
monash un i v er s i ty

Faculty of Information Technology

Advanced topics in computational science
FIT4012

Aldeida Aleti and Julian Garcia
aldeida.aleti@monash.edu, julian.garcia@monash.edu

July 29, 2014

Slide 1/23

monash un i v er s i ty f i t

Part 1 schedule

• Combinatorial Problems and Computational Complexity

• Systematic, Local and Stochastic Search

• Fitness Landscape Analysis

• Parameter Control for Evolutionary Algorithms

• Constrained Problems and Constraint-Handling
Techniques

Aldeida Aleti and Julian Garcia — Advanced topics in computational science

Slide 2/23

monash un i v er s i ty f i t

Optimisation

Search space S - Set of all feasible solutions

Objective function f : S → < - quality criterion

Goal x∗ = argmax(min)f - finding the best solution
according to the criterion

Aldeida Aleti and Julian Garcia — Advanced topics in computational science

Slide 3/23

monash un i v er s i ty f i t

Often, optimisation problems are

• NP-hard (large search space)

• combinatorial

• with fitness function(s) which:
• cannot be formulated as a closed-form expression,
• irregular,
• non differentiable,
• non continuous.

Not solvable by traditional methods!
Aldeida Aleti and Julian Garcia — Advanced topics in computational science

Slide 4/23

monash un i v er s i ty f i t

Search algorithms

Aldeida Aleti and Julian Garcia — Advanced topics in computational science

Slide 5/23

monash un i v er s i ty f i t

Example: Travelling Salesperson Problem

Aldeida Aleti and Julian Garcia — Advanced topics in computational science

Slide 6/23

monash un i v er s i ty f i t

Travelling Salesperson Problem Optimised

Aldeida Aleti and Julian Garcia — Advanced topics in computational science

Slide 7/23

monash un i v er s i ty f i t

Example: Evolutionary Algorithms

Evaluate
solution(s)

Initial
solution(s)

Stopping
criterion

True Final
solution(s)

False

Create new
solution(s)

Aldeida Aleti and Julian Garcia — Advanced topics in computational science

Slide 8/23

monash un i v er s i ty f i t

Software Testing and Code Coverage

A program with high code coverage has been more
thoroughly tested and has a lower chance of containing
software bugs than a program with low code coverage.

Aldeida Aleti and Julian Garcia — Advanced topics in computational science

Slide 9/23

monash un i v er s i ty f i t

Example

the fitness function considers all the testing goals simulta-
neously. The technique starts with an initial population of
randomly generated test suites, and then uses a Genetic
Algorithm to optimize toward satisfying a chosen coverage
criterion, while using the test suite size as a secondary
objective. At the end, the best resulting test suite is
minimized, giving us a test suite as shown in Fig. 2 for
the Stack example from Fig. 1. With such an approach,
most of the complications and downsides of the one target
at a time approach either disappear or become significantly
reduced. The technique is implemented as part of our
testing tool EVOSUITE [18], which is freely available online.

This novel approach was first described in [17], and this
paper extends that work in several directions by, for
example, using a much larger and more variegated case
study, verifying that the presence of infeasible branches has
no negative impact on performance, and by providing
theoretical analyses to shed more light on the properties of
the proposed approach. In particular, we demonstrate the
effectiveness of EVOSUITE by applying it to 1,741 classes
coming from open source libraries and an industrial case
study (Section 5); to the best of our knowledge, this is the
largest evaluation of search-based testing of object-oriented
software to date. Because to effectively address the problem
of test suite generation we had to develop specialized
search operators, there would be no guarantee on the
convergence property of the resulting search algorithm. To
cope with this problem, we formally prove the convergence
of our proposed technique.

The results of our experiments show strong statistical
evidence that the EVOSUITE approach yields significantly
better results (i.e., either higher coverage or, if the same

coverage, then smaller test suites) compared to the tradi-
tional approach of targeting each testing goal independently.
In some cases, EVOSUITE achieved up to 188 times higher
coverage on average, and test suites that were 62 percent
smaller while maintaining the same structural coverage.
Furthermore, running EVOSUITE with a constrained budget
(1 million statement executions during the search, up to a
maximum 10 minutes timeout) resulted in an impressive
83 percent of coverage on average on our case study.

The paper is organized as follows: Section 2 provides
background information. The novel approach of evolving
whole test suites is described in Section 3, and the details of
our EVOSUITE tool follow in Section 4. The empirical study
we conducted to validate our approach is presented and
discussed in Section 5. Convergence is formally proven in
Section 6. Threats to validity of our study are analyzed in
Section 7, and finally, Section 8 concludes the paper.

2 BACKGROUND

Coverage criteria are commonly used to guide test genera-
tion. A coverage criterion represents a finite set of coverage
goals, and a common approach is to target one such goal at
a time, generating test inputs either symbolically or with a
search-based approach. The predominant criterion in the
literature is branch coverage, but in principle any other
coverage criterion or related techniques such as mutation
testing [29] are amenable to automated test generation.

Solving path constraints generated with symbolic execu-
tion is a popular approach to generate test data [50] or unit
tests [51] and dynamic symbolic execution as an extension
can overcome a number of problems by combining concrete
executions with symbolic execution (e.g., [22], [39]). This
idea has been implemented in tools like DART [22] and
CUTE [39], and is also applied in Microsoft’s parameterized
unit testing tool PEX [42] or in the Dsc [28] tool.

Metaheuristic search techniques have been used as an
alternative to symbolic execution-based approaches (see [1],
[34] for surveys on this topic). The application of search for
test data generation can be traced as back to the 1970s [35],
where the key concepts of branch distance [30] and approach
level [48] were introduced to help search techniques in
generating the right test data. A promising avenue also
seems to be the combination of evolutionary methods with
dynamic symbolic execution (e.g., [12], [27], [33]), alleviat-
ing some of the problems both approaches have.

Search-based techniques have also been applied to test
object-oriented software using method sequences [21], [43]
or strongly typed genetic programming [37], [47]. When
generating test cases for object-oriented software, since the

FRASER AND ARCURI: WHOLE TEST SUITE GENERATION 277

Fig. 1. Example stack implementation: Some branches are more difficult
to cover than others, some lead to coverage of further branches, and
some can be infeasible.

Fig. 2. Test suite consisting of two tests, produced by EVOSUITE for the
Stack class shown in Fig. 1: All feasible branches are covered.

Aldeida Aleti and Julian Garcia — Advanced topics in computational science

Slide 10/23

monash un i v er s i ty f i t

Test Data Generation

An example of a test suite

the fitness function considers all the testing goals simulta-
neously. The technique starts with an initial population of
randomly generated test suites, and then uses a Genetic
Algorithm to optimize toward satisfying a chosen coverage
criterion, while using the test suite size as a secondary
objective. At the end, the best resulting test suite is
minimized, giving us a test suite as shown in Fig. 2 for
the Stack example from Fig. 1. With such an approach,
most of the complications and downsides of the one target
at a time approach either disappear or become significantly
reduced. The technique is implemented as part of our
testing tool EVOSUITE [18], which is freely available online.

This novel approach was first described in [17], and this
paper extends that work in several directions by, for
example, using a much larger and more variegated case
study, verifying that the presence of infeasible branches has
no negative impact on performance, and by providing
theoretical analyses to shed more light on the properties of
the proposed approach. In particular, we demonstrate the
effectiveness of EVOSUITE by applying it to 1,741 classes
coming from open source libraries and an industrial case
study (Section 5); to the best of our knowledge, this is the
largest evaluation of search-based testing of object-oriented
software to date. Because to effectively address the problem
of test suite generation we had to develop specialized
search operators, there would be no guarantee on the
convergence property of the resulting search algorithm. To
cope with this problem, we formally prove the convergence
of our proposed technique.

The results of our experiments show strong statistical
evidence that the EVOSUITE approach yields significantly
better results (i.e., either higher coverage or, if the same

coverage, then smaller test suites) compared to the tradi-
tional approach of targeting each testing goal independently.
In some cases, EVOSUITE achieved up to 188 times higher
coverage on average, and test suites that were 62 percent
smaller while maintaining the same structural coverage.
Furthermore, running EVOSUITE with a constrained budget
(1 million statement executions during the search, up to a
maximum 10 minutes timeout) resulted in an impressive
83 percent of coverage on average on our case study.

The paper is organized as follows: Section 2 provides
background information. The novel approach of evolving
whole test suites is described in Section 3, and the details of
our EVOSUITE tool follow in Section 4. The empirical study
we conducted to validate our approach is presented and
discussed in Section 5. Convergence is formally proven in
Section 6. Threats to validity of our study are analyzed in
Section 7, and finally, Section 8 concludes the paper.

2 BACKGROUND

Coverage criteria are commonly used to guide test genera-
tion. A coverage criterion represents a finite set of coverage
goals, and a common approach is to target one such goal at
a time, generating test inputs either symbolically or with a
search-based approach. The predominant criterion in the
literature is branch coverage, but in principle any other
coverage criterion or related techniques such as mutation
testing [29] are amenable to automated test generation.

Solving path constraints generated with symbolic execu-
tion is a popular approach to generate test data [50] or unit
tests [51] and dynamic symbolic execution as an extension
can overcome a number of problems by combining concrete
executions with symbolic execution (e.g., [22], [39]). This
idea has been implemented in tools like DART [22] and
CUTE [39], and is also applied in Microsoft’s parameterized
unit testing tool PEX [42] or in the Dsc [28] tool.

Metaheuristic search techniques have been used as an
alternative to symbolic execution-based approaches (see [1],
[34] for surveys on this topic). The application of search for
test data generation can be traced as back to the 1970s [35],
where the key concepts of branch distance [30] and approach
level [48] were introduced to help search techniques in
generating the right test data. A promising avenue also
seems to be the combination of evolutionary methods with
dynamic symbolic execution (e.g., [12], [27], [33]), alleviat-
ing some of the problems both approaches have.

Search-based techniques have also been applied to test
object-oriented software using method sequences [21], [43]
or strongly typed genetic programming [37], [47]. When
generating test cases for object-oriented software, since the

FRASER AND ARCURI: WHOLE TEST SUITE GENERATION 277

Fig. 1. Example stack implementation: Some branches are more difficult
to cover than others, some lead to coverage of further branches, and
some can be infeasible.

Fig. 2. Test suite consisting of two tests, produced by EVOSUITE for the
Stack class shown in Fig. 1: All feasible branches are covered.

Aldeida Aleti and Julian Garcia — Advanced topics in computational science

Slide 11/23

monash un i v er s i ty f i t

Genetic Algorithms for Test Data Generation

3.5.1 Crossover

The crossover operator (see Fig. 3a) generates two offspring,
O1 and O2, from two parent test suites, P1 and P2. A random
value ! is chosen from ½0; 1". On one hand, the first offspring
O1 will contain the first !jP1j test cases from the first parent,
followed by the last ð1$!ÞjP2j test cases from the second
parent. On the other hand, the second offspring O2 will
contain the first !jP2j test cases from the second parent,
followed by the last ð1$!ÞjP1j test cases from the first parent.

Because the test cases are independent among them, this
crossover operator always yields valid offspring test suites.
Furthermore, it is easy to see that it decreases the difference
in the number of test cases between the test suites, i.e.,
absðjO1j$ jO2jÞ & absðjP1j$ jP2jÞ. No offspring will have
more test cases than the largest of its parents. However, it is
possible that the total sum of the length of test cases in an
offspring could increase.

3.5.2 Mutation

The mutation operator for test suites is more complicated
than that used for crossover because it works at both the test
suite and test case levels. When a test suite T is mutated, each
of its test cases is mutated with probability 1=jT j. So, on
average, only one test case is mutated. Then, a number of new
random test cases is added toT : With probability ", a test case
is added. If it is added, then a second test case is added with
probability "2, and so on until the ith test case is not added
(which happens with probability 1$ "i). Test cases are
added only if the limit N has not been reached, i.e., if n < N .

If a test case is mutated (see Fig. 3b), then three types of
operations are applied in order: remove, change, and insert.
Each is applied with probability 1=3. Therefore, on average,
only one of them is applied, although with probability
ð1=3Þ3 all of them are applied. These three operations work
as follows.

Remove. For a test case t ¼ hs1; s2; . . . ; sli with length l,
each statement si is deleted with probability 1=l. As the value
vðsiÞ might be used as a parameter in any of the statements
siþ1; . . . ; sl, the test case needs to be repaired to remain valid:
For each statement sj, i < j & l, if sj refers to vðsiÞ, then this
reference is replaced with another value out of the set
fvðskÞ j 0 & k < j ^ k 6¼ igwhich has the same type as vðsiÞ. If
this is not possible, then sj is deleted as well recursively.

Change. For a test case t ¼ hs1; s2; . . . ; sli with length l,
each statement si is changed with probability 1=l. If si is a
primitive statement, then the numeric value represented by

si is changed by a random value in ½$!;!", where ! is a
constant. If the primitive value is a string, then the string is
changed by deleting, replacing, or inserting characters in a
way similar to how sequences of method calls are mutated.
In the case of an array, the length is changed by a random
value in ½$!0;!0" such that no accesses to the array are
invalidated. In an assignment statement, either the variable
on the left or the right-hand side of the assignment is
replaced with a different variable of the same type. If si is
not a primitive statement, then a method, field, or
constructor with the same return type as vðsiÞ and
parameters satisfiable with the values in the set fvðskÞ j 0 &
k < ig is randomly chosen out of the test cluster.

Insert. With probability "0, a new statement is inserted at a
random position in the test case. If it is added, then a second
statement is added with probability "02, and so on until the
ith statement is not inserted. A new statement is added only if
the limit L has not been reached, i.e., if l < L. For each
insertion, with probability 1=3 a random call of the class
under test or its member classes is inserted, with probability
1=3 a method call on a value in the set fvðskÞ j 0 & k < ig for
insertion at position i is added, and with probability 1=3 a
value fvðskÞ j 0 & k < ig is used as a parameter in a call of the
class under test or its member classes. Any parameters of the
selected call are either reused out of the setfvðskÞ j 0 & k < ig,
set to null, or randomly generated.

If after applying these mutation operators a test case t
has no statements left (i.e., all have been removed), then t is
removed from T .

To evaluate the fitness of a test suite, it is necessary to
execute all its test cases and collect the branch information.
During the search, on average only one test case is changed
in a test suite for each generation. This means that
reexecuting all test cases is not necessary as the coverage
information can be carried over from the previous execution.

3.5.3 Random Test Cases

Random test cases are needed to initialize the first genera-
tion of the GA, and when mutating test suites. Sampling a
test case at random means that each possible test case in the
search space has a nonzero probability of being sampled,
and these probabilities are independent. In other words, the
probability of sampling a specific test case is constant and it
does not depend on the test cases sampled so far.

When a test case representation is complex and it is of
variable length (as happens in our case, see Section 3.2), it is
often not possible to sample test cases with uniform
distribution (i.e., each test case having the same probability
of being sampled). Even when it would be possible to use a
uniform distribution, it would be unwise (for more details
on this problem, see [10]). For example, given a maximum
length L, if each test case was sampled with uniform
probability, then sampling a short sequence would be
extremely unlikely. This is because there are many more test
cases with long length compared to the ones of short length.

In this paper, when we sample a test case at random, we
choose a value r in 1 & r & L with uniform probability.
Then, on an empty sequence we repeatedly apply the
insertion operator described in Section 3.5.2 until the test
case has a length) r.

FRASER AND ARCURI: WHOLE TEST SUITE GENERATION 281

Fig. 3. Crossover and mutation are the basic operators for the search
using a GA. Crossover is applied at test suite level; mutation is applied
to test cases and test suites.

(Fraser and Arcuri, 2013)

Aldeida Aleti and Julian Garcia — Advanced topics in computational science

Slide 12/23

monash un i v er s i ty f i t

Tuning Parameter Values

• Search algorithms (e.g. GA) have many parameters that
are problem dependent.

• Different parameter values may be optimal at different
stages of the optimisation process.

Aldeida Aleti and Julian Garcia — Advanced topics in computational science

Slide 13/23

monash un i v er s i ty f i t

Adaptive Genetic Algorithm for Test Data
Generation

Evaluate
solution(s)

Initial
solution(s)

Stopping
criterion

True Final
solution(s)

False

Collect feedback

Assess the effect
of parameter values

Select next
parameter values

Attribute quality
to parameter values

Create new
solution(s)

Aldeida Aleti and Julian Garcia — Advanced topics in computational science

Slide 14/23

monash un i v er s i ty f i t

Probabilistic Parameter Control

• Estimates the effect of
parameter values on the
performance of the
algorithm

• Problem: uncertainties
about the effect of the
parameter values
• Several parameter

values (υij)
• Noise

Probabilistic effect assessment

e =

{
e+ if f (x ′)− f (x) > th
e− otherwise

P(e+|υij) =
P(υij∧e+)

P(υij)

υ2

e

υ1 υn

p(e+|υ11)
p(e+|υ12)

p(e+|υ1m1
)

p(e+|υ21)
p(e+|υ22)

p(e+|υ2m2
)

p(e+|υn1)
p(e+|υn2)

p(e+|υnmn
)

p(υ11)
p(υ12)

p(υ1m1
)

p(υ21)
p(υ22)

p(υ2m2
)

p(υn1)
p(υn2)

p(υnmn
)

Aldeida Aleti and Julian Garcia — Advanced topics in computational science

Slide 15/23

monash un i v er s i ty f i t

Probabilistic Parameter Control

• Estimates the effect of
parameter values on the
performance of the
algorithm

• Problem: uncertainties
about the effect of the
parameter values
• Several parameter

values (υij)
• Noise

Probabilistic effect assessment

e =

{
e+ if f (x ′)− f (x) > th
e− otherwise

P(e+|υij) =
P(υij∧e+)

P(υij)

υ2

e

υ1 υn

p(e+|υ11)
p(e+|υ12)

p(e+|υ1m1
)

p(e+|υ21)
p(e+|υ22)

p(e+|υ2m2
)

p(e+|υn1)
p(e+|υn2)

p(e+|υnmn
)

p(υ11)
p(υ12)

p(υ1m1
)

p(υ21)
p(υ22)

p(υ2m2
)

p(υn1)
p(υn2)

p(υnmn
)

Aldeida Aleti and Julian Garcia — Advanced topics in computational science

Slide 15/23

monash un i v er s i ty f i t

Experimentsmeasurement [28]. The branch distance estimates how close
a branch is to evaluating to true or false for a particular run.
For each branch we consider the minimum branch distance
over all test cases of a test suite. The overall fitness of a
test suite is the sum of these minimal values, such that an
individual with 100% branch coverage has fitness 0.
Through its use of method sequences, EVOSUITE can

handle any datatype, and can be applied out of the box to
any Java program. It only requires the bytecode to produce
test suites, which it outputs in JUnit format.
Calculating the fitness value requires executing code, and

if this code interacts with its environment then unexpected or
undesirable side-effects might occur. For example, the code
might access the filesystem or network, causing damage to
data or affecting other users on the network. To overcome
this problem, EVOSUITE provides its own custom security
manager: The Java language is designed with a permission
system, such that potentially undesired actions first ask
a security manager for permission. EVOSUITE uses its
own security manager that can be activated to restrict test
execution.
When running test generation on unknown code, using

a sandbox in which permissions are restricted is essential.
We therefore enabled the custom security manager for all
our experiments. With respect to RQ2, we are interested
in finding out to what extent these unsafe operations are a
problem for test generation. Consequently, we kept track of
which kinds of permissions were requested from the code
under test. However, no permissions were granted, except
for three permissions which we determined necessary to run
most code in the first place in our earlier experiments [18]:
(1) Reading from properties, (2) Loading classes, and (3)
Reflection. Except for these permissions, all other permis-
sions were denied. This might be overly strict, and indeed
finding a suitable set of permissions for test generation is a
future research question.
In our previous experiments [18], we applied EVOSUITE

with a timeout of 10 minutes per class. As we apply the
technique to a larger set of classes in this experiment, and a
developer might not be willing to wait for 10 minutes to see
a result, we chose a timeout of two minutes per class, after
which the search always ended, except if 100% coverage
was already achieved earlier. For all other settings, we used
EVOSUITE with its default parameter settings.

C. Case Study Selection

To select an unbiased sample of Java software, we con-
sider the SourceForge open source development platform.
SourceForge provides infrastructure for open source devel-
opers, ranging from source code repositories, webspace,
discussion forums, to bug tracking systems. There are other
similar services on the web, for example Google Code,
GitHub, or Assembla. We chose SourceForge because it is

Table II
DETAILS OF THE SF100 CASE STUDY. FOR EACH PROJECT, WE REPORT
HOW MANY CLASSES IT IS COMPOSED OF, AND THE TOTAL NUMBER OF

BYTECODE BRANCHES.

Name # Classes # Branches Name # Classes # Branches

ifx-framework 2189 93307 mygrid 35 1266
jcvi-javacommon 565 7347 jigen 35 631
caloriecount 524 12064 shop 32 1035
openjms 486 11744 dsachat 31 951
summa 428 13711 jaw-br 29 811
lilith 311 17063 gangup 29 991
corina 310 10731 inspirento 26 571
heal 186 6070 rif 25 488
at-robots2-j 174 2201 ext4j 23 525
lhamacaw 168 4973 fixsuite 22 519
xbus 168 4422 xisemele 21 343
jiggler 140 6325 biblestudy 21 630
dom4j 136 5702 imsmart 21 183
jnfe 128 2428 jgaap 19 222
hft-bomberman 125 1956 templateit 19 692
jiprof 101 5222 javaviewcontrol 18 3071
wheelwebtool 100 7246 tullibee 17 1185
sbmlreader2 85 4841 httpanalyzer 17 499
jdbacl 84 5188 asphodel 16 137
db-everywhere 84 1786 noen 16 138
quickserver 78 3648 diebierse 15 352
beanbin 75 986 cards24 14 323
echodep 74 3606 gsftp 14 614
jsecurity 72 998 jni-inchi 12 178
objectexplorer 70 1516 io-project 12 129
jhandballmoves 68 1507 fps370 12 325
schemaspy 67 3493 battlecry 11 705
twfbplayer 61 1178 celwars2009 11 964
nutzenportfolio 59 1835 ipcalculator 10 644
openhre 58 1468 sugar 9 135
apbsmem 52 1641 dvd-homevideo 9 332
geo-google 52 1344 bpmail 8 108
petsoar 52 523 byuic 8 703
lotus 52 228 jclo 8 143
follow 52 814 omjstate 8 80
jwbf 50 1371 saxpath 8 1064
lagoon 49 1140 sfmis 8 90
gfarcegestionfa 46 797 falselight 8 40
a4j 45 952 diffi 8 130
dash-framework 45 425 nekomud 7 57
javathena 44 2412 biff 6 825
lavalamp 43 306 classviewer 6 524
jtailgui 42 430 gae-app-manager 6 88
javabullboard 42 2197 resources4j 6 381
fim1 41 1194 dcparseargs 6 100
water-simulator 41 1074 trans-locator 5 74
jopenchart 38 693 shp2kml 4 51
newzgrabber 37 1354 jipa 2 34
feudalismgame 36 1454 templatedetails 2 125
jmca 35 2521 greencow 1 1

the dominant site of this type, having more than 300,000
registered projects at the time of our experiments.
We based our selection on the dataset of all projects

tagged as being written in the Java programming language.
In total there were 48,109 such projects at the time of
our experiments, and applying EVOSUITE to all of them
would not be possible in reasonable time. Therefore, we
sampled the dataset, picking one randomly chosen project
out of this data set at a time. For each chosen project we
downloaded the most recent sources from the corresponding
source repository and tried to build the program. It turned
out that many projects on SourceForge have no files (i.e.,
they were created but then no files were ever added). A
small number of projects was also misclassified by their
developers as Java project although in fact it was written
in a different programming language. Finally, we did not
succeed in compiling all of the projects, sometimes because
they were too old and relying on particular Java APIs that are
no longer available. Where available, we downloaded binary
releases for projects we could not build, as EVOSUITE does
not actually require the source code for test generation. In

Aldeida Aleti and Julian Garcia — Advanced topics in computational science

Slide 16/23

monash un i v er s i ty f i t

Adaptation of crossover and mutation rates

Mutation rate Crossover rate

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 0 20 40 60 80 100 120 140

S
e

le
c
ti
o

n
 r

a
te

Iteration

[0.151,0.226)
[0.226,0.3]

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 0 20 40 60 80 100 120 140

S
e

le
c
ti
o

n
 r

a
te

Iteration

[0.85,0.925)
[0.925,1.0]

Aldeida Aleti and Julian Garcia — Advanced topics in computational science

Slide 17/23

monash un i v er s i ty f i t

Results

135 classes 246 classes

PM AP DMAB BGA PM AP DMAB BGA

Aldeida Aleti and Julian Garcia — Advanced topics in computational science

Slide 18/23

monash un i v er s i ty f i t

So what?

• Algorithm parameters are the key factor determining the
performance of the optimisation method,

• Feedback from the search can help select the right
search strategy

Aldeida Aleti and Julian Garcia — Advanced topics in computational science

Slide 19/23

monash un i v er s i ty f i t

Parallel Genetic Algorithms

Island model

Parallel Genetic Algorithms

31

figure 3-2 Example of an island model

One of the first island models was introduced by Pettey, Leuze and Grefenstette
[46]. Their problem was that they had individuals with long bit-representations and
the evaluation of the fitness relatively took a lot of time. They tried parallel evolu-
tion of several subpopulations where each process followed the same procedure.

Cohoon, Hedge, Martin and Richards investigated the effects on the evolution proc-
ess of having a diversity of environmental characteristics across the populations [7].
Here they are influenced by the theory of punctuated equilibria [14]. In short this
theory holds that the emergence of new species can be associated with very rapid
evolutionary development after a geographically separation. Thus they proposed a
distributed genetic algorithm where each subpopulation evolves until it reaches
equilibrium in a stable environment (stasis), after which the environment is changed
by merging (previously isolated) subpopulations together. Later they investigated
the use of different control parameters (such as crossover and mutation rates, or
population sizes) per processor as another way to differentiate the subpopulations
[8].

Tanese tried to answer the question whether a distributed GA can achieve near-lin-
ear speed-up without compromising its performance, or better yet, whether it can
obtain even better performance than the traditional version [53]. In her experiments
she used a population size of 256 for the traditional GA, and for the distributed GA
various subpopulation sizes while maintaining the total population size to 256. Her
first experiment used the partitioned GA studying the effect of dividing a large pop-
ulation into a number of small subpopulations. Tanese’s result to this was that the
partitioned GA consistently found better individuals than the traditional GA (even
with relatively small subpopulations), but worse average fitness of the total popula-
tion.

Her second experiment used the distributed GA studying the effect of various
migration rates and frequencies. Results showed again that the distributed GA con-
sistently found better individuals than the traditional GA, but because of migration
it also could achieve higher average fitness of the total population. This was best
achieved with a moderate migration rate, for example migrating 20% of each sub-
population every 20 generations or so (when using generational replacement). In
both experiments near-linear speed-up was achieved.

Aldeida Aleti and Julian Garcia — Advanced topics in computational science

Slide 20/23

monash un i v er s i ty f i t

Parallel Genetic Algorithms (continued)

Master-slave model

Algorithm 1: QAP-IPGA algorithm
si Node is the Master entonces

Send The Generations’ Termination Limit
mientras Number of Generations Elapsed < Termination Limit hacer
Receive the Best Results from Slaves at Each Generation
Update the Best Configuration
si ratio < limit entonces
Send best individuals of this generation to all slaves

fin si
Show the Best Configuration

fin mientras
fin si
si Node is a Slave entonces

Receive The Generations’ Termination Limit from the Master
P ← Generate non-redundant Population at each site
mientras Number of Generations Elapsed ! Termination Limit hacer
Receive the best individuals coming from the Master
(p1, p2) ← SelectParentsPair (P)
s ← Crossover (p1, p2)
P ← PopulationUpdate (P,s)
Send the Best Configuration to Master Node

fin mientras
fin si

We developed nine different variants of QAP-IPGA. Table 1 shows the corresponding QAP-IPGAs with three differ-
ent crossover and three different selection mechanisms. The structure of the QAP-IPGA chromosome is shown in Fig-
ure 3.

4. Crossover operators

4.1. Order 1 crossover

The idea of Order 1 crossover is to preserve the relative order that the genes occur in the parent chromosomes. An arbi-
trary part from the first parent is chosen and this part is copied to the first child with the same order as in the first par-
ent. Then, the rest of the genes in the first parent are copied to the first child as in the order of the second parent. The
second child is created analogously (Eiben and Smith 2003) (Figure 4).

Figure 2. Fully informed parallel genetic algorithm migration topology.

International Journal of Production Research 4121

D
ow

nl
oa

de
d

by
 [M

on
as

h
U

ni
ve

rs
ity

 L
ib

ra
ry

] a
t 2

3:
05

 2
9

Ju
ne

 2
01

4

Aldeida Aleti and Julian Garcia — Advanced topics in computational science

Slide 21/23

monash un i v er s i ty f i t

Parallel Genetic Algorithms (continued)

Cellular model

Parallel Genetic Algorithms

33

considered are:

• the neighbourhood structure
• the selection scheme
• the replacement scheme

Although there are no islands in this model, when one assumes to have a 64x64 2-
dimensional grid of processor elements and one neighbourhood is say 30 moves
away from another neighbourhood, then these neighbourhoods can be viewed as
isolated as two subpopulations in the island model. This kind of separation is
referred to as isolation by distance [41].

The colouring of the cells in figure 3-3 represents genetically similar material that
form virtual islands isolated by distance. The arrows indicate that the grid wraps
around to form a torus. On the right side of figure 3-3 an example of a neighbour-
hood structure is given. The processor with the cross can communicate with its
south, east, north and west neighbours. Communication between the cells only takes
place during the selection phase. In the example of figure 3-3 all processors concur-
rently send their individual to their north neighbour, while at the same time all the
processors concurrently receive an individual from their south neighbour. This is
repeated for all existing directions in the neighbourhood structure. Thus in four
steps all processor elements will have all the information they need to continue the
GA process locally. Because of synchronisation of the processors the evaluation of
one individual should take about the same time for all individuals. If for example on
a 4096-processor system one processor needs 100t clock cycles to finish evaluating
its individual while all the others only need t clock cycles, then 4095 processors are
99t clock cycles being idle.

figure 3-3 A cellular model, together with a neighbourhood relation.

Aldeida Aleti and Julian Garcia — Advanced topics in computational science

Slide 22/23

monash un i v er s i ty f i t

Assignments

to be continued ...

Aldeida Aleti and Julian Garcia — Advanced topics in computational science

Slide 23/23

