
Designing and Characterising Fitness Landscapes
with Various Operators

Marius Gheorghita
Swinburne University of Technology

Melbourne, Australia
mgheorghita@swin.edu.au

Irene Moser
Swinburne University of Technology

Melbourne, Australia
imoser@swin.edu.au

Aldeida Aleti
Monash University

Melbourne, Australia
aldeida.aleti@monash.edu

Abstract—Stochastic optimisers such as Evolutionary Algo-
rithms, Estimation of Distribution Algorithm are suitable meth-
ods when problems are highly complex and deterministic algo-
rithms cannot be expected to produce acceptable results. Gener-
ally, when the search process produces the optimised solutions,
there is no indication how successful the search has been. In
previous work, we introduced Predictive Diagnostic Optimisation
(PDO), a local-search-based solver which can predict with certain
accuracy the quality of local optima and that can help decide
which of the initial solutions is appropriate to optimise. The
neighbourhood created by the swap operator was used in explo-
ration of the search space and the number of predictors created
is a metric for the homogeneity of the landscape. The advantage
of PDO is that it provides information regarding the difficulty of
the search landscape alongside the optimisation results. In this
work we extend PDO by employing three more neighbourhood
operators to allow a comparison between the performances of
different types of local search. Each neighbourhood operator
has its own group of predictors and the difficulty in predicting
the local optima is quantified by a new metric, the prediction
error. To provide an assessment of the characterisation ability
for the algorithm, a set of landscapes with various degrees of
difficulty has been designed by manipulating the matrices of
the test problems instances. We show that the metric is able to
identify the degree of difficulty that we expect the landscapes to
pose for the employed local search operators.

I. INTRODUCTION

Stochastic optimisers are approximate algorithms that gener-
ally perform better than random search, finding good approxi-
mate solutions to multimodal problems by exploiting gradients
in the fitness landscape. A fitness landscape is a structure
defined by three elements: the solution space of the problem,
the fitness function that measures the quality of a solution and
a neighbourhood operator that defines how we move between
solutions [18]. A neighbourhood structure is defined by the
possible changes that may be applied to a single solution.
Local search is a successful class of approximation algorithms
which has been shown to achieve near-optimal solutions to
many difficult problems when coupled with a suitable global
search [19]. It is an iterative improvement method in which,
at each step, the current solution is improved by a predefined
small modification. If, at each step, all possible modifications
of the current solution are explored and the change with
the biggest fitness improvement is made permanent, the local
search type is steepest descent, assuming minimisation. Local
search ends when no further improving moves are possible

and the solution obtained is a local optimum. In multimodal
landscapes, which stochastic algorithms are usually applied
to, the solution obtained by a local search along with the
path from the initial solution to the local optimum follows
a gradient into the basin of attraction.
Starting with an initial solution, the modification that we apply
in each step to obtain a fitness improvement is determined
by the nature of the local search operator. Each operator will
create a different search neighbourhood and the quality of the
end solution where the local search stops will influence what
move we decide to apply. In previous work, we used a swap
operator to explore the neighourhood and for each complete
local search we used the first step to project the final quality to
be expected when no further improvement is possible. At the
core of PDO, the ratio of the improvement achieved by the
first step and the fitness improvement after the search stops
forms a predictor. A predictor can then be matched to new
initial solutions and their first moves. As predictors are created
dynamically whenever the existing predictors are unable to
predict the quality of the optimum to a predefined margin of
accuracy, the number of predictors created during the run can
be used to indicate how homogeneous is the created landscape
for the swap operator.
This work improves the algorithm to extend the analysis of the
various operators and to collect more information about the
structure of the fitness landscapes than the initial PDO [17].
In particular, it aims at estimating the diversity of the local
optima and of the basins by looking at the prediction error
as a characterisation metric. In combination with the predictor
number, this will provide a more robust characterisation of
the search landscape, helping evaluate the approximate success
of the local search in the case of problems where the global
optimum is unknown.
Search space characterisation is usually conducted separately
from the optimisation process with the aim of learning about
properties of the search space to optimise the choice of the
solver. The latter is dependent of the former, therefore to
learn about search space while optimising is a step towards
a better understanding of the optimisation process. Sampling
a fitness landscape simply to characterise its structure to
benefit future optimisation may be an impractical approach.
The function evaluations may be costly, or there may be few
instances to optimise and the knowledge gathered during the

diagnostic walk may be useful for few actual optimisation
processes. Therefore, a feature detection algorithm should
ideally undertake not only a landscape analysis but also a
search for the (approximate) optimum.
This paper contributes to the Diagnostic Optimisation area
extending PDO with a new metric based on prediction error
that can show the suitability and limitations of the local
search operators applied to the test problems and therefore
an approximate indication of the solutions provided by the
search. The reliability of the information extracted during the
analysis was evaluated with the help of a set of modified
problem instances to reflect various degrees of difficulty. We
obtained this set of modified instances from two combinatorial
problems, Quadratic Assignment Problem (QAP) and Flow
Shop Scheduling Problem (FSSP), both represented by matri-
ces. By introducing zeros into the test matrices, the sparsity of
the matrices was used to control the difficulty of the problem
and to verify the ability of the metric to differentiate between
instances. The test instances origin from two sources: new
instances from problem generators and well-known studied
instances from the library.

II. FITNESS LANDSCAPE CHARACTERISATION

A question that has intrigued researchers over time, is how
we can determine when a problem type (instances) is easy
for a particular search technique. Intuitively, describing the
characteristics of a fitness landscape and finding features that
makes the search hard will help understand the suitability and
limitations of the heuristic. Since the aim of this work is to
devise new means of describing features of the search space,
one of the main tasks is to show whether the findings of the
new method coincide with existing characterisation techniques.
Few metrics capable of describing fitness landscapes have been
discovered to date. Autocorrelation and its derivate correlation
length [21] were arguably the first descriptive metrics con-
ceived, followed by Fitness Distance Correlation (FDC) [9].
The correlation of neighbouring fitness values can be described
by autocorrelation and is calculated as given in eq. 1. Given
a number s of independent walks through the solution space
with a predefined number of k neighbourhood steps each, we
calculate the autocorrelation coefficient:

ρ(k) =
1
s

∑s
i=0 (f(x

0)− f(x0i))(f(xk)− f(xki))
σf(x0)σf(xk)

(1)

In this equation, x0 is the initial random solution and f(x0)
its fitness value. The solution xk is the final solution after
k steps. f(x0) and f(xk) are the averages of the initial
fitnesses and after k steps, respectively σf (x

0) and σf (x
k)

represent the standard deviation of them. To measure the
autocorrelation for all the test instances, a number of s = 1000
random walks were used, each with a number of k = 10
neighbourhood steps. The swap operator was used to create
the neighbourhood.

For the problems represented by matrices, the sparsity of
the matrix (represented by the percentages of zeros) seemed to
correlate with problem difficulty as observed by Mitchell and

TABLE I: Common fitness landscape metric (autocorrelation
with random walk) applied to FSSP instances.

Problem Random walk k=10

JC

20x20 0.2962
40% 0.2477
80% 0.2611
50x20 0.4870
40% 0.5156
80% 0.5198
100x20 0.7398
40% 0.6883
80% 0.6793

M
C

20x20 0.0092
40% 0.2351
80% 0.1839
50x20 0.4001
40% 0.4291
80% 0.4917
100x20 0.3973
40% 0.6907
80% 0.6773

M
X

C

20x20 0.0457
40% 0.2258
80% 0.1866
50x20 0.4018
40% 0.4219
80% 0.4978
100x20 0.5474
40% 0.6823
80% 0.6772

Borchers [16]. Based on the assumption that sparser matrices
lead to more difficult problems, we used the sparsity level to
create a set of instances with a controllable degree of difficulty.
To have a representative scale, we chose to insert zeros in the
matrices to obtain sparsity levels of 40% and 80%. We have
computed the autocorrelation with random walk for this set
of instances and the results show that for a given problem
the autocorrelation coefficient is largely the same between
different levels of sparsity as observed in Tables I-II.

To measure the FDC, the Hamming distance between the
known global optimum and the 100 local optima sampled
has been calculated using the difference in assignments to
locations. The 100 local optima were found using steepest
descent (SD).

CFD =
1
s

∑s
i=0 (f − fi)(d− di)

σfσd
(2)

Eq. 2 describes the calculation of the FDC, which is
designed to establish the correlation of local and global optima
with respect to their fitnesses and their distances to the global
optima. f and d are the averages of the fitnesses and distances,
while σf() and σd() are the standard deviations calculated for
fitnesses respective distances. Values of a positive correlation
show that fitnesses of the local optima increase with increasing
proximity to the global optimum. FDC values around 0.0
are considered to describe difficult problems and a negative
FDC indicates misleading problems where the quality of the
local optima increases with increasing distance to the global
optimum.
FDC is an a posteriori measure of difficulty and we could
apply it only to the well-known instances from the QAP

TABLE II: Common fitness landscape metric (autocorrelation
with random walk) applied to QAP instances.

Problem Random walk k=10

G
en

er
at

or

uni20 0.1239
40% 0.1242
80% 0.1633
uni40 0.4013
40% 0.3444
80% 0.3482
uni60 0.5355
40% 0.5296
80% 0.4514
uni80 0.6044
40% 0.6170
80% 0.6178
uni100 0.6843
40% 0.6476
80% 0.67

Q
A

Pl
ib

nug20 0.1526
40% 0.1491
80% 0.1372
tai20a 0.0756
40% 0.1272
80% 0.1638
nug30 0.3473
40% 0.3006
80% 0.2831
tai30b 0.2663
40% 0.2856
80% 0.2570
kra30a 0.2539
40% 0.2867
80% 0.3378
kra32 0.3806
40% 0.3713
80% 0.3141
ste36a 0.3846
40% 0.3662
80% 0.3066
ste36b 0.4369
40% 0.3917
80% 0.2649

library, since the newly generated problems do not have a
known global optimum.

TABLE III: Common fitness landscape metric applied to QAP
library instances.

Problem FDC

Q
A

Pl
ib

nug20 0.0248
tai20a -0.2798
nug30 -0.1675
tai30b 0.1681
kra30a 0.1281
kra32 -0.1594
ste36a 0.2209
ste36b 0.1932

Kra* instances are variations of a hospital design prob-
lem and can therefore be expected to be homogeneous and
similar. While the FDC provides a weak positive correlation
for Kra30a, there is no correlation for Kra32. Tai**a are
considered rugged [15] and as the FDC shows Tai20a is among
the least correlated of all problem instances.

III. PREDICTIVE DIAGNOSTIC OPTIMISATION

The success of stochastic optimisers depends on an appro-
priate balance between exploration and exploitation and most

heuristics apply global and local search in different phases [1].
Optimisers such as EAs implicitly alternate between global
and local search phases. Others, such as Ant Colony Optimi-
sation [14] explicitly choose one or more results of a global
search phase to apply a hill-climbing local search such as
steepest ascent to.
A major research question in this context is which solutions
should be chosen for local optimisation. One contribution of
PDO is the prediction of the ultimate solution quality after a
local search has been applied, solving the problem of choice
of initial solution for the local search. The prediction is based
on the fitness improvement ensuing from the first step of the
local search applied to an initial solution. In contrast to the
previous PDO implementation [17], the method applied in the
current work creates predictors in an initial learning phase.

A. Predictor Definition

A local search is performed starting from an initial random
solution x0. Assuming a minimisation problem, after the
first step of the local search, the ratio of improvement [17]
between the initial solution x0 and the improved solution x1
is calculated as:

p1 =
n(f(x0)− f(x1))

f(x0)
(3)

where n is the cardinality of the problem. The fitness at the
end of the optimisation is used to calculate the ratio between
the initial improvement of the first step and the fitness of the
local optimum f(xk) as follows:

p2 =
f(x0)− f(xk)
f(x0)− f(x1)

(4)

Both ratios are part of a predictor. When considering a
new starting solution for local optimisation, this solution is
evaluated according to the objective function, which yields the
value f(x0). Then, the first local search step is performed and
f(x1) is obtained. The first ratio is calculated and compared to
the first ratio of each available predictor. The closest matching
predictor is then used to project the expected final fitness
f(xk) of the solution after k optimisation steps, where k will
vary depending on the number of steps needed to reach the
bottom of the basin.

B. Predictor Discovery

PDO samples the solution space uniformly randomly to
find the initial solutions from which the group of predictors
are created. Unlike in previous work [17], no bias towards
promising areas of the search space is maintained. The goal is
to have an accurate represention of the whole landscape with
the group of predictors created.

When a new solution xb0 is created and improved to xb1
by applying one local search move, the ratios pb1 and pb2
are calculated on the basis of the fitness difference between
xb0 and its improved solution xb1 according to Eq. 3 and 4.
PDO then determines if the new predictor is significantly
different from the predictors created in the previous iterations.
The similarity between two predictors is established using the
Canberra distance defined as follows:

C[(pa1 , pa2), (pb1, pb2)] =
|pa1 − pb1|
|pa1 |+ |pb1|

+
|pa2 − pb2|
|pa2 |+ |pb2|

(5)

where (pb1, p
b
2) and (pa1 , p

a
2) represent the ratios of two

predictors derived from solutions xa and xb. The distance
is defined in the interval [0,2) with 0 representing identical
predictors. The greater the distance, the more different are the
predictors. The diversity of the gradients in the search space
can be accurately represented if we accept predictors that are
significantly different one from another, therefore the threshold
for accepting a new predictor was set to ε = 0.1. Each time
a new predictor is created, it is compared with all predictors
in the predictor pool using the Canberra distance (Eq. 5), a
mathematical function used to sort objects by their similarity.
In our case, the object is represented by a predictor, described
by its ratios. If the distance of the new predictor to other
predictors in the pool is bigger than this threshold, a new
predictor is introduced into the group. If, between loops of
N = 100 local searches, no new predictors have been created,
the algorithm stops. The steps of the algorithm for predictor
discovery loop using the Canberra distance are shown in the
algorithmic listing 1.

Algorithm 1 Predictive Diagnostic Optimisation
procedure PREDICTORDISCOVERY(N , ε)

2: groupSize← 1
previousSize← 0

4: while groupSize 6= previousSize do
for i← 1, N do

6: xi0 ← randomSolution
xi1 = FIRSTLOCALSEARCHSTEP(xi0)

8: pi1 =
n(f(xi

0)−f(xi
1))

f(xi
0)

xik = LOCALSEARCH(xi1)

10: pi2 =
f(xi

0)−f(xi
k)

f(xi
0)−f(xi

1)

different← true
12: for j ← 1, predSize do

C[(pj1, p
j
2), (p

i
1, p

i
2)] =

|pj1−pi1|
|pj1|+|p

i
1|

+
|pj2−pi2|
|pj2|+|p

i
2|

14: if C[(pj1, p
j
2), (p

i
1, p

i
2)] < ε then

different← false
16: end if

end for
18: if different then

SAVEPREDICTOR(pj1,pj2)
20: end if

end for
22: previousSize← groupSize

groupSize← predNumber
24: end while

end procedure

For every combinatorial problem, a number of possible
neighbourhood moves exist. It is generally believed that some
moves render a local search more prone to premature stagna-
tion than others [18]. It is intuitive to implement more than
one neighbourhood move when search space diagnostics is a
desired byproduct of the search.

For each neighbourhood move, PDO maintains its own
group of predictors. For each neighbourhood, the predictor

discovery procedure is applied as described in listing 1. When
the stopping criterion is met, the assumption is that the existing
predictors for each group are able to represent the entire
search space if searched with the group-specific operator. After
the group creation phase, it follows the predictor application
phase where we test the capability of the predictors to guide
the choice of solutions to optimise. In this phase, random
candidate solutions xi0 are created, and improved locally once
to obtain xi1. Based on this first step, a predictor is matched and
the ultimate fitness of the local optimum is predicted. When
the local search is complete on the same solution, the final
fitness of xik is compared with the prediction and a prediction
error is recorded. The average prediction error of each predic-
tor group that represents a particular neighbourhood is used
to interpret the type of the landscape and the predictability
of the gradients. Given that the number of predictors depends
on the similarity of the gradients that are encountered in the
search space, the number of predictors created can be used as
an indicator of the homogeneity of the basins of attraction
(assuming minimisation). If the slopes to these basins, or
troughs with a local minimum at the bottom, all have slopes
with the same shape, a single predictor will suffice to predict
the outcome of a full local search. In addition to the number of
predictors created, the distribution of usage of these predictors
elucidates the relative frequency of a certain shape of the path
to a local optimum.

C. Sampling the neighbourhood

The initial PDO implementation [17] uses steepest descent
(SD) as its deterministic optimisation method, an expensive
approach which exhaustively explores the complete neigh-
bourhood of a solution before making the move that leads
to the best fitness improvement. For most types of search
moves and problems of relevant sizes, the resulting neigh-
bourhood is prohibitively large. To reduce the cost of the
local search during the exploration of the neighbourhood,
we have introduced an improvement to the algorithm that is
comprised of a sampling procedure [7]. The primary goal
is to reduce the cost of the local search and at the same
time to preserve approximately the same prediction accuracy
and fitness improvement as the exhaustive SD approach.
Compared to SD, sampling reduces the neighbourhood size
to the sample size, therefore the exploration is limited to the
sample. Instead of searching the neighbourhood exhaustively,
the sampling procedure selects the best solution found in a
representative sample. A representative sample is one that finds
an approximate best fitness improvement. For determining the
approximate best improvement from the neighbourhood by
sampling, a statistical significance test was proposed, where
a dynamic stopping criterion based on accuracy monitoring
determines when the sample reaches the confidence level for
the neighbourhood.

D. Diagnostic metric

In the predictor application phase, the prediction error is
calculated as a percentage error between the predicted and the

actual fitness for each of the solutions that were optimised
during this phase. As in previous work, a predictor is selected
for making predictions based on the minimum difference be-
tween its first ratio and the candidate solution first step’s ratio
of improvement. Then the solution is optimised to the local
optimum and the predicted fitness is compared to the predicted
fitness to obtain the difference, which is the prediction error.
If the error is not within a predefined margin of tolerance,
the remaining predictors are examined for a match within the
tolerance, which considers both the ratio between the first step
(eq. 3) and the prediction (eq. 4). The best-matching predictor
is used to determine the prediction error reported alongside the
results. This procedure is repeated for all groups of predictors.
The resulting value is reported as the prediction error for the
neighbourhood moves. The prediction error calculated as a
percentage is considered an indicator of the accuracy of the
predictions, the suitability of the local search and the problem
difficulty.

IV. EXPERIMENTS

The purpose of the experiments is to to demonstrate that
the measure we propose coincides with what we already know
about the problems. In order to test the ability of the metric
to detect the changes in the difficulty of a given landscape,
we create problem instances with different levels of difficulty.
Sparsity of the matrices is used to create these instances, since
the more zeroes we will have in a matrix the more probable
is to produce ’plateaus’ in the fitness landscape that offers
no direction for the search and isolates the local optima. This
feature is assumed to introduce different degrees of isolation
for the optima and by that making the search difficult for an
algorithm that exploit the gradients.

A. Creation of instances with various degree of difficulty

We produced several instances from the generators as ref-
erence instances, and generated different problem instances
from these with two different levels of sparsity: 40% and 80%.
The simplest way to generate these modified instances with
variable sparsity is to replace randomly a number of nonzero
elements, until the desired percentage of zeroes was obtained.
The original instances are in general uniform, and exhibit
a low prediction error. What we expect from the modified
instances is to have a correlation between the level of sparsity
and their degree of difficulty measured direct by the prediction
error metric. For the experiments two combinatorial problems
were chosen, Quadratic Assignment Problem (QAP) with a
instance generator having details provided in [10] and Flow-
Shop-Scheduling Problem (FSSP) with a instance generator
described by Watson [20].

B. Benchmark problems

QAP [11] is the problem of allocating a set of facilities to a
set of locations, with a cost function associated to the distance
and flow between the facilities.

We are given two n x n input matrices with real elements
H = [hij] and D = [dkl], where hij is the flow between

facility i and facility j and dkl is the distance between location
k and location l. Given n facilities, the solution of the QAP
is codified as a permutation σ = (σ1, ..., σn) where each σi
(i = 1, . . . , n) represents the facility that is allocated to the
i-th location. The fitness of the permutation is given by the
following objective function:

F (σ1, σ2...σn) =

n∑
i=1

n∑
j=1

hij ∗ dσiσj (6)

The objective is to assign each facility to a location such
that the total cost is minimised. The quality of the solution is
determined by the absolute position of each index (facility)
in the permutation as regards the absolute position of the
remaining indexes as observed by Ceberio et al. [4]. The
first subset of QAP instances is provided by a generator who
produces uniformly random instances and the second subset
is a well-known set of instances in the QAP library [3]. This
type of instances assure that for larger problem size they are
more interesting to study than the ’real-like’ instances, as
was observed by Knowles and Corne [10]. The reason is that
are more local optima close to the global optimum, but it is
difficult to direct the search to the one that is better.

FSSP [8] describes the task of scheduling n jobs (i =
1, ..., n) on m machines (j = 1, ...,m). A job consists of
m operations and the j-th operation of each job must be
processed on machine j for a specific time. A job can start
on the j-th machine when its (j−1)-th operation has finished
on machine (j − 1), and if machine j is free. The goal of the
optimisation is to minimise the processing time of all the jobs,
or in other words, to minimise the processing time of the last
job.

The solution is codified as a permutation of length n that
represents the ordering in which the jobs are going to be
processed. This means that for each machine the order of the
jobs is the same and it is given as a permutation.

Let pi,j denote the processing time for job i on machine j,
and ci,j denote the completion time of job i on machine j.
Then cσi,j

is the completion time of the job scheduled in the i-
th position in the sequence on machine j. cσi,j

is computed as
cσi,j = pσi,j +max

{
cσi,j−1, cσi−1,j

}
. The objective function

F is given by Eq.7.

F (σ1, σ2, ..., σn) = cσn,m
(7)

The generator for FSSP produces instances based on fea-
tures found in some real-world scheduling problems. Three
types of instances are used ’job-correlated’ (JC), ’machine-
correlated’ (MC) and ’mixed-correlated’ (MXC). In JC in-
stances, job processing times are independent of the machine.
In MC instances, job processing times are dependent upon the
machine. MXC instances are a form of MC types in which the
relative ranks of job processing times are generally consistent
across the machines. What the authors observed is that the
majority of the instances produced were solved easily by both
simple and complex algorithms. They investigated the search
space using the next-descent search algorithm [6] under two

shifting operators and found a distribution of local optima in
a topography like ’big-valley’. In this distribution of ’big-
valley’ was observed that local optima are closer together
than randomly chosen solutions and better local optima tend
to be closer to global optima. This is assumed to be due
to ’smoother’ fitness regions at the bottom of the valley,
especially since local optima near one another have similar
evaluations.

C. Neighbourhood Definition

In order to test the consistency of the diagnostics, several
neighbourhoods with different characteristics were used. The
expectation is that the algorithm works well with different
neighbourhoods, however some neighbourhoods may be more
suitable than others. For example, on a more rugged landscape,
it is expected that a fitness-improvement-driven neighbourhood
such as k-opt performs better than a simple neighbourhood
such as 2-opt.

2-opt operator [5] is a simple local search algorithm often
used for solving the Travelling Salesman Problem (TSP). In
permutation-based problems the algorithm is defined as a pair-
exchange neighbourhood which consists of all permutations
obtained by applying a transposition of two elements in the
original permutation. It keeps its characteristics as a simple
move and is one of the most frequently used.

3-opt operator [2], [12] is another simple local search
algorithm proposed for solving TSP and related network
optimisation problems. The algorithm is an extension of 2-
opt, in that it performs two pair-exchanges instead of one. The
second pair-exchange is applied to the resulting permutation
from the first pair exchange.

k-opt operator [13]; for a fixed k, where k-opt is the
natural generalization of 2-opt and 3-opt performs up to k pair
exchanges to the original permutation with the condition that
the intermediary permutations display a fitness improvement. k
is established by the immediate fitness deterioration compared
to the k-1 pair-exchange. It is a conditional move based on
improving exchanges, and the exit criterion is the fitness
deterioration.

k-opt-d (k-opt with deterioration) is a new operator intro-
duced in this paper to address the drawbacks of k-opt. k-opt-
d uses a deterioration acceptance threshold, i.e. if there is
no fitness improvement in the current solution after applying
a pair-exchange to its parent, the algorithm compares the
fitness difference of the current solution and the fitness of
the parent of its parent. If the fitness of the current solution
has deteriorated from the fitness of its "grand-parent", then the
algorithm stops. Similar to k-opt, k-opt-d is intended for more
rugged neighbourhoods, where the fitness improvement is not
continuous.

V. RESULTS

Each of the QAP and FSSP problem instances was opti-
mised 30 times using the PDO algorithm and the resulting
prediction errors were averaged for each of the four investi-
gated neighbourhood operators.

TABLE IV: Prediction error for the 40% and 80% sparsity
level - FSSP instances.

Problem 2-opt 3-opt k-opt k-opt-d

JC

20x20 0.238 0.216 0.231 0.234
40% 7.097 6.686 5.872 5.339
80% 16.452 16.659 14.837 12.633
50x20 2.326 2.330 2.263 2.130
40% 6.404 5.967 5.593 5.204
80% 13.449 12.762 12.123 11.229
100x20 2.181 2.174 2.232 2.120
40% 5.282 5.029 4.806 4.633
80% 12.290 12.025 11.427 10.929

M
C

20x20 0.616 0.578 0.558 0.572
40% 6.290 5.748 5.337 4.932
80% 14.307 14.133 13.957 12.217
50x20 2.259 2.138 2.038 1.977
40% 6.204 5.729 5.454 5.273
80% 13.520 12.740 12.594 11.707
100x20 0.481 0.504 0.489 0.509
40% 4.157 4.058 3.963 4.056
80% 11.289 10.946 10.575 10.270

M
X

C

20x20 0.913 0.843 0.856 0.873
40% 6.003 5.375 5.349 5.012
80% 14.655 13.169 12.759 11.837
50x20 2.157 2.108 2.112 2.005
40% 6.085 5.669 5.754 5.191
80% 13.455 12.761 13.080 11.710
100x20 0.696 0.634 0.742 0.735
40% 4.560 4.215 4.186 4.126
80% 11.008 10.298 10.849 9.881

An observed trend in Table IV is that the prediction error
increases gradually with the sparsity level for all the FSSP
instances and for all neighbourhoods. For the QAP instances
the difference in prediction error between the original instance
and the ones with sparsity controlled is more accentuated
as observed in Table V. Between the modified instances,
the 80% sparsity instances have the highest prediction error
showing a very difficult landscape to search. It is clear that
the ruggedness induced by the added sparsity poses a problem
to all neighbourhood moves. Not even an operator that accepts
deterioration can overcome this challenge.
Where the modified instances are affected by high sparsity,
the landscapes have increasingly isolated local optima, the
gradients become less predictable and that is quantified by a
high prediction error metric. The information obtained during
the search shows the limitations of the local search on the
instances affected by the high sparsity. In the FSSP case, for
the instances that are the hardest to predict, the operator with
deterioration indicates the lowest prediction error. For the QAP
case on the original instances and 40% sparsity the results
indicate specialised moves (k-opt, k-opt-d) have the lowest
error. On 80% sparsity becomes more difficult to associate a
specialised move with a better predictability, the lowest error
being shown by 3-opt operator.
When the landscape is not uniform and very difficult to
search, making specialised moves based on improvement or
deterioration like k-opt, k-opt-d it shows no better results
than only random-based moves in neighbourhood as 3-opt.
Overall, the moves confirm that the prediction metric is reli-
able independent of the chosen neighbourhood, and if that is
combined with another metric to be extracted, like the average
best fitness discovered during the search process, could be

beneficial in recomending a certain move as fit for a certain
type of instance/problem.
TABLE V: Prediction error for the 40% and 80% sparsity level
- QAP instances.

Problem 2-opt 3-opt k-opt k-opt-d

G
en

er
at

or

uni20 3.661 3.668 2.986 2.956
40% 10.763 10.189 9.902 8.960
80% 756.634 199.604 694.584 915.058
uni40 2.145 2.070 2.043 1.962
40% 5.519 5.198 5.046 4.825
80% 40.513 31.497 39.496 39.936
uni60 1.699 1.618 1.554 1.576
40% 3.927 3.539 3.442 3.409
80% 24.634 21.299 23.566 23.432
uni80 1.393 1.295 1.324 1.216
40% 3.091 2.780 2.850 2.716
80% 18.713 16.418 18.285 16.716
uni100 1.076 1.058 1.057 1.013
40% 2.483 2.465 2.450 2.398
80% 14.783 13.311 14.589 13.648

Q
A

Pl
ib

nug20 4.500 4.527 3.930 3.657
40% 9.800 9.528 8.761 7.702
80% 204.073 109.781 204.653 191.193
tai20a 3.611 3.376 3.234 3.020
40% 10.456 10.298 9.316 8.723
80% 915.568 218.709 989.525 911.447
nug30 3.652 3.691 3.498 3.366
40% 7.146 6.924 6.095 6.241
80% 61.135 44.980 61.693 61.383
tai30b 13.700 14.289 12.855 11.632
40% 25.822 23.964 24.383 23.821
80% 18984.661 4080.113 16380.792 16622.982
kra30a 5.505 5.513 5.132 4.876
40% 6.819 6.598 6.300 5.781
80% 74.928 52.327 75.834 77.059
kra32 5.722 6.091 5.361 5.107
40% 6.648 6.732 5.875 5.850
80% 74.636 53.404 73.502 75.620
ste36a 10.847 11.204 10.289 9.913
40% 11.753 11.692 11.276 10.987
80% 151.152 82.061 147.342 145.800
ste36b 22.180 21.572 21.833 20.691
40% 23.494 21.151 21.731 20.998
80% 315.602 138.527 304.766 284.203

VI. CONCLUSION

In this paper, we have extended PDO, an optimisation
approach which is based on predictive local search. A metric
for measuring the problem difficulty based on the prediction
error was proposed and we have created and ’manipulated’ the
landscapes for the tested problems to obtain a various range
of instances that would challenge the algorithm’s capacity of
diagnostic.

Four different neighbourhood operators have led to the cre-
ation of four distinct groups of predictors used to analyse the
suitability of the local search. The neighbourhoods validate the
consistency of the results for the diagnostic. When the problem
is predictable, the low prediction error confirms it and when
we have higher prediction error we deal with more rugged
landscapes of difficult problems. The information returned by
the algorithm describes the landscapes in accordance with
the existing knowledge about the problem instances and the
values obtained for the metrics vary accordingly with the
difficulty of the designed landscapes. An interesting direction
for further research is to extend the search space analysis to

a larger number of of instances and examine more closely the
relationship of sparsity to instance hardness.

REFERENCES

[1] A. Aleti. An Adaptive Approach to Controlling Parameters of Evolu-
tionary Algorithms. PhD thesis, Swinburne University of Technology,
2012.

[2] F. Bock. An algorithm for solving traveling-salesman and related
network optimization problems. unpublished manuscript associated with
talk presented at the 14th orsa national meeting, 1958.

[3] R. E. Burkard, S. Karisch, and F. Rendl. Qaplib-a quadratic assignment
problem library. European Journal of Operational Research, 55(1):115–
119, 1991.

[4] J. Ceberio, E. Irurozki, A. Mendiburu, and J. A. Lozano. A review on
estimation of distribution algorithms in permutation-based combinatorial
problems. Technical report, University of the Basque Country, 2011.

[5] G. Croes. A method for solving traveling salesman problems. Operations
Research, 6:791–812, 1958.

[6] M. Dietzfelbinger, J. E. Rowe, I. Wegener, and P. Woelfel. Precision,
local search and unimodal functions. Algorithmica, 59(3):301–322,
2011.

[7] M. Gheorghita, I. Moser, and A. Aleti. Characterising fitness landscapes
using predictive local search. GECCO ’13 Companion. ACM, 2013.

[8] J. N. Gupta and E. F. S. Jr. Flow shop scheduling research after five
decades. European Journal of Operational Research, 169:699–711,
2006.

[9] T. Jones and S. Forrest. Fitness distance correlation as a measure
of problem difficulty for genetic algorithms. In Proceedings of the
Sixth International Conference on Genetic Algorithms, pages 184–192.
Morgan Kaufmann, 1995.

[10] J. Knowles and D. Corne. Instance Generators and Test Suites for the
Multiobjective Quadratic Assignment Problem. In Evolutionary Multi-
Criterion Optimization. Second International Conference, EMO 2003,
pages 295–310. Springer. Lecture Notes in Computer Science. Volume
2632, 2003.

[11] T. C. Koopmans and M. Beckmann. Assignment Problems and the
Location of Economic Activities. Cowles Foundation for Research in
Economics, Yale University, 1955.

[12] S. Lin. Computer solutions of the travelling salesman problem. Bell
Syst. Tech J., 44:2245–2269, 1965.

[13] S. Lin and B. Kernighan. An effective heuristic algorithm for the
travelling salesman problem. Operations Res., 21:498–516, 1973.

[14] N. Liouane, I. Saad, S. Hammadi, and P. Borne. Ant systems and
local search optimization for flexible job shop scheduling production.
International Journal of Computers, Communications and Control,
II(2):174–184, 2007.

[15] P. Merz and B. Freisleben. Fitness landscapes, memetic algorithms, and
greedy operators for graph bipartitioning. Evolutionary Computation,
8:61–91, 2000.

[16] J. E. Mitchell and B. Borchers. Solving linear ordering problems
with a combined interior point/simplex cutting plane algorithm. High
Performance Optimisation, pages 349 – 366, 2000.

[17] I. Moser and M. Gheorghita. Combining search space diagnostics and
optimisation. In Congress on Computational Intelligence, Proceedings,
pages 897–904. IEEE, 2012.

[18] C. M. Reidys and P. F. Stadler. Combinatorial landscapes. SIAM Review,
44(1):3–54, 2002.

[19] T. Stutzle. Local search algorithms for combinatorial problems -
analysis, improvements, and new applications, volume 220 of DISKI.
Infix, 1999.

[20] J.-P. Watson, L. Barbulescu, L. D. Whitley, and A. E. Howe. Contrasting
structured and random permutation flow-shop scheduling problems:
Search-space topology and algorithm performance. INFORMS Journal
on Computing, 14:98–123, 2002.

[21] E. Weinberger. Correlated and uncorrelated fitness landscapes and how
to tell the difference. Biological Cybernetics, 63:325–336, 1990.

