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ABSTRACT
In stochastic optimisation, all currently employed algorithms
have to be parameterised to perform effectively. Users have
to rely on approximate guidelines or, alternatively, under-
take extensive prior tuning. This study introduces a novel
method of parameter control, i.e. the dynamic and auto-
mated variation of values for parameters used in approx-
imate algorithms. The method uses an evaluation of the
recent performance of previously applied parameter values
and predicts how likely each of the parameter values is to
produce optimal outcomes in the next cycle of the algorithm.
The resulting probability distribution is used to determine
the parameter values for the following cycle. The results of
our experiments show a consistently superior performance
of two very different EA algorithms when they are parame-
terised using the predictive parameter control method.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods

General Terms
Algorithms, Performance

Keywords
Component deployment, evolutionary algorithms, multiob-
jective problem, optimisation, parameter control, time series
forecasting

1. INTRODUCTION
Due to their general applicability, stochastic optimisers

such as Evolutionary Algorithms (EAs) are popular among
scientists and engineers facing difficult combinatorial prob-
lems. These practitioners usually have little expertise in the
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AI field. They require guidance in the application of stochas-
tic methods to their particular problems. However, even af-
ter many years of research into EAs and other stochastic
approaches, there are no straightforward parameterisation
guidelines for interdisciplinary users of these methods.

Formerly, EAs were seen as robust algorithms that ex-
hibit approximately similiar performance over a wide range
of problems [15]. The contemporary view on EAs however
acknowledges that specific problems require specific param-
eter settings to achieve best possible performance [19]. It
has been shown in the areas of search, optimisation and ma-
chine learning that there is no single algorithm setting that
will outperform all other settings on every problem [30].

This problem has been addressed by many researchers [11,
15, 13, 27]. The existing approaches for setting the parame-
ters of approximate optimisation methods can be divided in
two groups: those who set the parameter values in advance
of the search process, also called parameter tuning and those
who change them during evolution, referred to as parameter
control.

It has been empirically and theoretically demonstrated
that different parameter settings are required not only for
each different problem but also for each problem instance [2,
28, 27, 17]. Thus, when an optimisation algorithm is tuned
prior to the optimisation stage, the selected parameters at
the end of this process are not necessarily optimal. This
suggests that adapting parameters dynamically during the
optimisation process is likely to lead to better outcomes.
Hence, parameter control can be seen as a more suitable
option for the parameter optimisation process.

All parameter control methods we are currently aware of
use a learning mechanism to derive parameter quality from
recent performance, such as result quality in preceding iter-
ation(s) (time t−1). One might argue that these approaches
are ‘one step behind’, in that they represent the parameter
value which is optimal for the previous iteration. Ideally,
we would use a setting optimised for the beginning iteration
(time t). It follows that an ideal method would attempt to
predict successful parameter values for time t based on pre-
vious performance. Hence, our parameter control method
uses time series forecasting.

2. BACKGROUND
All commonly used stochastic algorithms include parame-

ters which have a significant effect on the performance of the
algorithm. Recommendations for common values of these
parameters usually exist in the literature. However, differ-
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ent parameter settings are ideal for different problems or
even different instances of the same problem. It is common
practice in the AI community to parameterise an algorithm
with values found during preliminary trials. This tuning
practice, however, can be time-consuming and error-prone.
It presents an even bigger challenge to interdisciplinary users
of AI techniques. Alternatively, practitioners can choose to
optimise their parameter settings at the same time as the
problem is being optimised, which is known as parameter
control.

2.1 Parameter Tuning
In optimisation, approximate methods such as EAs are

often used because of a lack of knowledge about the fitness
landscapes of the problem at hand. However, successful ap-
plications are dependent on the usage of suitable parameter
values. In such situations, no guidelines regarding the pa-
rameter settings are usually available. As a consequence,
practitioners tend to choose parameter values based on few
trials in which various parameter settings are explored in an
attempt to fine-tune an EA to a particular problem. As the
number of training instances is usually limited, parameter
quality estimates can be orders of magnitude too optimistic,
which may lead to strongly impaired performance.

In more rigorous approaches, ANOVA or Design of Ex-
periments have been used for parameter tuning [6, 31, 5,
20]. This can lead to a combinatorial explosion of parameter
value combinations and require large amounts of computa-
tions.

Since exploring EA parameters is generally very time con-
suming and computationally expensive, it was suggested [10]
that these parameter explorations should be carried out in a
more general offline setting. Their goal is to find EA param-
eter configurations that are optimal for a class of problems,
and then use these configurations in practice whenever such
a problem arises [10].

In brief, parameter tuning has been criticised to be inap-
propriate for the following reasons [11]:

• Parameters are not independent and must be explored
systematically in combination. This is practically im-
possible due to the large number of combinations.

• Parameter tuning is time-consuming and it provides
no guarantees of optimality.

• It has been demonstrated that different values of pa-
rameters can be optimal at different stages of the search
[2, 28, 27, 17]

2.2 Parameter Control
Parameter control addresses the need to change EA pa-

rameters as the search proceeds from a more diffuse global
search to a more focussed converging local search. More
specifically, it describes a process where trials start with
initially suboptimal parameter values which are improved
during the run-time of the algorithm. Parameter control
methods can be classified into three categories [11]:

2.2.1 Deterministic parameter control
The parameter values are changed according to determin-

istic rules which are set a priori in a fashion similar to those

used in simulating annealing. No feedback from the search is
used. The rules are specified by the user. Usually the rules
are based on time, i.e. a new rule is used every predefined
number of iterations.

Deterministic parameter control is difficult to accomplish
since it is not obvious to predict the number of generations
the EA will take to converge, and set a parameter control
schedule accordingly. It also faces similar difficulties as pa-
rameter tuning, as the parameter adaptation mechanism has
to be defined a priori and does not take any notion of the
actual progress of the search. One might argue that pre-
defining intervals in the optimisation process and preassign-
ing different parameter settings to each interval is likely to
lead to suboptimal values for some problems or instances.
For example, parameter reassignment intervals will ideally
be shorter when optimising smaller problems, as the search
progress will be faster when the problem complexity is lower.

2.2.2 Self-adaptive parameter control
In self-adaptive approaches [4, 12, 7], the parameters to

be adapted are encoded in the individuals and are evolved
in line with the traits of the solution to the problems. Indi-
viduals that have a high fitness will survive and propagate
these successful parameter values which are assumed to be
the reason for the good performance. Bäck [3] provides an
insightful review of self-adaptive methods.

Self-adaptive parameter control is acknowledged as one of
the most effective approaches to adapting the parameters of
EAs, especially when performing continuous parameter op-
timisation [9]. However, these methods significantly increase
the size of the search space and the complexity of the opti-
misation problem, since the EA has to find parameter values
which facilitate the effective transmission of the genome in-
formation in addition to searching for good solutions to the
problem [14]. Another drawback of self-adaptive control in
EAs is the relative slowness of adaptation. It takes time be-
fore the optimal value is found [11]. Rudolph [26] explored
the theoretical underpinnings of the self-adaptation of the
mutation distribution finding that this method gets caught
by nonglobal optima with positive probability even under
an infinite time horizon.

2.2.3 Adaptive parameter control
A more successful approach is to monitor particular prop-

erties of an EA run and use changes in the properties as a
signal to change parameter values. Although the rules are
based on information from the search, the update mecha-
nism to control the parameter values is decided by the user,
rather than being part of the evolutionary cycle.

The 1/5 rule of Rechenberg [25] constitutes a first histor-
ical example for adaptive mutation step size control. Since
then, the field of parameter control has been researched
widely [16, 14, 29]. An insightful overview is given by Eiben
et al. [11]. An empirical analysis of different adaptive pa-
rameter control methods is presented by Fialho et al. [14],
concluding that the Dynamic Multi-Armed Bandit shows
a good general performance, is stable w.r.t. the hyper-
parameters and has less variance compared to other meth-
ods. Although this adaptive method involves many hyper-
parameters that need to be tuned, the authors argue that the
number of hyper-parameters does not depend on the number
of the algorithm parameters that need to be controlled.
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3. PREDICTIVE PARAMETER CONTROL

3.1 Approach
Given the inherent problems with deriving parameter val-

ues based on very recent, but indeed past, performance, we
use a method of Predictive Parameter Control (PPC) that
combines a measure of past performance with time series
prediction to adjust the parameter values dynamically dur-
ing the run.

Given a set Vi, i = (1, ..., n) of algorithm parameters with
values Vij , j = (1, ...,m), where m can be a discrete number
or an interval of continuous numbers, the adaptive method
has the task of deriving the optimal next value Vij to opti-
mise the influence of Vi on the performance of the algorithm.

As an example, when the mutation rate V1 is dynamically
adjusted, 4 intervals (m = 4) have been found to produce
good results. V12 stands for a mutation rate sampled from
the second interval. In the discrete case of optimising the
type of mutation operator V1, V12 stands for the second op-
erator.

The probability of choosing values from a particular inter-
val depends on the previous performance of values sampled
from this interval. Values from intervals which have not been
used have a small initial probability of being chosen. When
a value is used but does not produce any above-average out-
come, its probability of being chosen reverts to the initial
value.

To explore the parameter space, k independent algorithm
instances are started in parallel. Each optimisation pro-
cess optimises the same problem instance. The processes set
their adaptive parameters for an iteration at a time, choos-
ing the respective value probabilistically from the distribu-
tion obtained from the performance-based prediction.

At the end of the iteration consisting of e function eval-
uations each, the current level of fitness achieved by the
algorithm is evaluated. The probabilities of success of each
parameter value are calculated based on their performance
in the past iterations. The success rates are added to the
history list of each parameter value. The previous success
rates are used to infer a trend which helps determine the
probability of each parameter value of being chosen for the
next iteration.

3.2 Forecasting the Next Distribution
At the end of an iteration, the average solution fitness

among all instances is established. Each value interval keeps
a history list of success rates from all iterations. Algo-
rithm instances which produced above-average population
fitness increase are considered successful. For each parame-
ter value or interval, the number of times the value has been
used uij and the number of times the value led to a suc-
cess us

ij (above-average increase in population fitness) are
established. The success rate is calculated using eq. 1.

Pt(Vij → success) =
us
ij

uij
(1)

Instead of applying the success rates of the last itera-
tion directly as the probability of using the parameter value
in the next iteration, we apply time series prediction as a
method of forecasting the probabilities to be applied in the
stochastic choice of next parameter values.

The least squares regression method assumes linearity of

values. For the performance of the parameter values, our
observation is that the development is piecewise linear, as
can be observed in Figure 1.
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Figure 1: Success rates in 80 iterations for the last interval
of crossover.

Fitting the last values of the history to a regression line
makes it possible to derive the next value from an average
history development using eq. 2.

Pt+1(Vij → success) = a+ b ∗ (t+ 1) (2)

The independent variable in this regression is t, the iter-
ation counter. a is the intercept and b represents the slope.

3.3 Algorithm

Algorithm 1: Predictive parameter control

for n iterations of e function evaluations each do1

choose parameter values for k algorithms according2

to probabilities Pt(Vij → success);
execute k instances of the algorithm;3

calculate average fitness increase f(x) of k trial4

outcomes;
foreach parameter Vi, i ∈ n do5

foreach algorithm instance in k do6

if instance used parameter in range j then7

increment uij ;8

if fitness increase of instance population9

f(x) > f(x) then
increment us

ij ;10

foreach parameter Vi, i ∈ n do11

foreach parameter value Vij , j ∈ m do12

add
us
ij

uij
to probability history;13

submit probability history to least squares14

regression;
calculate Pt+1(Vij → success) = a+ b ∗ (t+ 1) ;15

set probabilities Pt+1(Vij → success) for the next16

iteration;
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4. EXPERIMENTAL SETTING
For the experimental validation we have chosen two prob-

lems, the generally accepted Royal Road problem which was
especially designed for testing EAs, and a relevant practical
problem faced by the automotive industry, the component
deployment problem. The problems were chosen due to their
dissimilarity, which enables a more informed judgement as
to the portability of the approach when applied to an EA.

4.1 The Royal Road Problem
The Royal Road functions were introduced by Mitchell,

Forrest, and Holland [18]. They were designed as functions
that would be simple for an EA to optimise, but difficult for
a hillclimber.

The function of the form F : {0, 1}l�R is used to de-
fine a search task in which one wants to locate strings that
produce high fitness values. The string is composed of 2k

non-overlapping contiguous sections each of length b + g,
where b is known as the block and g is known as the gap.
In the fitness calculation, only the bits in the block part are
considered, whereas the gaps make no contribution.

Higher order schemata are formed from sets of the base
level blocks, referred to in terms of levels, where the base
level containing the initial blocks is level 0. The fitness cal-
culation proceeds in two steps, the part calculation and the
bonus calculation. The overall fitness assigned to the string
is the sum of these two calculations.

4.1.1 Fitness calculation
The part calculation considers each block individually, as-

signing a fitness score. The scores are later summed to pro-
duce the total part contribution to the overall fitness. The
fitness of each block is based entirely on the number of 1
bits it contains. The aim is to reward bits equal to 1 up
to m consecutive bits, which adds to the block’s fitness by
v. For example, a block with three 1′s would have fitness
3 ∗ v. If a block contains more than m 1’s, but less than b
1’s, it receives −v for each 1 over the limit. With the default
settings m = 4, v = 0.02, a block with six 1’s is assigned a
fitness of: (6−4)∗−0.02 = −0.04. Finally, if a block consists
entirely of 1’s it is considered complete. This block receives
nothing from the part calculation and will be rewarded in
the bonus calculation.

The aim of the bonus calculation is to reward complete
blocks and some combinations of complete blocks. Holland
gives rewards for attaining a certain level. At the lowest
level, rewards are given for complete blocks. If such a block
exists, it receives a fitness equal to u∗. Any additional com-
plete blocks receive a fitness of u. With Holland’s defaults,
k = 4, b = 8, g = 7, there are 16 regions of length 15, giving
an overall string length of 240.

4.2 The component deployment problem
Component deployment in embedded systems [1] refers

to the allocation of software components to hardware re-
sources and the assignment of inter-component communica-
tion links. It can be viewed as a constrained generalised
assignment problem (GAP). The decisions regarding the
deployment architecture of an embedded system are very
important, since they influence not only the functional at-
tributes, but also the quality of the resulting system, which,
as pointed out in the literature, e.g. by Papadopoulos and
Grante [21], is at least as important as its functionality. The

quality of the system is commonly measured in terms of non-
functional attributes such as safety, reliability, performance
and maintainability. We model the embedded system using
inputs from our collaboration with the Cooperative Research
Centre for Advanced Automotive Technology.

4.2.1 Software architecture
Let C = {c1, c2, ..., cn}, where n ∈ N , denote the set of

software components, and let the parameters of the software
architecture be given as follows:

• Communication frequency, cf : C × C → R.
• Event size, es : C × C → N.
• Workload, wl : C → N

4.2.2 Hardware architecture
Let H = {h1, h2, ..., hm}, where m ∈ M , denote the set of

hardware resources and let the parameters of the hardware
architecture be given as follows:

• Processing speed, ps : H → N

• Network bandwidth, nb : H ×H → N.
• Network reliability r : H ×H → R.
• Network delay nd : H ×H → N.

4.2.3 Deployment
The deployment problem is then defined as D = {d |

d : C → H}, where D is the set of all functions assigning
components to hosts. A single deployment alternative is
di = {(c1, hi1), (c2, hi2), ..., (cn, hin)} ∈ D, but for the sake
of readability, we write it as di=[hi1 , hi2 , ..., hin ].

4.2.4 Quality attributes
The goal of the optimisation process is to find the possi-

ble best deployment architecture alternatives which make
a trade-off among three important conflicting quality at-
tributes: data transmission reliability (dtr), communication
overhead (co), and scheduling length (sl).

Data transmission reliability is defined as:

dtr(dk) =
n∑

i=1

n∑

j=1

cf(ci, cj) · r(dk(ci), dk(cj))

where cf(ci, cj) is the communication frequency between
components ci and cj , and r(dk(ci), dk(cj)) is the reliability
of the communication link between the hardware resources
where ci and cj are deployed.

Communication overhead is equal to:

co(dk) =
n∑

i=1

n∑

j=1

cf(ci, cj) · nd(dk(ci), dk(cj))

+

n∑

i=1

n∑

j=1

cf(ci, cj) · es(ci, cj)
nb(dk(ci), dk(cj)) · r(d(ci), d(cj))

where nd(dk(ci), dk(cj)) is the network delay of the com-
munication link between the hardware resources where ci
and cj are deployed, nb(dk(ci), dk(cj)) is the network band-
width, and es(ci, cj) is the event size (message size) of the
communication between components ci and cj .

Scheduling length is calculated as:

sl(dk) =
m∑

j=0

∑

c∈d−1(hj)

wl(c)

ps(hj)
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where wl(c) is the workload of component c and ps(hj)
is the processing speed of the hardware resource hj which
contains c.

4.2.5 Fitness calculation
Different quality metrics for measuring the fitness of mul-

tiobjective optimisation results exist. Zitzler et al. [33] pro-
vide a comprehensive review, finding that many commonly
used quality metrics do not reliably reflect the fitness of the
optimisation results. One of the few recommended metrics
is the hypervolume indicator, which measures the hypervol-
ume between the nondominated solutions and a fixed refer-
ence point in the result space. For a detailed description of
hypervolume indicator see [32].

4.3 Experimental Conditions
Approximate algorithms are not expected to deliver ex-

act and repeatable results, but to provide good approxi-
mate solutions where exact approaches cannot be devised.
Hence, results concerning the performance of approximate
algorithms such as EAs, are usually reported as mean val-
ues over repeated trials. To obtain a fair comparison, the
generally accepted approach is to allow the same number of
function evaluations for each trial [23]. Therefore, for the
current comparison, all algorithms were granted 100 func-
tion evaluations per trial with Royal Road experiments and
35 000 evaluations with the component deployment problem,
repeating the trials 30 times for each optimisation scheme.
Nevertheless there are indications that all algorithms still
make small but steady improvements after these numbers of
evaluations.

4.3.1 Problem instances
According to Lin et al. [24], differences in performance

among approximate algorithms are more likely to be de-
tected statistically if all algorithmic approaches solve the
same problem instances. Thus, one of the trials used the
Royal Road problem with the settings specified in Holland [18].

We also created two instances of the component deploy-
ment problem, one with 60 hardware resources and 120 soft-
ware components (h60 c120), the other with 60 hardware
hosts and 220 software components (h60 c220). Due to the
multiobjective nature of the component deployment prob-
lem, all 30 trial outcomes were reported in terms of the
hypervolume indicator. For all algorithms, the hypervolume
indicator was the basis of parameter values’ performance as-
sessment when optimising the component deployment prob-
lem.

4.3.2 Evolutionary Algorithm
The Royal Road problem is optimised using an EA with

string-based representation and multipoint crossover. The
component deployment problem is multiobjective in nature
and requires a more specialised approach. One of the state-
of-the-art multiobjective EA implementations is Deb’s [8].
Its distinctive feature is nondominated sorting, which filters
the population into layers of nondominated fronts and ranks
the solutions according to the level of front they are a mem-
ber of.

These EA implementations use customised crossover and
mutation operators with their respective probabilities of be-
ing applied. The crossover and mutation rates are proba-
bly the most conspicuous control parameters to optimise in

stochastic optimisation. Hence this seminal work explores
parameter control of the two parameters.

4.3.3 Predictive parameter control
The only hyper-parameter for the PPC is the learning rate

e (the number of function evaluation before each update of
the parameters). However, this parameter does not seem
to depend on the type of problem or problem size. As a
learning rate we used e = 200 function evaluation in all 3
problem instances.

For both the crossover and the mutation rates we use the
same value intervals to sample from according to the proba-
bilities produced by the time series. Preliminary trials have
shown that a cardinality of four intervals or bins with ranges
of {[0.2−0.4), [0.4−0.6), [0.6−0.8), [0.8−1.0)} produced the
best results among several cardinalities with even spreads
between 0.2 and 1.

4.3.4 Benchmarks
Our method was compared to three other state of the art

adaptive methods: Probability Matching (PM) [29], Adap-
tive Pursuit (AP) [29] and Dynamic Multi-Armed Bandit
(DMAB) [14]. A comprehensive description and compari-
son of the three adaptive methods is given by Fialho et al.
[14].

Table 1: Hyper-parameters (hp) of the three adaptive meth-
ods: Dynamic Multi-Armed Bandit (DMAB), Adaptive
Pursuit (AP) and Probability Matching (PM)

Method hp Value Description
DMAB ς 0.5 scaling factor
DMAB γ 100 PH threshold
AP,PM pmin 0.1 minimum selected probability
AP,PM α 0.8 adaptation rate
AP,PM β 0.8 adaptation rate

All adaptive algorithms involve hyper-parameters, which
need to be tuned depending on the optimisation problem at
hand. This defines another optimisation problem, which can
become quite computationally expensive if we attempt an
exhaustive exploration of the search space. We used recom-
mendations from Thierens [29] and Fialho et al. [14] when
setting the values of hyper-parameters for the adaptive al-
gorithms, which are depicted in Table 1.

5. RESULTS AND DISCUSSION
The average hypervolume growth in Figure 2, which was

recorded to check the quality development of the results
during the optimisation cycles, clearly shows the superior
performance of PPC compared to the benchmark methods.
The difference in performance seems more pronounced in
the trials using the Royal Road problem. The least benefit
PPC provides for the smaller of the component deployment
instances. This is an ‘easier’ instance to solve, hence the al-
gorithm performance can be expected to be more robust to
parameter settings. Nonetheless, the Kolmogorov-Smirnov
test finds a significantly superior performance of PPC com-
pared to the benchmark algorithms on all three problems.

There are also indications that the difference in perfor-
mance between the algorithms grows as the search progresses.
With regards to the component deployment instances, the
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Figure 2: Average hypervolume indicator growth of the 30 trials of the four different optimisation schemes.
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Figure 3: Boxplots of the 30 trials of the four different optimisation schemes.

benchmark algorithms seem to maintain the same level of
quality, while the PPC implementation continues to im-
prove. Trials with more function evaluations will be needed
to explore the capabilities of the algorithm until stagnation.

The 30 hypervolume indicators of the repeated trials are
presented as boxplots in Figure 3. The empirical results are
not normally distributed, but the mean and 25th percentile
of PPC are consistently above the respective values of the
benchmark approaches. The means and standard deviations
are listed in Table 2. Especially in the case of the com-
ponent deployment problem, the differences in the means
are minimal. This is an inherent feature of this triobjective
problem. For example the difference in the data transmis-
sion reliabilities is often apparent only in the third or fourth
precision, which has a scaling effect on the hypervolume.
For this reason, we include the results of a statistical anal-
ysis which clearly show a significant difference between the
result groups of PPC and the benchmarks.

As our method consistently outperforms the three other
optimisation schemes, to check for a statistical difference,
the different parameter schemes of the optimisation methods
are validated using the Kolmogorov-Smirnov nonparametric
test (ks) [22]. The 30 hypervolume indicators of the re-
peated trials for each of the problem instances were submit-
ted to the ks analysis. PPC was compared to the other three
optimisation schemes, with a null hypothesis of a significant
difference between the performances (PPC vs. DMAB, PPC

vs. AP and PPC vs. PM). The results of the tests are shown
in Table 3.

All ks tests, used for establishing differences between in-
dependent datasets under the assumption that they are not
normally distributed, result in a confirmation of the null hy-
pothesis with a minimum d-value of 0.5 at a 100% confidence
level. Hence we conclude that the superior performance of
PPC is statistically significant.

6. CONCLUSION
The current study presents a new predictive method of

adapting parameters of approximate algorithms dynamically.
In the experimental studies we have used this PPC method
to adjust the crossover and mutation rates throughout the
optimisation process carried out using two very different EA
implementations. The trials have demonstrated that it out-
performs the adaptive parameter control methods currently
considered most successful.

Given these encouraging results, there is a need to explore
the stagnation behaviour of the method, as the results pro-
duced by the PPC method still seem to improve even at the
end of the trials, unlike those of the benchmark algorithms.

The application of the PPC method to other parameters
of EA and other stochastic algorithms is a priority. We are
particularly interested in using PPC for the on-the-fly op-
timisation of a cooling schedule for an implementation of
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Table 2: The means of standard deviations of fitness functions for the 30 runs of each problem instance using different
optimisation schemes.

Mean Standard Deviation
Royal Road CD(h60 c120) CD(h60 c220) Royal Road CD(h60 c120) CD(h60 c220)

AP 2.783 0.9171 0.3443 0.164 1.906E-03 2.976E-03
PM 2.760 0.9163 0.3447 0.192 2.885E-03 2.799E-03
DMAB 2.706 0.9165 0.3444 0.349 1.437E-03 2.759E-03
PPC 3.033 0.9187 0.3468 0.159 1.263E-03 3.328E-03

Table 3: The t-test and ks-test values of fitness functions for the 30 runs of each problem instance using different optimisation
schemes.

Royal Road CD(h60 c120) CD(h60 c220)
ks-test ks-test ks-test

d p d p d p
PPC vs. DMAB 0.5000 0.008 0.5786 0.000 0.5000 0.008
PPC vs. AP 0.5500 0.003 0.4932 0.003 0.4974 0.010
PPC vs. PM 0.7000 0.000 0.4226 0.017 0.4136 0.039

Simulated Annealing, which is always a challenging prob-
lem for practitioners, as this parameter cannot rely on a
predefined static value.
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