3) 257–273.

Calinescu, Radu, Marta Kwiatkowska. 2009. Using quantitative analysis to implement autonomic IT systems.

International Conference on Software Engineering, ICSE . IEEE, 100–110.

Cheung, Roger C. 1980. A user-oriented software reliability model. IEEE Transactions on Software Engi-

neering 6(2) 118–125.

Deb, Kalyanmoy. 2001. Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley & Sons,

Inc., New York, NY, USA.

Deb, Kalyanmoy, Amrit Pratap, Sameer Agarwal, T. Meyarivan. 2000. A fast elitist multi-objective genetic

algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation 6 182–197.

Dimov, Aleksandar, Sasikumar Punnekkat. 2005. On the estimation of software reliability of component-

based dependable distributed systems. Ralf Reussner, Johannes Mayer, JudithA. Stafford, Sven Over-

hage, Steffen Becker, PatrickJ. Schroeder, eds., Quality of Software Architectures and Software Quality ,

Lecture Notes in Computer Science, vol. 3712. Springer Berlin Heidelberg, 171–187.
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Goševa-Popstojanova, Katerina, Kishor S. Trivedi. 2001. Architecture-based approach to reliability assess-

ment of software systems. Performance Evaluation 45(2-3) 179–204.

Guntsch, Michael, Martin Middendorf. 2003. Solving multi-criteria optimization problems with population-

based aco. Evolutionary Multi-Criterion Optimization. Second International Conference, EMO 2003 .

Springer, 464–478.



Nazari, Thiruvady, Aleti, Moser: MILP for Reliability Optimisation in the Component Deployment Problem
20 Journal of the Operational Research Society 00(0), pp. 000–000, c© 0000 INFORMS

Hadj-Alouane, Atidel Ben, James Bean, Katta Murty. 1999. A hybrid genetic/optimisation algorithm for a

task allocation problem. Journal of Scheduling 2(4) 189–201.

Hamlet, Dick, Dave Mason, Denise Woit. 2001. Theory of software reliability based on components. Proceed-

ings of the 23rd International Conference on Software Engineering . ICSE ’01, IEEE Computer Society,

361–370.

Harman, Mark. 2007a. The current state and future of search based software engineering. Lionel C. Briand,

Alexander L. Wolf, eds., International Conference on Software Engineering, ISCE 2007, Workshop on

the Future of Software Engineering, FOSE 2007 . 342–357.

Harman, Mark. 2007b. Search based software engineering for program comprehension. 15th International

Conference on Program Comprehension (ICPC 2007). IEEE. Invited paper.

Harris, Inga. 2013. Embedded software for automotive applications. Robert Oshana, Mark Kraeling, eds.,

Software Engineering for Embedded Systems. Newnes, 767 – 816.

Heydarnoori, Abbas, Farhad Mavaddat. 2006. Reliable deployment of component-based applications into

distributed environments. Proceedings of the 3rd International Conference on Information Technology:

New Generations. IEEE Computer Society, IEEE Computer Society.

Kartik, S., C.S.R. Murthy. 1997. Task allocation algorithms for maximizing reliability of distributed com-

puting systems. Computers, IEEE Transactions on 46(6) 719–724.

Krishnamurthy, S., A.P. Mathur. 1997. On the estimation of reliability of a software system using reliabilities

of its components. Software Reliability Engineering, International Symposium on 0 146.

Kubat, Peter. 1989. Assessing reliability of modular software. Operations Research Letters 8(1) 35–41.

Kumar, Ranjan, Kazuhiro Izui, Masataka Yoshimura, Shinji Nishiwaki. 2009. Optimal multilevel redundancy

allocation in series and series-parallel systems. Comput. Ind. Eng. 57(1) 169–180.

Leen, Gabriel. 2002. Expanding automotive electronic systems. IEEE Computer 35 88–93.

Liang, Yun-Chia, A.E. Smith. 1999. An ant system approach to redundancy allocation. Evolutionary

Computation, 1999. CEC 99. Proceedings of the 1999 Congress on, vol. 2. –1484 Vol. 2. doi:10.1109/

CEC.1999.782658.

Lukasiewycz, Martin, Michael Glaß, Christian Haubelt, Jürgen Teich. 2008. Efficient symbolic multi-objective

design space exploration. ASP-DAC 2008 . IEEE, 691–696.

Mantere, Timo, Jarmo T. Alander. 2005. Evolutionary software engineering, a review. Applied Soft Com-

puting 5(3) 315–331.

Marriott, K., P. Stuckey. 1998. Programming With Constraints. MIT Press, Cambridge, Massachusetts,

USA.

Martens, Anne, Heiko Koziolek. 2009. Automatic, model-based software performance improvement for

component-based software designs. Formal Engineering approaches to Software Components and Ar-

chitectures. Elsevier.



Nazari, Thiruvady, Aleti, Moser: MILP for Reliability Optimisation in the Component Deployment Problem
Journal of the Operational Research Society 00(0), pp. 000–000, c© 0000 INFORMS 21

McMinn, Phil. 2004. Search-based software test data generation: a survey. Softw. Test, Verif. Reliab 14(2)

105–156.

Medvidovic, Nenad, Sam Malek. 2007. Software deployment architecture and quality-of-service in perva-

sive environments. Workshop on the Engineering of Software Services for Pervasive Environements,

ESSPE . ACM, 47–51.

Meedeniya, I., A. Aleti, I. Avazpour, Ayman Amin. 2012. Robust archeopterix: Architecture optimization of

embedded systems under uncertainty. Software Engineering for Embedded Systems (SEES), 2012 2nd

International Workshop on. 23–29. doi:10.1109/SEES.2012.6225486.
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