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Abstract One of the most common problems faced by planners, whether in industry or government, is
optimisation - finding the optimal solution to a problem. Even a one percent improvement in a solution can
make a difference of millions of dollars in some cases. Traditionally optimisation problems are solved by
analytic means or exact optimisation methods. Today, however, many optimisation problems in the design
of embedded architectures involve complex combinatorial systems that make such traditional approaches
unsuitable or intractable. Genetic Algorithms (GAs), instead, tackle these kind of problems by finding
good solutions in a reasonable amount of time. Their successful application, however, relies on algorithm
parameters which are problem dependent, and usually even depend on the problem instance at hand.
To address this issue, we propose an adaptive parameter control method for Genetic Algorithms, which
adjusts parameters during the optimisation process. The central aim of this work is to assist practitioners
in solving complex combinatorial optimisation problems by adapting the optimisation strategy to the
problem being solved. We present a case study from the automotive industry, which shows the efficiency
and applicability of the proposed adaptive optimisation approach. The experimental evaluation indicates
that the proposed approach outperforms optimisation methods with pre-tuned parameter values and
three prominent adaptive parameter control techniques.

Keywords Software architecture · Genetic Algorithms · adaptive parameter control · Bayesian Networks

1 Introduction

The design of embedded systems, and in particular of automotive embedded systems involves several im-
portant decisions, such as which software components to select and how to deploy them into the hardware
architecture. Today more than 80 percent of innovations in a car comes from software systems. Software
adds distinguishing features to car models and allows hardware to be reused. With the increasing number
of functions performed by software, the automotive embedded systems are becoming more complex with
many design options to choose from. For instance, a simple power train control application has 3488 pos-
sible component realisations by instantiating different algorithms and their variants (Butts et al., 2001).
A typical car consists of around 80 electronic fittings. Simple ‘yes, no’ decisions for each function yield
approximately 280 variants to be ordered and produced for a car. This large number of variants has to
be handled technically (Butts et al., 2001), a task that can take years for the system designer. Most
importantly, every single decision may affect the quality attributes of the system, such as safety, security,
availability, reliability, maintainability, performance and temporal correctness (Pretschner et al., 2007;
Fredriksson et al., 2005; Malek et al., 2005), which often are conflicting with each other.

To handle the complexity of this task, recent research has focused on architecture optimisation tech-
niques, which partially automate the design of embedded architectures (Broy, 2006; Pretschner et al.,
2007). The field is broadly known as Search Based Software Engineering (SBSE) (Harman, 2007a). SBSE
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is applicable to many stages of the development of software systems, such as requirements engineer-
ing (Zhang et al., 2008), predictive modelling (Afzal and Torkar, 2011), design (Aleti et al., 2013), program
comprehension (Harman, 2007b), and software testing (McMinn, 2004; Mantere and Alander, 2005). A
comprehensive survey of SBSE by Harman et al. (2012b) indicates that there is an increase in research
publications in the area of search based methods for Software Engineering problems. A systematic lit-
erature review in optimisation algorithms for the design of software architectures (Aleti et al., 2013)
found that the majority of the approaches use Genetic Algorithms. These algorithms provide approxi-
mate results where exact approaches cannot be devised and optimal solutions are hard to find. Genetic
Algorithms can be used by practitioners in a fairly ‘black box’ way without mastering advanced theory,
whereas more sophisticated combinatorial algorithms are tailored to the specific mathematical structure
of the problem at hand, and can become completely inapplicable if small aspects of the problem change.
Another advantage of Genetic Algorithms is the stochastic element which helps them get out of local
optima.

In recent years, it has been acknowledged that the robustness of Genetic Algorithms is mostly due
to their numerous parameters such as crossover probabilities and population size (Eiben and Smit, 2011;
Eiben et al., 2007). Algorithm parameters determine the search strategy for exploring the space of pos-
sible solutions, and make the optimisation procedure flexible and efficient regardless of the search space
difficulty. However, poor algorithm parameterisation hinders the discovery of good solutions (Eiben and
Smit, 2011; Eiben et al., 2007). The parameters required for optimal algorithm performance are known to
be problem-specific, often even specific to the problem instance at hand (Eiben and Schut, 2008). Pressed
for time, practitioners tend to choose parameter values based on few preliminary trials, in which various
parameter settings are explored in an attempt to fine-tune the algorithm to a particular problem (Eiben
and Smit, 2011). Depending on the number of parameters and their plausible value ranges, investiga-
tive trials for parameter optimisations can themselves be attempts to solve a combinatorially complex
problem.

As prior tuning of algorithm parameters does not provide optimal performance, we introduce a novel
and efficient adaptive Genetic Algorithm for Designing Embedded Architectures, which eliminates the
requirement for tuning algorithms to particular problems. The new method adjusts algorithm parameters
during the optimisation process using an adaptive parameter control strategy. The intuitive motivation
comes from the way the optimisation process unfolds from a more diffused global search, requiring pa-
rameter values responsible for the exploration of the search space, to a more focused local optimisation
process, requiring parameter values which help with the convergence of the algorithm. The adaptive
Genetic Algorithm redefines parameter values repeatedly based on a learning process that receives its
feedback from the optimisation algorithm. The method uses an evaluation of the search space to discover
problem features and determine how well certain algorithm parameters perform.

The adaptive parameter control method introduced in this paper considers the stochastic nature of
GAs, which may return different results for the same parameter settings. A Bayesian Network is used to
model the causal relationship between parameter values and the performance of the GA. The applicability
and efficiency of the proposed approach is demonstrated with the help of a real-world application from
the automotive industry and a set of experiments on generated problem instances.

2 Architecture Design and Optimisation

The architecture of an embedded system represents a model or an abstraction of the real elements of
the system and their properties, such as software components, hardware units, interactions of software
components, and communications between hardware units. Formally, we define the software elements
as a set of software components, denoted as C = {c1, c2, ..., cn}, where n ∈ N represents their number.
The software components, illustrated in Figure 1a are considered as black boxes (Jhumka et al., 2002);
unmodifiable and with unknown internal structure, but with a description of externally visible parameters.
The software components interact to implement a set of services, which define the functional units accessed
by the user of the system.

Each service is initiated in one software component (with a given probability), and during its execu-
tion may use many other components (possibly shared with other services), connected via communication
links. For each service, the links are assigned with a transition probability. This view follows the Kubat
model (Kubat, 1989), in which the software architecture is modelled as a Discrete-Time Markov Chain
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Fig. 1: Software components and interactions represented as a DTMC.

(DTMC), where vertices represent the execution of software components, and arcs enumerate the prob-
ability of transferring the execution flow to the next component. The DTMC model is used to calculate
specific quality attributes of the system, such as reliability. The model depicted in Figure 1b is constructed
using the software elements shown in Figure 1a.

The hardware architecture is composed of a distributed set of hardware nodes, denoted as H =
{h1, h2, ..., hm}, where m ∈ N, with different capacities of memory, processing power, access to sensors and
other peripherals. The hardware hosts are connected via network links, denoted as N = {n1, n2, ...ns}. An
example of three hardware hosts and the network that is used for communication is depicted in Figure 2.

n1

h1 h2 h3

Fig. 2: Hardware elements and communi-
cation network.

Given the set of architectural elements, a series of de-
cisions have to be taken in order to obtain the final archi-
tecture of the embedded system, such as how to deploy the
software components to the hardware resources, known as
the Component Deployment Problem (CDP) (Aleti and
Moser, 2011), and how to assign redundancy levels to
safety-critical components, known as the Redundancy Al-
location Problem (RAP). Current research (Fredriksson
et al., 2005; Malek et al., 2005) shows that these decisions have significant implications for the likelihood
that the system achieves the desired quality attributes. In general, quality attributes are non-functional
characteristics of a system, the combination of which constitutes the overall quality of the system as
defined by the IEEE 1061 standard (ISO/IEC, 2000). Examples of quality attributes are reliability,
safety, availability, cost, energy consumption and performance. For every design decision, several quality
attributes are considered, which due to their conflicting nature, are optimised simultaneously.

2.1 Redundancy Allocation Optimisation

Redundancy Allocation (RA) determines the number of redundancies that have to be implemented for
each software components. RA is one of the well-known system reliability improvement techniques (Liang
and Smith, 1999; Coit and Smith, 1996; Kulturel-Konak et al., 2008). Reliability is one of the crucial
aspects that should be considered when designing embedded architectures of dependable, safety criti-
cal systems such as in the automotive domain (Åkerholm et al., 2004). However, employing redundant
components can have a negative influence in the other quality attributes.

The Redundancy Allocation Problem (RAP) has shown to be NP-hard (Chern, 1992), hence most of
the approaches in the literature use stochastic algorithms to optimise this problem. Coit et al. (Coit and
Smith, 1996) solve the Redundancy Allocation Problem (RAP) using functionally similar components,
such that if one component fails, the redundant part performs the required functionality without a system
failure. The optimisation problem is defined as the minimisation of cost using a genetic algorithm while
satisfying a user defined system reliability level, which is handled as a constraint. Problems with hard
constraints may be hard to solve with approximate methods.

To deal with this problem, Kulturel-Konak et al. (Kulturel-Konak and Coit, 2003) employ a relaxation
mechanism by incorporating a penalty function into a Tabu Search. Ant Colony Optimisation with an
elitist strategy which preserves the best solutions has successfully been used to solve the redundancy
allocation problem (Liang and Smith, 1999). The ACO was enhanced with a mutation operator, usually
not part of the ACO, to search in unexplored areas of the search space. All these approaches model
the redundancy allocation problem as a singleobjective optimisation problem, usually by minimising cost
while satisfying a predefined reliability criteria. Similar to Grunske (2006), who simultaneously maximises
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reliability while minimising weight, we formulate the redundancy allocation problem as a multiobjective
problem.

We employ the hot spare design topology, in which all component redundancies are active at the
same time, mimicking the execution of the original component. With the N-tuple Modular Redundancy
(NMR) extension the system employs a decision mechanism in the form of majority voting when multiple
replicas deliver their results to the entry gate of a component. In this configuration, each component with
its parallel replicas is regarded as a subsystem.

Formally, an architecture alternative for the redundancy allocation problem is denoted as ra. The set
of all redundancy allocation candidates ra is denoted as RA = {ra | ra : C → NRA}, where NRA =
{n | 0 ≤ n ≤ nMax, n ∈ N0} delimits the redundancy level of a component. Note that, since C and N
are finite, RA is also finite. An example of an architecture alternative for the Redundancy Allocation
Problem is depicted in Figure 3.
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Fig. 3: Software redun-
dancies allocated to safety
critical components.

The redundancy allocation problem is optimised using a Genetic Algo-
rithm with a specialised solution encoding which maps a redundancy level
to each software component. This problem has many quality-related as-
pects and is therefore modelled as a multiobjective problem. Each solution
is encoded as rai = [rai(c1), rai(c2), ..., rai(cn)], where rai(cj) represents
the redundancy level for component cj in the architecture alternative rai.

The crossover and mutation operators are used to find new architec-
ture alternatives for RAP. The crossover operator creates two new so-
lutions ra′i, ra

′
j ∈ R from two parents rai = [rai(c1), rai(c2), ..., rai(cn)]

and raj = [raj(c1), raj(c2), ..., raj(cn)] coming from existing popu-
lation by recombining the redundancy levels, i.e. for a randomly selected index k: ra′i =
[rai(c1), ..., rai(ck−1), raj(ck), ..., raj(cn)] and ra′j = [raj(c1), ..., raj(ck−1), rai(ck), ..., raj(cn)]. Similarly,
a single-point mutation produces a new solution ra′i from existing rai by switching the redundancy levels
of two software components, i.e. for randomly selected k, l: ra′i=[raj(c1), ..., raj(cl), ..., raj(ck), ..., raj(cn)]
while the original solution is rai=[rai(c1), ..., raj(ck), ..., raj(cl), ..., raj(cn)].

2.2 Component Deployment Optimisation

The Component Deployment Problem (CDP) refers to the allocation of software components to the
hardware nodes, and the assignment of inter-component communications to network links. The way
the components are deployed affects many aspects of the final system, such as the processing speed
of the software components, how much hardware is used or the reliability of the execution of different
functionalities (Meedeniya et al., 2011; Aleti et al., 2009b; Papadopoulos and Grante, 2005; Mikic-Rakic
et al., 2004; Medvidovic and Malek, 2007; Malek, 2007; Sharma et al., 2005; Fredriksson et al., 2005).
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c1,3 c3

Fig. 4: Component Deployment Problem.

Some approaches focus on the satisfaction of the con-
straints or user requirements (Calinescu and Kwiatkowska,
2009; Martens and Koziolek, 2009), whereas others aim at
finding optimal deployments or at least candidates that are
near-optimal (Medvidovic and Malek, 2007; Sharma et al.,
2005; Fredriksson et al., 2005), often in combination with
the given constraints (Mikic-Rakic et al., 2004; Medvidovic
and Malek, 2007; Fredriksson et al., 2005; Lukasiewycz
et al., 2008). In our approach, quality attributes are optimised simultaneously due to their conflicting
nature. In addition, our approach considers constraints, which are incorporated into the framework. From
an optimisation perspective, CDP is similar to the generalized Quadratic Assignment Problem (gQAP),
where there is no restriction that one location can accommodate only a single equipment. Formally, the
component deployment problem is defined as D = {d | d : C → H}, where D is the set of all functions as-
signing components to hardware resources. One possible solution for the component deployment problem
of the software and hardware architectures introduced in the previous section is depicted in Figure 4.

The component deployment problem uses a Genetic Algorithm with a specialised solution encoding
which maps software components to hardware resources. Each architecture alternative of the component
deployment problem is encoded for the optimisation process as di=[di(c1), di(c2), ..., di(cn)], where di(cj)
represents the hardware host used to deploy component cj in the deployment alternative di.
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The genetic operators are applied to this representation of the solutions in order to generate new
architecture alternatives. The crossover operator combines the allocation lists of two solutions. For-
mally, crossover creates two new solutions d′i, d

′
j ∈ D from two parents di = [di(c1), di(c2), ..., di(cn)]

and dj = [di(c1), di(c2), ..., di(cn)] coming from the existing population of solutions by recombining the
allocation of components, i.e. for a random k: d′i = [di(c1), di(c2), ..., di(ck−1), dj(ck), ..., dj(cn)] and d′j =
[dj(c1), dj(c2), ..., dj(ck−1), di(ck), ..., di(cn)]. The mutation operator exchanges the host allocations of two
randomly chosen components. Formally, mutation produces a new solution d′i from existing di by switching
the mapping of two components, e.g. for randomly selected k, l: d′i=[di(c1), di(c2), ..., di(ck)..., di(cl), ..., di(cn)]
while the original solution is di=[di(c1), di(c2), ..., di(cl)..., di(ck), ..., di(cn)]. The problem definition does
not allow for duplications, and a repair operation follows the crossover/mutation move.

3 Genetic Algorithms

Genetic Algorithms (GAs) (Holland, 1975) are nature-inspired optimisation methods used for solving
NP-hard optimisation problems. GAs maintain a population of solutions S = {s1...sn} that evolves by
means of the genetic operators: the variation procedure (V), which is composed of the mutation operator
(m̂) and the crossover operator (ĉ), the selection procedure (S), and the replacement procedure (R),
which may also be referred to as survivor selection procedure (Eiben and Smit, 2011). The objective is
to search the solution space in order to optimise the quality functions F : S → R.

Fig. 5: The main steps of Genetic Algorithm.

1: procedure GA(F , µ, λ, R , V, S , m̂ , m̂r, ĉ, ĉr,
stoppingCriteria)

2: S0 ← Random(µ))
3: t = 0
4: while stoppingCriteria 6= true do
5: for i← 1, λ do
6: Evaluate(F, si)
7: end for
8: St(parents) = S(St)
9: S′t+1 = V(St(parents), λ, m̂, m̂r, ĉ, ĉr)
10: St+1 = R(S′t+1)
11: t = t+ 1
12: end while
13: Return(S)
14: end procedure

The main steps of a GA are given in Figure 5. The
optimisation process starts with a set of solutions S0 as
initial population, which can be randomly generated,
created by applying heuristic rules (e.g. greedy algo-
rithm), or provided by an expert. After the initialisa-
tion, GA evolves the population using the crossover,
mutation and selection operators. The crossover and
mutation operators are applied according to predefined
crossover and mutation rates ĉr, m̂r respectively. These
operators are applied to specific solutions, which are
selected by the selection procedures S. The new indi-
viduals created by the genetic operators are added to
the population. The number of offspring generated at
every iteration is denoted as λ. The replacement pro-
cedure R selects the solutions that will survive in the
next generation.

At every iteration of a GA run, the chosen parameter values are employed to create different solutions,
which are evaluated using the fitness function(s). The output from the evaluation process provides valuable
information, which can be used to assess the effect of the parameter values on the performance of the
optimisation algorithm. We use the feedback from the search to approximate the cause of the change in
the quality of the solutions and assign a quality to parameter values, denoted as q(υij). The quality of
the parameter values is used to select the next parameter assignments, which are employed to create the
next generation of solution(s).

4 Parameter Control for Genetic Algorithms

Parameter control aims at finding optimal parameter configurations for Genetic Algorithms. It describes
a process where the optimisation process starts with suboptimal parameter values, which are adapted
for better algorithm performance. A variety of parameter control methods exist in the literature (Eiben
et al., 2007; Smith and Fogarty, 1996; Angeline, 1995; Davis, 1989; Tuson and Ross, 1998; Smith and
Fogarty, 1996). Following the classification proposed by Eiben et al. (Eiben et al., 2007), parameter control
methods can be grouped into three categories: deterministic parameter control, self-adaptive parameter
control and adaptive parameter control.

Deterministic parameter control methods adjust parameter values based on user-defined deterministic
rules, set a priori based on time, similar to the way the cooling schedule is applied in simulating annealing.
Despite the promising results in the early works (Hesser and Manner, 1991; Fogarty, 1989), one of the
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main issues with deterministic parameter control is setting the right schedule for changing the parameter
values, since it is not obvious how to estimate the number of steps the GA will take to converge.

Self-adaptive parameter control approaches (Bäck, 1996; Farmani and Wright, 2003; Deb and Beyer,
2001; Bäck, 2001; Nadi and Khader, 2011) include the parameters to be adapted into the encoding of
the individuals and evolve them simultaneously with the solutions to the problems. High-fitness solutions
will survive to the next generation and propagate their superior traits together with the parameter values
which are assumed to be responsible for the high quality. An inherent problem of self-adaptive parameter
control methods is the increase in the size of the search space, since the search for optimal solutions has
to incorporate the search for optimal parameter values, increasing the complexity of the optimisation
problem.

Adaptive parameter control (Thierens, 2005; Fialho et al., 2009; Corne et al., 2002; Davis, 1989; Hong
et al., 2000; Igel and Kreutz, 2003; Julstrom, 1995; Schlierkamp-Voosen and Mühlenbein, 1994; Tuson
and Ross, 1998) monitor the behaviour of a GA run, which is used to adapt the parameter values, so
that successful parameter values are propagated to the next generation. The update mechanism which
controls the parameter values is devised a priori rather than being part of the optimisation cycle. This
method does not use a predefined schedule and does not extend the solution size, which makes it a more
effective way for controlling parameter values during the optimisation process.

Most of adaptive parameter control methods found in the literature (Corne et al., 2002; Davis, 1989;
Hong et al., 2000; Igel and Kreutz, 2003; Julstrom, 1995) belong to the class of probability matching
techniques, in which the probability of applying a parameter value is proportional to the quality of that
parameter value. The earliest approaches (Igel and Kreutz, 2003; Hong et al., 2000) lacked the exploration
of parameter values if the feedback from the algorithm was not in their favour in the initial phases of the
process. In later work, a minimum selection probability pmin is introduced (Igel and Kreutz, 2003), to
ensure that under-performing parameter values did not disappear during the optimisation, in case they
were beneficial in the later stages of the search. These probability matching techniques select parameter
values in proportion to their previous performances. One of the more recent and mature examples of
probability matching is the work by Igel and Kreutz (Igel and Kreutz, 2003). Their Equation 1 for
calculating the selection probability for each parameter value incorporates the maintenance of a minimum
probability of selection.

p′t(υij) = pmin + (1−mpmin)
pt(υij)∑m
r=1 pt(υir)

(1)

where m is the number of possible values for parameter υi. Probability matching has been criticised
for the loose correlation between the reward allocations and the differences in performance with vastly
superior values receiving a marginal increase in selection probability.

Adaptive Pursuit (AP) (Thierens, 2005) was conceived as an attempt to address this issue, ensuring
that clearly superior values are rewarded with a maximum probability of choice. Even though every
parameter value is selected from time to time, in practice the Adaptive Pursuit algorithm spends a
number of iterations before responding to a change of best parameter value.

Dynamic Multi-Armed Bandit (DMAB) (Fialho et al., 2009) addresses the problem by completely
recalculating the probabilities when a change in the effects distribution is detected by using a change
detection test, in this case the statistical Page-Hinkley (PH) test. The PH test checks whether the quality
of the parameter values has changed. When a change is detected, the algorithm is restarted. As a result,
DMAB can quickly identify the new best parameter value without being slowed down by old information.

Adaptive Range Parameter Selection (ARPS) (Aleti et al., 2012) is the first attempt at adapting real-
valued parameter ranges. The ARPS algorithm discretises continuous-valued parameters by partitioning
its ranges into two equal intervals. At every iteration, the best-performing interval is subdivided by
splitting it in the middle. At the same time, the worst-performing interval is merged with the worse-
performing of its neighbours. The selection probabilities of the split intervals are initially the same, the
merged interval maintains the neighbour’s probability of selection.

Refining the most successful parameter areas into narrower intervals, the probability of choosing
particular values increases. Merging badly performing parameters decreases their probability of selection.
An analysis of the mutation/crossover ranges (Aleti et al., 2012) revealed that ARPS sometimes absorbs
high-performing intervals into very large ranges as a result of short-term underperformance. The merged
ranges are usually very large and it takes many iterations for an absorbed sub-range to re-establish
itself. This behaviour almost certainly affects the performance of the search. An improved approach to
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maintaining parameter value intervals uses an entropy-based measure for discretising parameter values
into successful and unsuccessful ranges.

State-of-the-art parameter control methods assume that the improvement in the quality of the solu-
tions is directly related to the use of certain parameter values. For instance, if a mutation rate of 0.01
produces a solution which improves the quality of its parent by ∆q, the quality improvement ∆q is con-
sidered as the effect of this mutation rate. If more than one solution is created, the sum or average of the
quality improvement of all solutions is assigned as the overall effect. However, the performance of Genetic
Algorithms is affected by more than one parameter value, hence using the performance of the algorithm
directly as an indication of parameter success may be misleading. Moreover, Genetic Algorithms are
stochastic systems, which may produce different results for the same parameter values (DeJong, 2007).
Ideally, the randomness induced by the stochastic behaviour of GAs should be taken care of by the
parameter control strategy. In this paper, we introduce a new method that deals with this issue.

5 Bayesian Parameter Control for Genetic Algorithms

In our approach, the optimisation process is carried out in X = {x1, x2, ..., xk}, k independent algorithm
instances. An algorithm instance can have one or more solutions depending on the optimisation problem at
hand. Each algorithm instance evolves independently and every iteration reports to an algorithm manager,
which coordinates all algorithm instances. At the start of the optimisation process, the algorithm manager
randomly assigns each instance different parameter values. However, the same parameter value can be
assigned to more than one instance. Figure 6 illustrates this process for n parameters ({υ1, ..., υn}).

x1 x2 x3 xk

Genetic Algorithm

⇓ ⇓ ⇓ ⇓
∆M(x1) ∆M(x2) ∆M(x3) ∆M(xk)

{υ1, υ2, ..., υn} {υ1, υ2, ..., υn} {υ1, υ2, ..., υn} {υ1, υ2, ..., υn}

Fig. 6: Assessing the effect of parameters with parallel instances of the optimisation algorithm

Each algorithm instance has the same number of solutions, in the range [1, µ], which can also be
subject to optimisation. During every iteration, new solutions are created in each algorithm instance
by using the parameter values assigned to them. At the end of each generation, i.e. after the required
number of offspring has been generated, the algorithm instances report the performance achieved during
that generation to the algorithm manager. We denote the set of performance metrics used to measure
the performance of a Genetic Algorithm as M = {m1,m2, ...,mp}. At each iteration, the achieved per-
formance for each algorithm instance is measured by calculating the improvement in the properties of
the current solutions, measured by these metrics, with respect to the properties of the solutions in the
previous iteration, as ∆M(xi) =M(xti)−M(xt−1i ).

The effect of parameter values on this performance change is denoted as e. This performance difference
is used to determine whether the parameter value was successful in the previous iteration, denoted as e+,
or unsuccessful, denoted as e = e−. Success is defined as producing solutions with performance values
above a certain threshold th. Given an algorithm instance xi, the effect of parameter values used in that
instance is calculated as:

e(xi) =

{
e+ if ∆M(xi) > th
e− otherwise

(2)

If the difference between current (time t) M(xti) and the value of the performance metric at the
previous iterationM(xt−1i ) is above th, the instance is deemed successful (e(xi) = e+), which also means
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that the parameter values used to produce the solutions are considered successful. The value of the
threshold th determines the greediness of the algorithm. For smaller values of th (e.g. 5% of the best
solutions) the focus of parameter control is narrowed to the absolute best-performing parameter values.
Larger values of th (e.g. 50% of the best solutions) allow a better exploration of parameter values with
a moderate performance. Different values of the threshold were experimentally evaluated for different
problem instances. It was observed that using the median as threshold produces optimal results for all
problems instances investigated

In this work we use Bayesian Networks (BNs) (Pearl, 1988) as a probabilistic parameter effect assess-
ment strategy. BNs measure cause-effect relationships between variables in a probabilistic way. They are
considered to be effective tools in modelling systems which do not have complete information about the
variables and the available data is stochastic or not completely available, which makes them suitable for
our application.

v1

v2

(a)

υ2

e

υ1 υn

(b)

Fig. 7: Bayesian Networks.

BNs are represented as directed acyclic graphs (DAGs) with
probability labels for each node as a representation of the prob-
abilistic knowledge. The graph is defined as a triplet (V,L, P ).
V = (v1, v2, ...vn) is a set of n variables represented by nodes of
the DAG. We think of each variable as an event which consists of
a finite set of mutually exclusive states. It is also possible to rep-
resent continuous variables, representing numerical values, such
as crossover probabilities by discretising them into a number of
intervals. L is the set of links that denote the causal relationship
among the variables V , modelled as directed arcs between nodes
of the DAG. The directed links between variables represent de-
pendence relationships, as shown in Figure 7a. A link from a variable v1 to variable v2 indicates that v2
depends on the parent node v1, which is denoted as π(v2). It can also be explained as a causal relationship
where v1 is the cause of the event v2. The lack of a link between two nodes means that the nodes are not
dependent on each other.

We use BNs to model the relationship between algorithm parameters and their effect on the perfor-
mance of the algorithm. The effect on the algorithm is represented by a child node (e), which can take
two values: e+ for successful and e− for unsuccessful. The child node e has many parent nodes, which
represent the algorithm parameters, denoted as {υ1, υ2, ..., υn}, as shown in Figure 7b. Each node υi can
take different values, which we denote similarly to parameter values (ranges) as {υi1, ..., υimi}. Each of
the parent nodes υi is annotated with probabilities p(υij), as shown in Figure 8. These represent the
prior probabilities, which can be calculated as classical probabilities, to represent the probability that
a certain parameter value will occur, or as Bayesian probabilities, to represent a belief that a certain
parameter value will be used. In the first iteration, we assign equal prior probabilities to each value of
the parameters, since they all have the same probability of being selected, calculated as p(υij) = 1/mi,
where mi is the total number of values or intervals of parameter υi. This represents our belief in how
frequently a certain parameter value should be used. These prior probabilities are used to select the
parameter values to assign to the algorithm instances in the first iteration. The probability that the child
node e attains a certain value, in our case e+ or e−, depends on the probabilities of the parent nodes,
i.e. the probabilities of the parameter values. This relationship is measured as a conditional probability,
i.e. the probability of an event occurring given that another event has already happened, defined as:
P = {p(e | π(e)) | π(e) ∈ V }, where π(e) are the parents of node v.

To calculate the conditional probabilities, every iteration, we establish the number of times the value
has been used, denoted as n(υij) and the number of times the value led to a success n(υij∧e+) (the number
of successful instances that use that parameter value). Then we calculate the conditional probabilities for
each parameter value by using Equation 3. These conditional probabilities represent the success rate of
each parameter value in the current iteration.

p(e+|υij) =
n(υij ∧ e+)

n(υij)
(3)

where n(υij ∧e+) is the successful attempts that use υij and n(υij) is the number of times υij is used.
The conditional probabilities of all parameter values υij , i ∈ n, j ∈ m are calculated for all parameter
values resulting in the annotated graph shown in Figure 8.
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Fig. 8: A Bayesian Network annotated with conditional probabilities employed by the parameter effect
assessment strategy.

Fig. 9: Bayesian Parameter Control Strategy

1: procedure BayesianParameterControl
2: for all parameter υi, i ∈ n do
3: for all algorithm instance xs, s ∈ k do
4: for all parameter value υij , j ∈ m do
5: if υij is used in xs then
6: n(υij) = n(υij) + 1
7: if ∆M(xs) > th then
8: n(υij ∧e+) = n(υij ∧e+)+1
9: end if
10: end if
11: end for
12: end for
13: end for
14: for all υi, i ∈ n do
15: for all υij , j ∈ m do

16: p(e+|υij) =
n(υij∧e+)

n(υij)

17: end for
18: end for
19: end procedure

The initial structure of the BN and the conditional
probabilities are learnt based on the data from the k
parallel optimisation instances. Figure 9 shows the steps
of the process. This probabilistic effect assessment strat-
egy calculates the relative success rate of each param-
eter value with respect to other parameter values. The
calculated conditional probabilities deal with the un-
certainties that arise from the stochastic nature of GAs
by measuring the effect of parameters probabilistically,
instead of using directly the performance difference.

5.1 Example of Bayesian Parameter Control

To illustrate the parameter effect assessment procedure
described in Algorithm 9, we use an artificial data set
with three categorical variables: two controlled parame-
ters (υ1, υ2) with two intervals: υ11, υ12, υ21, υ22 respec-
tively, and the performance of the algorithm e, with two
possible values: e+ (successful) and e− (unsuccessful). For the purpose of this example, we use 10 par-
allel algorithm instances {x1, x2, ...x10}, as shown in Figure 10, with different parameter values for the
two controlled parameters (υ1 and υ2) randomly sampled from the four intervals. The dots symbolically
represent the solution sets of the instances.

x1

Genetic Algorithm

{υ11, υ22}

x2

{υ12, υ22}

x3

{υ12, υ21}

x4

{υ12, υ21}

x5

{υ12, υ21}

x6

{υ11, υ22}

x7

{υ11, υ21}

x8

{υ12, υ22}

x9

{υ12, υ21}

x10

{υ11, υ21}

Fig. 10: Algorithm instances with parameter values selected from different intervals.

After running the GA with the different instances, the performance of each instance is assessed
separately. Suppose that instances {x1, x2, x7, x10} are deemed successful as shown in Figure 11. The
same results are written in a table format as depicted in Table 1. Using the data in Table 1, we calculate
the frequency of each parameter value in the 10 instances. Results are shown in Table 2a.



10 Aldeida Aleti

x1

Genetic Algorithm

{υ11, υ22}

x2

{υ12, υ22}

x3

{υ12, υ21}

x4

{υ12, υ21}

x5

{υ12, υ21}

x6

{υ11, υ22}

x7

{υ11, υ21}

x8

{υ12, υ22}

x9

{υ12, υ21}

x10

{υ11, υ21}

e = e+ e = e+

e = e+

e = e− e = e− e = e−

e = e− e = e− e = e− e = e+

Fig. 11: Successful algorithm instances.

Table 1: Performance of algorithm instances with different values for parameters υ1 and υ2.

Instance x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
υ1 υ11 υ12 υ12 υ12 υ12 υ11 υ11 υ12 υ12 υ11
υ2 υ22 υ22 υ21 υ21 υ21 υ22 υ21 υ22 υ21 υ21
e e+ e+ e− e− e− e− e+ e− e− e+

Table 2: Overall frequencies of parameter values, and frequencies of parameter values in the successful
and unsuccessful instances.

(a) Overall fre-
quencies.

n(υ11) = 4
n(υ12) = 6
n(υ21) = 6
n(υ22) = 4

(b) Frequencies in the successful and un-
successful instances.

n(υ11 ∧ e+) = 3 n(υ11 ∧ e−) = 1
n(υ12 ∧ e+) = 1 n(υ12 ∧ e−) = 5
n(υ22 ∧ e+) = 2 n(υ21 ∧ e−) = 4
n(υ21 ∧ e+) = 2 n(υ22 ∧ e−) = 2

(c) The conditional probability of each
parameter value.

p(e+|υ11) = 3/4 p(e−|υ11) = 1/4
p(e+|υ12) = 1/6 p(e−|υ12) = 5/6
p(e+|υ21) = 1/3 p(e−|υ21) = 4/6
p(e+|υ22) = 1/2 p(e−|υ22) = 2/4

The next step involves calculating the frequency of each parameter value in the successful and unsuc-
cessful instances, as shown in Table 2b. The frequencies of parameter values in the successful algorithm
instances indicate that parameter values υ21 and υ22 have a similar effect in the successful performance
of the algorithm. However, it is important that we also consider the cases in which these parameter
values were unsuccessful. The conditional probabilities calculated in the final step of the parameter effect
assessment strategy using Equation 3 incorporate this information. Results are shown in Table 2c.

The data in Table 2c shows that although parameter values υ22, υ21 have the same frequency in the
successful algorithm instances, they do not have the same success rates, i.e. their effect on the successful
performance of the algorithm is not the same. The conditional probabilities help in deriving conclusions
about the causes of the successful or unsuccessful performance of the algorithm instances. For example,
the success rate of parameter value υ11 is p(e+|υ11) = 3/4, which is higher than the success rate of
parameter value υ12 (p(e+|υ12) = 1/6). This indicates that parameter value υ11 has a higher probability
of being the cause of the successful performance of the algorithm instances.

6 A Case Study of an Automotive Embedded System

The trends in automotive domain feature standardisation of the embedded software and hardware struc-
ture. In the future cars will have more centralised, multi-functional and multi-purpose hardware, with
less dedicated sensors, Electronic Control Units (ecus) and actuators (Broy, 2006). The current ecus in
cars often multiplex several sub-applications (Broy, 2006). Ecus, sensors, actuators, software, hardware
and mechanical devices are no longer developed as one integrated piece. As a result, software has become
an independent sub-product in the automotive domain (Broy, 2006).

One important initiative towards the standardisation of the automotive systems is the AUTomotive
Open System ARchitecture (AUTOSAR) project, which aims at making possible the reuse of software
components between different vehicle platforms (Scharnhorst et al., 2005). To achieve this the project in-
cludes the standardisation of basic system functions and functional interfaces, the ability to integrate and
transfer functions and especially improve software updates and upgrades over the vehicle lifetime (Hei-
necke et al., 2004). AUTOSAR provides a common software infrastructure for automotive systems of
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all vehicle domains based on standardized interfaces. An integrated approach for software-based vehi-
cle systems would help not only in supporting dependable real-time execution and the management of
change, but also the integration of software from different suppliers (Cuenot et al., 2007). Our approach
is inspired by the AUTOSAR initiative.

A systematic literature review of 188 papers on software architecture optimisation methods was con-
ducted prior to this case study (Aleti et al., 2013), which showed that most of the approaches use examples
(27% of overall investigated papers) to demonstrate of evaluate the contributions made. Only 16% of the
papers use academic case studies (16%)or industrial case studies (16%), which emphasises the requirement
for more real-life case studies in this area, as also suggested by Kitchenham et al. (1995).

6.1 Design and Implementation of the Case Study

For the design and implementation of this case study, we followed the guidelines proposed by Verner
et al. (2009), and cross-checked our work with the recommendations and examples from Runeson et al.
(2012). The main steps followed during the construction of the case study include (i) refining of research
objectives and the formalisation of research questions, (ii) defining research propositions, (iii) building
a conceptual framework, defining concepts, measures, and deciding the methods of data collection, (iv)
deciding how the results will be analysed, (v) describing the case study and defining it’s boundaries, and
(vi) identifying the appropriate level of confidence on the findings.

The Genetic Algorithm with the Bayesian parameter control strategy presented in Section 3 is em-
ployed to optimise two problem from the automotive industry: a redundancy allocation problem and
a component deployment problem. The quality of the embedded architectures found by the Adaptive
Genetic Algorithm is compared to the ones found by a GA without adaptation. The objectives of this
case study are to (i) ‘Investigate the effect of parameter values on algorithm performance when applied
to an embedded system from the industry.’, and (ii) ‘Assess the performance of the proposed adaptive
parameter control on a real-life system’. These two objectives lead to the following research questions: (i)
‘Do parameter values affect the performance of a Genetic Algorithm when solving a real-life problem in
Software Engineering? ’, and ‘Does using an adaptive parameter control strategy produce better results
than pre-tuned parameter values?’.

The ensure sufficient coverage of sources of data, and enhance the reliability of the findings, the case-
study was built with inputs from two different organisations: the Australian Automotive Industry via the
cooperate research centre (AutoCRC), and Volvo Sweden. The process involved consultations and getting
feedback on the hardware architecture, software architecture, the parameters involved and their values.
The design was improved iteratively, and we found it necessary to remove, add, and change the different
aspects involved. The draft case study was peer reviewed by colleagues not involved in the project, to
ensure its quality.

The design of the case study involves four main stages: (i) the design of the hardware architecture,
its properties and the real-life values, (ii) the design of the software architecture, which also includes
the properties of the software elements and their values, (iii) the formulation of the redundancy alloca-
tion problem, which includes the quality attributes that require optimisation, and constraints, and (iv)
the formulation of the component deployment problem, which requires different quality attributes and
constraints. These four stages are described in detail in the following sections. To check for a statisti-
cal significance of the findings, a set of experiments were conducted, where the problem instances were
generated using the properties identified in the case study.

6.2 Hardware Architecture

In the automotive industry, an existing hardware topology is usually used, because car models remain
the same through parts of their lifetimes. The hardware is the platform where software components run,
which forms the basis of the increasingly sophisticated functionality of contemporary cars. The hardware
model of an automotive embedded system is composed of a distributed set of Electronic Control Units
(ECUs), which have different capacities of memory, processing power, access to sensors, etc. Automotive
embedded systems closely interact with the physical environment, typically via sensors and actuators. All
the hardware modules (ECUs, sensors, actuators) are connected through communication buses, which are
shared among the hardware units, such as Ethernet, CAN, or FlexRay. The hardware modules and the
communication buses form the hardware architecture of an automotive system. An example is depicted
in Figure 12.
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ECU4

ECU6
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Wheel speed sensor
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Parking brake actuator
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DRIVER CAN

Pedal position sensor
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Parking brake sensor

Brake pedal actuator

ECU9

Fig. 12: The hardware architecture of an automotive system.

Many types of buses can be present,
having different characteristics of data
rates and reliability. For example, for the
Brake-by-wire (BBW) system a highly
reliable bus is used due to the safety-
critical nature of this system, whereas
a less reliable bus may be sufficient for
multi-media streaming. Each ECU has
access to different sensors and actuators,
which impose localisation constraints for
the software components. In other words,
software components that read from a
specific sensor or write to a particular ac-
tuator, have to be deployed to an ECU
that has access to the sensor or actuator.

The hardware elements are annotated with different properties required for the calculation of the
quality attributes. The communication among the hardware hosts is achieved by the network links, which
have different characteristics of data rates, reliability, etc. Figure 12 depicts three different network links:
a LIN bus, a Driver CAN and a CAN bus. A description of the properties of hardware units and network
links are depicted in Table 3.

Table 3: Properties of the hardware elements.

Annotation Definition Description Range

ps(hi) H → N Processing speed of the host in MIPS [2, 16]

mh(hi) H → N Memory capacity of host hi [26, 210]

λh H → R Failure rate of the host [e−2, e−6]

λn N → R Failure rate of the network link [e−2, e−5]

bw N → N the bandwidth of a network link [26, 210]

tt N → N the transfer time for a link per execution in ms [1, 100]

The properties of the hardware elements, described in Tables 3 are configured using values from a real
world applications of an automotive embedded system. The configuration of the hardware and software
architecture are given in Tables 4-6.

Table 4: Values of the hardware architecture for the BBW system

(a) Values of hardware nodes.

Host mh ps λh lr
ecu1 512 4 4.0e-4 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1
ecu2 1024 6 4.0e-4 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1
ecu3 512 2 2.0e-5 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1
ecu4 1024 2 1.0e-4 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0
ecu5 510 11 8.0e-4 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0
ecu6 1024 11 2.0e-4 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0
ecu7 1024 8 6.0e-5 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0
ecu8 1024 7 4.0e-5 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1
ecu9 1024 8 8.0e-4 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1

(b) Values of communication links.

Link λn bw tt r
Lin bus 3.0 e-05 128 10 0.9
Driver CAN 1.2 e-04 64 2 0.8
CAN bus 4.0 e-05 64 4 0.8

6.3 Software Architecture

The software layer of an automotive embedded system consists of a high number of lightweight com-
ponents, representing the logical blocks of system functionality (typically in a low-level programming
language). This forms the software architecture of the system. Automotive software has very diverse
functionality, ranging from entertainment software to safety-critical, real-time control software. We illus-
trate the software architecture of an automotive system using the Brake-by-wire (BBW) service, which
is a real-time system that performs safety-critical tasks.
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Fig. 13: The software architecture of the Brake-
by-wire system.

BBW technology is a recent innovation in the au-
tomotive industry, which replaces the traditional me-
chanical and hydraulic control systems with electronic
control systems. A diagram of the BBW software
model is shown in Figure 13. Each box represents a
software component and the connections among them
correspond to their interactions. The direction of the
arrows represents the sequence of the execution of
the components. A BBW pedal is usually equipped
with several sensors which provide information about
the driver’s brake request. The Pedal Position Sensor
(PPS) and the Brake Force Sensor (BFS) measure
the force applied by the driver to the brakes and the
current position of the brakes. Upon measurement of
the driver’s brake request, the brake demand is sent
to the Brake Pedal Control (BPC) via the communi-
cation network. The BPC transfers the brake request
to the Central Brake Control (CBC), which generates
four independent brake commands and sends them to
the Calliper Control Unit (CCU) in each wheel. These
commands are usually in the form of four clamp forces
that are generated between each of the four brake
discs and their corresponding brake pads. Each CCU includes a Calliper Clamp Actuator (CCA) to
clamp the brake pad toward the braking disc and a Parking Brake Actuator. The CCU also processes
additional inputs from several sensors, such as the Temperature Sensor (TS) and the Calliper Position
Sensor, which regulate the brake command execution.

Table 5: Properties of the software elements.

Annotation Definition Description Range

ext(ci) C → N Estimated time taken for a single execution of component ci [0.1, 1.0]
q0(ci) C → R Mean execution initialisation probability for component ci [0, 1]
mc(ci) C → N Memory size required to run component ci.
cost(ci) C → N The price of component ci in $ [20, 50]
p(cj , ci) C × C → R Transition probability from component cj to component ci [0, 1]
ms(cj , ci) C × C → N Message size transferred from component cj to component ci [2, 25]
cf(ci, cj) C × C → R Communication frequency between components ci and cj [0, 1]
lr(ci, hj) C ×H → {0, 1} Localisation restrictions. The restriction lr(ci, hj) = 1 if com-

ponent ci has to be deployed to hardware host hj , otherwise
lr(ci, hj) is equal to 0

{0, 1}

cr(ci, cj) C × C → {0, 1} Collocation restrictions. Restriction cr = 1 if ci has to be
deployed in the same hardware unit as cj , and cr = 0 if there
is no such restriction

{0, 1}

There are also different sensors and a controller to tune the actual brake force to the desired clamp
force received from the Central Brake Control (CBC), such as the Parking Brake Sensor (PBS) and the
Wheel Speed Sensor (WSS). After the brake request has been applied, a message is generated by the
Brake Feedback Actuator (BFA) which notifies the driver. A description of the properties of software
elements is given in Table 5. The values of the case-study for the software elements are presented in
Table 5. The values of the interactions between components and the collocation restrictions are shown in
Table 6b and 6c. Collocation restrictions dictate which components should be deployed together in the
same hardware host. In the current case-study, component c8 has to be deployed in the same hardware
host as component c7, and components c11 and c12 have to be deployed together in the same hardware
host. Usually, in automotive system, collocation restrictions are not very hard, i.e. not many software
components are required to be collocated.

The software architecture is deployed to the hardware architecture described in Section 6.2, to realise
the BBW system. This process involves two main design steps which are optimised individually, described
in the following sections. First a redundancy level is decided for each component. Then the software
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Table 6: Values of the software architecture for BBW system.

(a) Software components.

Component mc q0 ext cost
c1 Temperature Sensor (TS) 64 0.108 12 25
c2 Calliper Position Sensor (CPS) 128 0.182 10 30
c3 Parking Brake Actuator (PBA) 64 0 2 20
c4 Calliper Control Unit (CCU) 512 0 20 30
c5 Calliper Clamp Actuator (CCA) 256 0 5 40
c6 Central Brake Control (CBC) 1024 0 10 30
c7 Wheel Speed Sensor (WSS) 64 0.1 12 35
c8 Wheel Spin Detector (WSD) 128 0.2 8 20
c9 Parking Brake Sensor (PBS) 128 0.1 4 30
c10 Brake Pedal Control (BPC) 512 0 6 35
c11 Pedal Position Sensor (PPS) 64 0.13 10 30
c12 Brake Force Sensor (BFS) 128 0.18 10 35
c13 Brake Feedback Actuator (BFA) 64 0 4 25

(b) Interactions.

ci c0 c1 c3 c3 c5 c7 c6 c8 c9 c10 c11 c9
cj c3 c3 c2 c4 c3 c5 c7 c7 c5 c9 c9 c12
p 1 1 0.3 0.7 1 1 1 1 0.6 1 1 0.4
cl 2 2 2 2 2 1 2 1 2 1 2 2
ext 0.2 0.3 0.1 0.4 0.3 0.2 0.6 0.4 0.2 0.3 0.5 0.4
es 10 12 12 10 12 6 12 6 12 8 10 6
cf 1 1 0.3 0.7 1 1 1 1 0.6 1 1 0 .4

(c) Collocation restrictions between components.

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13
c1 0 0 0 0 0 0 0 0 0 0 0 0 0
c2 0 0 0 0 0 0 0 0 0 0 0 0 0
c3 0 0 0 0 0 0 0 0 0 0 0 0 0
c4 0 0 0 0 0 0 0 0 0 0 0 0 0
c5 0 0 0 0 0 0 0 0 0 0 0 0 0
c6 0 0 0 0 0 0 0 0 0 0 0 0 0
c7 0 0 0 0 0 0 0 1 0 0 0 0 0
c8 0 0 0 0 0 0 1 0 0 0 0 0 0
c9 0 0 0 0 0 0 0 0 0 0 0 0 0
c10 0 0 0 0 0 0 0 0 0 0 0 0 0
c11 0 0 0 0 0 0 0 0 0 0 0 1 0
c12 0 0 0 0 0 0 0 0 0 0 1 0 0
c13 0 0 0 0 0 0 0 0 0 0 0 0 0

components and their redundancies are allocated to the ecus. In each step, different quality attributes
are optimised.

6.4 Redundancy Allocation Optimisation

Allocating redundancies to software components adds communication and processing overhead, as well as
requirements for additional hardware (e.g. sensors). This problem has been addressed mostly in component
based software architecture development. In this work we focus on three quality attributes: the added
cost, the improvement in the reliability of the systems, and the overheads in the response time. To
quantify the quality of a single redundancy allocation architecture ra, we define three objective functions
F : RA→ R2, where F (ra) = (rt(ra), r(ra), cost(ra)) s.t. rt(ra) is the the response time of ra, defined by
Equation 4, r(ra) denotes the reliability (probability of failure-free operation) of ra, defined in Equation 6
and cost(ra) is the total cost of the system with the redundancy levels assigned to components.

Response time: The response time has already been the focus of an extensive research in the embedded
systems (Sharma et al., 2005; Fredriksson et al., 2007; Sharma and Trivedi, 2007). To estimate the response
time of a software architecture, we employ Discrete Time Markov Chain model (Sharma and Trivedi,
2007). The system behaviour is described as a DTMC with probabilities of execution transfer between
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components together with probabilities of execution initialisation at each component. The response time
rt for a redundancy allocation candidate ra is calculated as follows:

rt(ra) =
∑
i∈n

ext(ci) · exv(ci) (4)

where ext : C → N is the estimated time taken for a single execution of a component, and exv : C → R
quantifies the expected number of executions of a component during the system execution. This can be
computed by solving the following equation (Kubat, 1989):

exv(ci) = q0(ci) +
∑
j∈\

(exv(cj) · p(cj , ci)) (5)

where p(cj , ci) denotes the transition probability from component cj to component ci, and q0(ci)
represents the mean execution initialisation probability for component ci.

Reliability: We employ a well-established method of reliability estimation presented by Kubat (Kubat,
1989; Goševa-Popstojanova and Trivedi, 2001). In estimating the reliability of a single component, we
assume that failure of a component has an exponential distribution (Shatz et al., 1992), which is char-
acterised by the failure rate parameter λ. First, we calculate the reliability of a single component ci
as defined by Shatz et al. (Shatz et al., 1992), computed as r(ci) = e−λ(ci)·ext(ci). The reliability
of a component with its replicas connected in parallel for the architectural alternative ra is equal to
r(ci,rep) = 1 − (1 − r(ci))ra(ci)+1. The reliability of transferring a message from component ci to com-
ponent cj is calculated as r(ci, cj) = e−λ(ci,cj)·tt(ci,cj), where tt(ci, cj) is the transfer time for a link per
execution and λ(ci, cj) is the failure rate in the communication. The presence of multiple senders in-
creases the reliability (due to the tolerance against commission and value failures), which is calculated as
r(ci,rep, cj) = 1− (1− r(ci, cj))ra(ci)+1.

The reliabilities of individual system elements (subsystems and links) for a single visit are used to
compute the reliability of the system execution based on the expected number of executions (Goševa-
Popstojanova and Trivedi, 2001; Kubat, 1989):

r(ra) ≈
∏
i∈n

(r(ci,rep))
exv(ci) (6)

Cost: The cost of the system for each architecture alternative is evaluated as the sum of the costs of
individual components and the respective redundancies as follows:

cost(ra) =
∑
i∈n

cost(ci) · (ra(ci) + 1) (7)

6.5 Component Deployment Optimisation

Another challenge for the automotive industry remains the deployment function which relates hardware
to software. The hardware, software and the deployment function should be a concrete realisation of
the logical architecture, which describes the interaction between the logical components. The software
components run on ecus and communicate by bus systems. The deployment process determines the ECU
to which each software component is allocated.

Generally, the same platform can be used for different models and different products at the same
time, by integrating new functionality in an iterative process, which makes the implementation of new
innovative functions the main focus of the automotive electronics (Scharnhorst et al., 2005). To understand
how the deployment architecture affects the quality of the final embedded systems in a car, consider the
two deployment architectures shown in Figure 14.

In the first deployment architecture, frequently interacting software components have been deployed
into the same hardware resource, which result in an architecture with a lower communication overhead
compared to the second deployment architecture. However, the first deployment architecture produces
a longer scheduling length due to the sequential execution of the components that require information
from each other. To quantify the quality of a single deployment architecture d, we define three objective
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functions F : D → R3, where F (d) = (sl(d), co(d), dtr(d) s.t. sl(d) is the quantification of the scheduling
length of d, defined by Equation 8, co(d) denotes the communication overhead of d, defined in Equation 9
and dtr(d) denotes the data transmission reliability defined in Equation 10.

Fig. 14: Two potential deployment archi-
tectures resulting in different quality at-
tributes.

Scheduling length: The electronic control units (ecus) are
assumed to have a fixed and deterministic scheduling,
which is a technology used with Time Triggered Architec-
tures in embedded systems in order to maintain the pre-
dictability of the internal behaviour of the system (Heiner
and Thurner, 1998). With this scheduling strategy, when
the software components are allocated to ecus, a fixed
schedule is determined. Each component is given a spe-
cific time frame, which it requires to complete the execu-
tion. The schedule is done in a round-robin fashion, i.e.
each component is allocated its own time frame in a circu-
lar fashion. The sum of all the execution time slots in the
ECU compose the scheduling length, calculated as:

sl(d) =
1

m
·
m∑
j=1

(∑
c∈Chj

ext(c)

ps(hj)

)
. (8)

where Chj is the set of components deployed into the
ECU hj , ext(c) is the estimated time taken for a single
execution of the component c and ps(hj) is the processing
speed of the ECU hj .

Communication overhead: In embedded systems with constrained hardware resources, repeated trans-
missions between software components are discouraged. The Communication Overhead (CO) objective
attempts to enforce minimal data communication for a given set of components and system parameters.
As a network- and deployment-dependent metric, the overall communication overhead of the system is
used to quantify this aspect. This metric was first formalised by Medvidovic and Malek (Medvidovic and
Malek, 2007), defined as:

co(d) =

n∑
i=1

n∑
j=1

cf(ci, cj) · nd(d(ci), d(cj)) +

n∑
i=1

n∑
j=1

cf(ci, cj) ·ms(ci, cj)
bw(d(ci), d(cj)) · r(d(ci), d(cj))

(9)

where ms : C ×C → N is the component messages size, with ms(ci, cj) = 0 if ci = cj or if there is no
communication between the two components, cf : C×C → R is the communication frequency between ci
and cj , bw : H ×H → N is the network bandwidth, with bw(hi, hj) = 0 if hi = hj or there is no network
connection between hi and hj , and nd : H ×H → N is the network delay, with nd(hi, hj) = 0 if hi = hj
or there is no network connection between hi and hj .

Data transmission reliability: In a deployment architecture, the communication of components that com-
pose the same service and that are deployed into different ecus is supported by the network. If components
have to exchange frequent messages with each other, the reliability of the data transmission in the network
becomes a crucial quality attribute. Data transmission reliability is especially important in a real-time
embedded system, since important decisions are taken based on the data transmitted through the commu-
nication links. Following the definition introduced by Malek (Malek, 2007), data transmission reliability
(dtr(d))is calculated as follows:

dtr(d) =

n∑
i=1

n∑
j=1

cf(ci, cj) · r(d(ci), d(cj)) (10)

where cf(ci, cj) is the communication frequency between components ci and cj , and r(d(ci), d(cj)) is
the reliability of the communication link between the hardware resources where ci and cj are deployed,
which is equal to e−λn(d(ci),d(cj))·tt(d(ci),d(cj)), where tt(d(ci), d(cj) is the transfer time for a link per
execution and λn(d(ci), d(cj)) is the failure rate in the communication network.
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6.6 Constraints

Not all deployment architectures represent feasible alternatives. For instance, placing all components
into a single host is not feasible due to memory constraints. Hence the optimisation procedure should
check if every new created solution satisfies the set of constraints. The set of constraints Ω is defined
independently of the quality functions. In this work, we consider three constraints Ω = {mem, loc, colloc},
where mem is the memory constraint, loc denotes the localisation constraint and colloc is the collocation
constraint.

Memory constraint: Processing units have limited memory, which enforces a constraint on the possible
components that can be deployed in each ecu. Formally, let d−1 : H → Ch denote the inverse relation
to d ∈ D, i.e. d−1(H) = {Ch ∈ C | d(Ch) = h}. Then the memory constraint mem : D → {true, false}
is defined as follows:

mem(d) = ∀h ∈ H :
∑

Ch∈d−1(h)

mc(Ch) ≤ mh(h) (11)

where mc(Ch) is the total memory required to run the set of components deployed to the hardware
host h, and mh(h) is the available memory in host h. In other words, this constraint does not allow any
deployment solution which exceeds the available memory in the hardware resources.

Localisation constraints: Processing units have access to different sensors and actuators which are
used by the software components. For instance, the Brake Force Sensor (BFS) software component reads
information from the respective sensor. As a result it has to be deployed into an ECU which can com-
municate with that sensor (i.e. is connected via the network or the sensor is built into the ECU). The
availability of a specific sensor in a hardware host, restricts the allocation of the software component
that uses the sensor to that particular host. This constraint is called localisation constraint, denoted
loc : D → {true, false} and is defined as follows:

loc(d) = ∀c ∈ C : (h ∈ lr(c) ⇒ d(c) 6= h) (12)

where lr(c) is the list of localisation restrictions.
Collocation constraints: Some of the components should not be allocated in the same ecu. For example,

a software component should not be allocated into the same ECU as its redundancies, so that if one of the
ecus fails the other component can still perform the required task. This is called collocation constraint,
denoted as colloc : D → {true, false}, and restricts the allocation of two software components to two
different hosts. Collocation constraint is calculated as follows:

colloc(d) = ∀c ∈ C : (h ∈ cr(ci, cj) ⇒ d(ci) 6= d(cj) (13)

where cr(ci, cj) is the matrix of collocation restrictions.

6.7 Results of the Optimisation Process

The two software design optimisation problems, the optimisation algorithms used to solve them and the
parameter control methods are implemented in ArcheOpterix (Aleti et al., 2009a), which is a generic
platform for modelling, evaluating and optimising embedded systems. The presented case-study is a
comparatively small segment of the actual automotive architecture optimisation problem. Despite this
fact, the possible number of candidate architectures is still too large to search with an exact algorithm,
i.e. 913 ≈ 2.54 · 1012 options for the redundancy allocation problem, and even larger for the component
deployment problem. To optimise both architecture optimisation problems we employed, Non-dominated
Sorting Genetic Algorithm-II (NSGA-II).

NSGA-II is a Genetic Algorithm which has been demonstrated as one of the most efficient algorithms
for multi-objective optimization on a number of benchmark problems (Deb et al., 2002). A brief description
of the basic components of NSGA-II will be given in this section. The NSGA-II algorithm and its detailed
implementation procedure is described by Deb et al. (2002). The algorithm uses non-dominated sorting
for fitness assignments. All individuals that are not dominated by any other individuals, are assigned
to front number 1. All individuals only dominated by individuals in front number 1 are assigned front
number 2, and so on. A mating pool is then created with solutions selected from the population according
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to the ranks that has been assigned to them during the ranking process. The solutions with a lower rank
have a higher chance of being selected to be part of the mating pool than the ones with a higher rank
value. This helps the quick convergence of the algorithm towards the optimal solutions. The mating pool
will then serve for the random selection of the individuals to reproduce using the genetic operators,

The Bayesian parameter control strategy is used to adjust the parameter values of NSGA-II. To
demonstrate the usefulness of the proposed parameter control method, the performance of NSGA-II
with parameter control was compared to the performance of NSGA-II with pre-tuned parameter values.
Mutation rate, crossover rate, mating pool size, crossover operator, and mutation operator used for
the benefit of these experiments, are probably the most conspicuous control parameters to optimise in
stochastic optimisation (Eiben and Schut, 2008). The population size was not considered in the current
work, and a pre-tuned value of 100 was employed, which was selected after exploring values in the range
[50, 500]. Based on preliminary exploration, the adopted ranges/values of the parameters controlled in
this experiment are given in Table 7a.

Table 7: The tuned and controlled ranges/values of algorithm parameters.

(a) Controlled parameter ranges/values.

Parameter Range/value

Mutation rate [0.0010,0.5]
Crossover rate [0.5,0.9]
Mating pool size [0.1,0.7]
Mutation operator Single-point, Uniform
Crossover operator Single-point, Uniform

(b) Tuned parameter values for Component De-
ployment and Redundancy Allocation Problems.

Parameter CDP RAP

Mutation rate 0.1 0.2
Crossover rate 0.58 0.8
Population size 100 100
Mating pool size 0.6 0.6
Mutation operator Single-point Uniform
Crossover operator Single-point Uniform

The tuning of the static parameter values was performed following recommendations of Smit and
Eiben (Smit and Eiben, 2009). We use a Sequential Parameter Optimisation (SPO) (Bartz-Beielstein
et al., 2005), which tests each parameter combination using several runs. To decrease the number of tests
required, we employ a racing technique, which uses a variable number of runs depending on the perfor-
mance of the parameter configuration. Parameter configurations are tested against the best configuration
so far, using at least the same number of function evaluations as employed for the best configuration.
Five different design points are selected for mutation rate, crossover rate and mating pool size from the
ranges depicted in Figure 7a. The results from the tuning process are shown in Table 7b.

For the purpose of these experiments, each instance for the Bayesian parameter control has 10 so-
lutions, which means that BGA uses 10 instances for each run (i.e. 10 instances × 10 solutions = 100
solutions). The execution of the algorithm was set to 10 000 candidate evaluations, and performed on a
dual-core 2.26 GHz processor computer. The algorithm took 92 seconds for the 10 000 function evaluations
and generated 231 approximate solutions, four of which are depicted in Table 8.

Table 8: Redundancy allocation solutions.

Sol c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c(ra) rt(ra) r(ra)

ra1 2 1 2 2 1 1 1 2 1 1 1 1 2 890 56.48 0.996099
ra2 2 2 2 2 2 2 2 2 2 1 2 2 2 1120 62.96 0.996347
ra3 0 0 0 0 0 0 0 0 1 0 0 0 1 440 41.15 0.793488
ra4 0 0 1 1 0 0 0 0 0 0 0 0 0 435 43.27 0.920808

As it can be seen from the results in Table 8, the second solution (ra2) has the highest reliability
among the four. However, its cost and response time are also the highest. The first solution (ra1) is lower
in cost and has a smaller response time compared to the second solution, however its reliability is also
lower. The two last solutions (ra3 and ra4) have the lower cost and response time than the first two
solutions, but their reliability values are much lower.

Both solutions ra3 and ra4 have only two components with one redundancy level assigned (solution
ra3 has components c9 and c13, whereas solutions ra4 has components c3 and c4). Interestingly, the
reliability of the ra4 is much higher than the respective value of ra3 (0.920808 > 0.793488). The response
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time and the cost of solution ra4 are also higher than ra3, although the difference between respective
values is not big.

Table 9: Component deployment solutions.

Sol c1 c2 c31 c32 c41 c4,1 c5 c6 c7 c8 c12 c13 c9 c10 c11 sl(d) co(d) dtr(d)
d1 6 6 3 6 3 3 3 3 7 7 9 8 8 8 8 4.21 65.28 0.955
d2 6 6 6 6 2 2 2 2 6 6 9 9 9 9 9 1.96 74.81 0.951
d3 6 6 6 6 2 2 6 2 6 6 9 9 9 9 9 1.91 94.68 0.941
d4 6 6 2 6 2 2 6 2 6 6 9 9 9 9 9 1.93 82.81 0.945

At this stage, the system designer would have to select the architecture representing the redundancy
levels for all components according to her/his preference. Although all solutions are non-dominated,
i.e. none of them is worse than the others in all objective and each of them is the best in at least
one objective, the system designer may usually care about some objectives more than the others. For
instance, if reliability is a crucial quality attribute, (s)he may think that paying more for a more reliable
architecture is agreeable.

For the purpose of this case-study, we select solution ra4 as the final software architecture with the
redundancy levels. Next, the software components have to be deployed into the hardware architecture.
Similar to the redundancy allocation optimisation problem, we employ the Genetic Algorithm with the
Bayesian parameter control method (BGA) to optimise the deployment of the software architecture (solu-
tion ra4) to the hardware architecture (c.f. Figure 12). The GA reported eight nondominated deployment
architectures after the optimisation process. We show four of these deployment architectures in Table 9.
The optimised deployment architectures make a trade-off among the quality attributes of response time,
communication overhead and data transmission reliability. The system architect has to select the archi-
tecture, which he/she thinks suitable.

Table 10: Means, variances and Kolmogorov-Smirnov test values of hypervolume indicators for the 50
runs of each problem instance using different optimisation schemes.

Mean Variance KS test Effect
Problem GA BGA GA BGA d-value p-value size
Redundancy allocation 0.2617 0.2619 9.770E-05 1.173E-04 0.3284 0.049 0.68
Component deployment 0.2618 0.2620 1.179E-04 1.083E-04 0.3667 0.026 0.66

To understand the benefits of using the Genetic Algorithm with the Bayesian parameter control
method (BGA) for the architecture optimisation problem, we compared the outcomes of a GA using pa-
rameter control with the same GA implementation that uses pre-tuned parameter values. Approximate
algorithms are not expected to deliver exact and repeatable results, but to provide good approximate
solutions where exact approaches cannot be devised. Hence, results concerning the performance of ap-
proximate algorithms are usually reported as mean values over repeated trials. We performed 50 runs for
each optimisation scheme.

Different metrics for measuring the performance of multiobjective optimisation methods exist. Zitzler
et al. (2003) provide a comprehensive review of quality indicators for multiobjective optimisation, finding
that many commonly used metrics do not reliably reflect the performance of an optimisation algorithm.
One of the few recommended metrics is the hypervolume indicator, which measures the hypervolume
between the approximate solutions and a fixed reference point in the result space. In the case of maximi-
sation problems, the most intuitive reference point is zero in each dimension, which is the value used for
our results. For a detailed description of hypervolume indicator see Zitzler et al. (2007). The mean and
standard deviation of the 50 hypervolume values for each optimisation scheme are reported in Table 13.
The GA using the adaptive parameter control consistently outperforms the GA with tuned parameter
values.

The different optimisation methods are validated using the Kolmogorov-Smirnov (KS) non-parametric
test (Pettitt and Stephens, 1977), which checks for a statistical significance in the difference between the
performances of the algorithms. The 50 values of the hypervolume indicators were submitted to the KS
analysis which resulted in a confirmation of the out-performance of the adaptive GA with a minimum
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d-value of 0.3284 at a 95% confidence level. Hence, we conclude that the superior performance of the
proposed Bayesian Parameter Control is statistically significant.

To quantify the difference in the performance of the two optimisation schemes, we also calculate the
effect size, which is the difference between means divided by standard deviation. For both problems, the
effect size is in the range medium to large, which means that the difference in the performances of the
two algorithms is meaningful.

7 Experimental Evaluation

To investigate the efficiency of the Genetic Algorithm with the Bayesian parameter control method
(BGA), we designed a set of experiments which compares its performance to methods that use pre-tuned
parameter values over a set of problem instances. We also compared the performance of the BGA against
the performance of three state-of-the-art adaptive parameter control methods: Probability Matching
(PM), Dynamic Multi-Armed Bandits (DMAB), and Adaptive Pursuit (AP). These methods are de-
scribed in Section 4.

7.1 Experimental Settings

The problem instances were randomly generated over realistic value-ranges from component deployment
and redundancy allocation problems with different sizes and characteristics. The configurations of the 8
problem instances for the redundancy allocation problem are as follows: 15 components (c15) 33 compo-
nents (c33), 67 components (c67), 89 components (c89), 123 components 123, 150 components (c150), 185
components (c185), 220 components (c220). The redundancy levels were selected between [0,4]. For the
component deployment problem the following instances were created: 15 hosts-23 components (h15c23),
15 hosts-32 components (h15c32), 33 hosts-51 components (h33c51), 33 hosts-67 components (h33c67), 55
hosts-76 components (h55c76), 55 hosts-120 components (h55c120), 72 hosts-130 components (h72c130),
and 72 hosts-180 components (h72c180). Unlike the case study presented in Section 6, for the purpose of
these experiments the instances for the redundancy allocation problem and the component deployment
problem were generated independently.

NSGA-II (Deb et al., 2002) was used as an optimisation algorithm. The parameter control methods
were employed to adjust the configuration of NSGA-II during the optimisation process. To measure the
performance of the multiobjective optimisation methods we employed the hypervolume indicator (Zitzler
et al., 2003), described in the previous section. All algorithm instances were allowed to run for 50 000
function evaluations. Each optimisation scheme was repeated 50 times for each problem instance. Results
from the 50 runs were analysed and compared using the Kolmogorov-Smirnov (KS) non-parametric
test (Pettitt and Stephens, 1977). Furthermore, the effect size was reported for each experiment.

All optimisation schemes are initialised with the same 100 solutions, and generate the same number
of offspring each iteration. The main difference between the optimisation schemes is the parameter values
used to generate the offspring. In the case of the GA without parameter control, the same pre-tuned
parameter values were used during the optimisation run. The GAs with parameter control have their
parameter values adapted during the optimisation process. In the case of the Bayesian Genetic Algorithm,
the 100 solutions were divided into 10 instances, each composed of 10 solutions.

7.2 Hyper-Parameters

All adaptive algorithms involve hyper-parameters, which need to be tuned depending on the optimisation
problem at hand. This defines another optimisation problem, which can become quite computationally
expensive if we attempt an exhaustive exploration of the search space. However, the number of hyper-
parameters is usually lower than the number of algorithm parameters that should be controlled.

The tuning of the hyper-parameter values was performed using a Sequential Parameter Optimisation
(SPO) (Bartz-Beielstein et al., 2005), which tests each hyper-parameter combination using several runs.
To decrease the number of tests required, we employ a racing technique, which uses a variable number of
runs depending on the performance of the hyper-parameter configuration. Hyper-parameter configurations
are tested against the best configuration so far, using at least the same number of function evaluations
as employed for the best configuration. The results from the tuning process are shown in Table 11.
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Table 11: Hyper-parameters of the three adaptive methods: Dynamic Multi-Armed Bandit (DMAB),
Adaptive Pursuit (AP) and Probability Matching (PM).

Benchmark Hyperparameter Value Description

DMAB ς 0.5 scaling factor
DMAB γ 100 PH threshold
AP,PM α 0.8 adaptation rate
AP,PM β 0.8 adaptation rate
AP,PM pmin 0.1 minimum selection probability

7.3 Analysis of Results

The experiments were performed on a 64-core 2.26 GHz processor computer. There was little difference in
the run-times of the different optimisation schemes for the same problem instances. The main difference
in run-time was observed between the different problem instances. Solving the smaller instances was
obviously faster, since the evaluation of the quality attributes takes less time. The overhead from the
parameter control methods is negligible compared to the computational time required to calculate the
quality attributes.

The GA without parameter control took 412 seconds for the 50 000 function evaluations and generated
on average 49 non-dominated solutions for the largest component deployment problem (h72 c180) and 15
solutions for the smallest problem (h15 c23). The runs of the BGA took on average 416 seconds, and 89
non-dominated solutions were produced at the end of the optimisation process on average for the largest
problem and 12 for the smallest. The GA with the PM technique run on average for 413 seconds and
produced 99 solutions for h72 c180 problem and 20 solutions for h15 c23. AP run for 414 seconds and
produced 49 non-dominated solutions for h72 c180 and 16 solutions for h15 c23. DMAB had a similar
running time (415), and produced 63 non-dominated solutions for h72 c180 and 17 solutions for h15 c23.
In general, PM was the fastest parameter control technique, which is mainly attributed to the simple
calculations involved in the estimation of the optimal parameter values. However, the difference in run-
time is not very significant between the different optimisation schemes. Further optimisations of the code
may improve the performance of these methods.

Table 12: The means and standard deviations of hypervolume indicators for the 50 runs.

Redundancy allocation
Mean Standard deviation

Problem BGA PM DMAB AP GA BGA PM DMAB AP GA
c15 0.839 0.829 0.829 0.827 0.831 9.1e-04 1.5e-03 1.3e-03 1.5e-03 1.3e-03
c33 0.943 0.937 0.937 0.937 0.935 6.9e-04 3.2e-04 3.4e-04 2.8e-04 3.5e-04
c67 0.755 0.739 0.740 0.740 0.738 1.0e-03 1.3e-03 1.2e-03 1.2e-03 1.3e-03
c89 0.781 0.765 0.770 0.770 0.770 1.1e-03 1.5e-03 1.4e-03 1.4e-03 1.5e-03
c123 0.922 0.915 0.916 0.915 0.913 6.4e-04 4.1e-04 3.6e-04 3.9e-04 5.2e-04
c150 0.807 0.799 0.797 0.797 0.793 5.8e-04 1.1e-03 9.2e-04 1.1e-03 1.2e-03
c185 0.918 0.911 0.909 0.910 0.909 5.5e-04 4.8e-04 4.2e-04 4.6e-04 4.9e-04
c220 0.837 0.826 0.828 0.827 0.825 5.3e-04 9.4e-04 9.1e-04 9.8e-04 9.5e-04

Component deployment
Mean Standard deviation

Problem BGA PM DMAB AP GA BGA PM DMAB AP GA
h15c23 0.907 0.898 0.899 0.900 0.898 7.6e-04 4.4e-04 4.4e-04 4.3e-04 3.9e-04
h15c32 0.728 0.714 0.713 0.717 0.708 9.1e-04 1.3e-03 1.2e-03 1.0e-03 1.3e-03
h33c51 0.921 0.917 0.917 0.916 0.912 3.4e-04 3.6e-04 2.6e-04 4.1e-04 4.3e-04
h33c67 0.905 0.901 0.901 0.901 0.896 4.9e-04 4.7e-04 3.7e-04 4.2e-04 4.8e-04
h55c76 0.645 0.637 0.638 0.640 0.628 8.8e-04 9.9e-04 8.6e-04 8.6e-04 8.4e-04
h55c120 0.577 0.570 0.571 0.570 0.556 7.2e-04 9.5e-04 8.4e-04 8.0e-04 1.1e-03
h72c130 0.845 0.837 0.836 0.836 0.834 4.6e-04 8.6e-04 7.8e-04 7.2e-04 8.4e-04
h72c180 0.621 0.604 0.605 0.603 0.592 7.3e-04 9.9e-04 9.7e-04 1.0e-03 9.2e-04

Results from the experimental evaluation of the different optimisation schemes are presented in Ta-
ble 12. The means and standard deviations of the 50 runs are reported for each optimisation scheme and
problem instance. The mean performance of the Genetic Algorithm with the Bayesian parameter control
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Fig. 15: Boxplots of the 50 trials of the optimisation schemes used for the redundancy allocation problems.
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Fig. 16: Boxplots of the 50 trials of the optimisation schemes used for the component deployment problems.
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Table 13: Kolmogorov-Smirnov test values and effect size of hypervolume indicators for the 50 runs of
BGA vs. PM, BGA vs. DMAB, BGA vs. AP, and BGA vs. GA.

Redundancy allocation

BGA vs. PM BGA vs. DMAB BGA vs. AP BGA vs. GA

Problem d-value p-value d-value p-value d-value p-value d-value p-value

c15 0.388 0.001 0.449 0.000 0.388 0.001 0.347 0.004

c33 0.429 0.000 0.449 0.000 0.449 0.000 0.592 0.000

c67 0.510 0.000 0.489 0.000 0.469 0.000 0.531 0.000

c89 0.510 0.000 0.469 0.000 0.429 0.000 0.367 0.002

c123 0.469 0.000 0.449 0.000 0.449 0.000 0.633 0.000

c150 0.531 0.000 0.551 0.000 0.489 0.000 0.653 0.000

c185 0.489 0.000 0.633 0.000 0.592 0.000 0.612 0.000

c220 0.633 0.000 0.510 0.000 0.489 0.000 0.673 0.000

Problem Cohen’s d e-size Cohen’s d e-size Cohen’s d e-size Cohen’s d e-size

c15 8.151 0.971 8.612 0.974 9.604 0.979 6.783 0.959

c33 10.887 0.983 11.162 0.984 10.522 0.982 14.755 0.991

c67 12.861 0.988 12.434 0.987 12.126 0.987 13.617 0.989

c89 11.266 0.984 8.368 0.973 8.217 0.972 7.882 0.969

c123 13.196 0.989 10.195 0.981 12.611 0.988 15.627 0.992

c150 8.064 0.971 11.807 0.986 11.149 0.984 14.398 0.990

c185 12.558 0.988 17.779 0.994 15.933 0.992 16.583 0.993

c220 13.603 0.989 10.998 0.984 11.854 0.986 14.334 0.990

Component deployment

BGA vs. PM BGA vs. DMAB BGA vs. AP BGA vs. GA

Problem d-value p-value d-value p-value d-value p-value d-value p-value

h15c23 0.612 0.000 0.592 0.000 0.489 0.000 0.673 0.000

h15c32 0.531 0.000 0.592 0.000 0.489 0.000 0.694 0.000

h33c51 0.449 0.000 0.633 0.000 0.551 0.000 0.775 0.000

h33c67 0.408 0.000 0.429 0.000 0.429 0.000 0.674 0.000

h55c76 0.408 0.000 0.408 0.000 0.286 0.000 0.755 0.000

h55c120 0.388 0.000 0.367 0.000 0.429 0.000 0.775 0.000

h72c130 0.633 0.000 0.674 0.000 0.735 0.000 0.735 0.000

h72c180 0.714 0.000 0.653 0.000 0.694 0.000 0.979 0.000

Problem Cohen’s d e-size Cohen’s d e-size Cohen’s d e-size Cohen’s d e-size

h15c23 13.192 0.989 11.583 0.985 10.678 0.983 13.825 0.990

h15c32 11.635 0.986 12.882 0.988 10.718 0.983 16.539 0.993

h33c51 11.692 0.986 14.147 0.990 14.133 0.990 21.741 0.996

h33c67 8.088 0.971 8.002 0.970 7.429 0.966 18.702 0.994

h55c76 8.209 0.972 7.687 0.968 5.514 0.940 19.599 0.995

h55c120 8.052 0.971 8.254 0.972 9.271 0.978 22.611 0.996

h72c130 12.376 0.987 14.274 0.990 15.087 0.991 15.765 0.992

h72c180 19.302 0.995 18.666 0.994 19.652 0.995 34.699 0.998

strategy (BGA) is consistently above the average of the other optimisation schemes, and clearly indicates
a significant difference between the result groups of BGA and the benchmarks. The standard deviations
of the different optimisation schemes are quite similar.

For a better understanding of the behaviour of the algorithms, the results from the 50 runs of each
optimisation scheme and problem instance are depicted as box-plots. Figure 15 depicts the results for
the redundancy allocation problem, whereas Figure 16 shows the results for the component deployment
problem. The performance genetic algorithm without parameter control (GA) is relatively good for the
smallest problem instance of the redundancy allocation problem shown in Figure 15a. It’s performance
is higher than the benchmark parameter control methods, but is outperformed by BGA, although the
difference is small. The search space of instance c15 is relatively small, and the problem can be solved
to high quality with pre-tuned parameter values. For larger and more complex search spaces, the GA
with pre-tuned parameter values fails at finding high-quality results. Different results are observed for the
component deployment problem (c.f. Figure 16), where the GA without parameter control is outperformed
by all other methods in all problem instances. The Genetic Algorithm with Bayesian Parameter Control
is again the best-performing algorithm in all problem instances. The difference in performance is higher
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for the larger problems (h72 c130 and h72 c180), which not only have a large search space, but are also
more constrained. BGA is very successful in finding high-quality solutions for these instances.

To check for a statistical significance of the results we used the Kolmogorov-Smirnov non-parametric
test (Pettitt and Stephens, 1977). The Adaptive Genetic Algorithm was compared against NSGA-II with
pre-tuned parameter values and the other adaptive parameter control schemes (PM, AP and DMAB),
with a null hypothesis of no difference between the performances (BGA vs. PM, BGA vs. DMAB, and
BGA vs. AP). The 50 values of the hypervolume indicators of the repeated trials for each problem instance
were submitted to the KS analysis and results are shown in Tables 13. All KS tests, used for establishing
differences between independent datasets under the assumption that they are not normally distributed,
result in a rejection of the null hypothesis with a minimum d-value of 0.286 at a 100% confidence level.
Hence we conclude that the superior performance of the Genetic Algorithm with Bayesian Parameter
Control is statistically significant.

The differences in the results are more pronounced in the component allocation problem, where the
d-values are higher compared to the redundancy allocation problem. The search space of the component
deployment problems is larger compared to the redundancy allocation problem, hence we can conclude
that the benefit of using BGA is more evident for more difficult problems. The KS-test also shows that the
differences in performance are higher in the trials using the bigger instances of the component deployment
and redundancy allocation problems, where d-values are usually higher than the smaller instances. While
the d-values for c15 are in the range 0.347 − 0.449, in c220 the d-value are in the range 0.489-0.673.
Similarly, the d-values for the component deployment instance h15 c23 are lower (in the range 0.489-
0.673) that the d-values of h72 c180, which are in the range [0.653, 0979]. It can be concluded that the
least benefit BGA provides for the smallest instance of the redundancy allocation problem (c15). This
is an ‘easier’ instance to solve, hence the algorithm performance can be expected to be more robust to
parameter settings. Nonetheless, the Kolmogorov-Smirnov test (c.f. Table 13) finds a significantly superior
performance of BGA compared to state-of-the-art parameter control methods on all 18 problem instances.

Since statistical significance depends on the sample size, we also compute the effect size for each
comparison (BGA vs. PM, BGA vs. DMAB, and BGA vs. AP), as shown in Table 12. The effect of
the sample size is measured using the Cohen’s d estimation (Cohen, 1988), which considers the pooled
standard deviation. In reporting the effect size, we follow the guidelines proposed by Cohen (1988): a
‘small’ effect size is 0.2, a ‘medium’ effect size is 0.5, and a ‘large’ effect size is 0.8. In essence, the effect
size indicates the number of standard deviations difference between the means of the samples. The effect
size for all problem instances was above 0.9. As a results, it can be concluded that the difference in the
performance of the optimisation schemes is meaningful.

7.4 Threats to Validity

The validity of the presented experiments can be questioned on the grounds that the method may only
be effective in certain problem instances. The new parameter control method presented outperformed
other methods in the 8 problems instances, and there is a chance that the approach may not perform in
the same way for other problems, and when applied to the parameter adaptation of other optimisation
algorithms. In the design of experiment, we aimed at reducing this threat by creating problem instances of
different sizes and characteristics. Instead of manually setting specific problem properties, we developed
a problem generator integrated in ArcheOpterix (Aleti et al., 2009a). As a result, the experiments set
themselves apart from an instance-specific setting to a broader applicability.

Another important threat is the stochastic behaviour of Genetic Algorithms, which may lead to
different results for the same problem instance. This threat was reduced by having multiple runs (50)
for each optimisation method and problem instance. Statistical tests were applied to check for statistical
significance in the results. To measure the strength of the out-performance of the proposed method, the
effect size for each experiment was reported.

The experimental results may be affected by the implementation of the algorithms. The is a chance
that the code contains errors or bias towards certain methods. To address this problem, we have consulted
experienced programmers and followed regular code-review sessions. The implementation was checked for
errors several times, and tests were conducted, which we hope have minimised the possibility of misleading
results in the experiments.
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8 Discussion and Future Work

The adaptive parameter control introduced in this paper was used to adjust parameters of a Genetic
Algorithm. The performance of the GA with the adaptive parameter control method improved signifi-
cantly compared to the GA with pre-tuned parameter values. The method can easily be adapted to other
search algorithms, such as Ant Colony Optimisation, Simulated Annealing and other stochastic local
search methods, which will be investigated in future work. The contribution presented in this paper is
directly related to the research efforts in Search Based Software Engineering (Harman, 2007a; Harman
et al., 2012a). There is an emerging interest in using search method for software engineering problems
in academia (Aleti et al., 2013; Harman, 2007b; McMinn, 2004; Mantere and Alander, 2005) and indus-
try (Afzal et al., 2010; Yoo et al., 2011; Comford et al., 2003). All these methods would benefit from the
adaptive parameter control presented in this paper.

One of the main benefits of the proposed method is that it removes the task of tuning parameter
values of a search method to a particular problem, which can be a time-consuming and laborious task.
The method would be especially useful for practitioners, who usually have little expertise in the Artificial
Intelligence field, and require guidance in the application of search algorithms to their particular prob-
lems. There are few parametrisation guidelines for the interdisciplinary users of these algorithms, and the
available information is often conflicting. For instance, recommended values for crossover rate can vary
between 0.6 (De Jong, 1995) to 0.95 (Grefenstette, 1986), or any value in the range [0.75, 0.95] (Schaf-
fer et al., 1989), whereas recommended mutation rate values vary between 0.001 (DeJong, 1975) and
0.05 (Grefenstette, 1986). The conflicting guidelines are mainly due to the fact that different parameter
values are optimal for different problems (Mitchell, 1996), hence the parametrisation becomes an opti-
misation problem in its own right. But most importantly, it is has been empirically proven that different
parameter settings are also required at different stages of the optimisation process (Hesser and Manner,
1991; Cervantes and Stephens, 2009; Thierens, 2002), which was also confirmed by the results of our
experiments. The GA with pre-tuned parameter values performed consistently worse than the GA with
adaptive parameter control. Adapting algorithm parameters during the search process would be beneficial
for other problems in software engineering, hence the application of the adaptive parameter control to
the area of SBSE is a priority.

9 Conclusion

This paper presented an adaptive approach for controlling parameter values of Genetic Algorithms. The
process of adapting parameter values is performed during the optimisation process. The approach was
applied to a case study from the automotive industry and a set of instances from the component deploy-
ment and redundancy allocation problems. Architecture optimisation in embedded systems is an example
of optimisation problems that are faced in the industry. The case study and the experimental evaluation
showed that the approach introduced in this paper achieves better results compared to tuned parameter
settings, and out-performed 3 state-of-the-art adaptive parameter control methods. Most importantly,
the reduction in the number of the GA parameters that have to be set by a practitioner facilitates the
transfer of GAs into industrial settings, where practitioners do not have any knowledge on how to tune
algorithm parameters.
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Bäck, T. (2001). Introduction to the special issue: Self-adaptation. Evolutionary Computation, 9(2):iii–iv.
Bartz-Beielstein, T., Lasarczyk, C., and Preuss, M. (2005). Sequential parameter optimization. In IEEE

Congress on Evolutionary Computation, pages 773–780. IEEE.
Broy, M. (2006). Challenges in automotive software engineering. In International Conference on Software

Engineering (ICSE’06), pages 33–42. ACM.
Butts, K., Bostic, D., Chutinan, A., Cook, J., Milam, B., and Wang, Y. (2001). Usage scenarios for an

automated model compiler. Lecture Notes in Computer Science, 2211:66–79.
Calinescu, R. and Kwiatkowska, M. (2009). Using quantitative analysis to implement autonomic IT

systems. In International Conference on Software Engineering, ICSE, pages 100–110. IEEE.
Cervantes, J. and Stephens, C. R. (2009). Limitations of existing mutation rate heuristics and how a

rank GA overcomes them. IEEE Trans. Evolutionary Computation, 13(2):369–397.
Chern, M.-S. (1992). On the computational complexity of reliability redundancy allocation in a series

system. Operations Research Letters, 11(5):309315.
Cohen, J. (1988). Statistical power analysis for the behavioral sciences.
Coit, D. W. and Smith, A. E. (1996). Reliability optimization of series-parallel systems using a genetic

algorithm. IEEE Transactions on Reliability, 45(2):254–260.
Comford, S., Feather, M., Dunphy, J., Salcedo, J., and Menzies, T. (2003). Optimizing spacecraft design

optimization engine development: progress and plans. In Proceedings of the Aerospace Conference,
volume 8, pages 3681–3690. IEEE.

Corne, D., Oates, M. J., and Kell, D. B. (2002). On fitness distributions and expected fitness gain of
mutation rates in parallel evolutionary algorithms. In Parallel Problem Solving from Nature, volume
2439 of Lecture Notes in Computer Science, pages 132–141. Springer-Verlag.
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