
Generalised Local Search Machines and
Fitness Landscape Characterisation

FIT4012 Advanced topics in computational science

This material is based on the book ’Stochastic Local Search: Foundations and
Applications’ by Holger H. Hoos and Thomas Stützle (Morgan Kaufmann, 2004)

- see www.sls-book.net for further information.

August 26, 2014

The Basic GLSM Model

Many high-performance SLS methods are based on combinations
of simple (pure) search strategies (e.g., ILS, MA).

These hybrid SLS methods operate on two levels:

I lower level: execution of underlying simple search strategies

I higher level: activation of and transition between lower-level
search strategies.

Key idea: Explicitly represent higher-level search control
mechanism in the form of a finite state machine.

2 / 46

Example: Simple 3-state GLSM (1)

Z2Z0 Z1
PROB(1)

PROB(1–p1) PROB(1–p2)

PROB(p1)

PROB(p2)

I States z0, z1, z2 represent simple search strategies, such as
Random Picking (for initialisation), Iterative Best
Improvement and Uninformed Random Walk.

I PROB(p) refers to a probabilistic state transition with
probability p after each search step.

3 / 46

Example: Simple 3-state GLSM (1)

Z2Z0 Z1
PROB(1)

PROB(1–p1) PROB(1–p2)

PROB(p1)

PROB(p2)

I States z0, z1, z2 represent simple search strategies, such as
Random Picking (for initialisation), Iterative Best
Improvement and Uninformed Random Walk.

I PROB(p) refers to a probabilistic state transition with
probability p after each search step.

3 / 46

Generalised Local Search Machines (GLSMs)

I States ∼= simple search strategies.

I State transitions ∼= search control.

I GLSM M starts in initial state.

I In each iteration:
I M executes one search step associated with its current state

z ;

I M selects a new state (which may be the same as z) in a
nondeterministic manner.

I M terminates when a given termination criterion is satisfied.

4 / 46

Generalised Local Search Machines (GLSMs)

I States ∼= simple search strategies.

I State transitions ∼= search control.

I GLSM M starts in initial state.

I In each iteration:
I M executes one search step associated with its current state

z ;

I M selects a new state (which may be the same as z) in a
nondeterministic manner.

I M terminates when a given termination criterion is satisfied.

4 / 46

Generalised Local Search Machines (GLSMs)

I States ∼= simple search strategies.

I State transitions ∼= search control.

I GLSM M starts in initial state.

I In each iteration:
I M executes one search step associated with its current state

z ;

I M selects a new state (which may be the same as z) in a
nondeterministic manner.

I M terminates when a given termination criterion is satisfied.

4 / 46

Formal definition of a GLSM

A Generalised Local Search Machine is defined as a tuple
M := (Z , z0,M,m0,∆, σZ , σ∆, τZ , τ∆) where:

I Z is a set of states;

I z0 ∈ Z is the initial state;

I M is a set of memory states (as in SLS definition)

I m0 is the initial memory state (as in SLS definition);

I ∆ ⊆ Z × Z is the transition relation;

I σZ and σ∆ are sets of state types and transition types;

I τZ : Z 7→ σZ and τ∆ : ∆ 7→ σ∆ associate every state z
and transition (z , z ′) with a state type σZ (z) and
transition type τ∆((z , z ′)), respectively.

5 / 46

Formal definition of a GLSM

A Generalised Local Search Machine is defined as a tuple
M := (Z , z0,M,m0,∆, σZ , σ∆, τZ , τ∆) where:

I Z is a set of states;

I z0 ∈ Z is the initial state;

I M is a set of memory states (as in SLS definition)

I m0 is the initial memory state (as in SLS definition);

I ∆ ⊆ Z × Z is the transition relation;

I σZ and σ∆ are sets of state types and transition types;

I τZ : Z 7→ σZ and τ∆ : ∆ 7→ σ∆ associate every state z
and transition (z , z ′) with a state type σZ (z) and
transition type τ∆((z , z ′)), respectively.

5 / 46

Formal definition of a GLSM

A Generalised Local Search Machine is defined as a tuple
M := (Z , z0,M,m0,∆, σZ , σ∆, τZ , τ∆) where:

I Z is a set of states;

I z0 ∈ Z is the initial state;

I M is a set of memory states (as in SLS definition)

I m0 is the initial memory state (as in SLS definition);

I ∆ ⊆ Z × Z is the transition relation;

I σZ and σ∆ are sets of state types and transition types;

I τZ : Z 7→ σZ and τ∆ : ∆ 7→ σ∆ associate every state z
and transition (z , z ′) with a state type σZ (z) and
transition type τ∆((z , z ′)), respectively.

5 / 46

Formal definition of a GLSM

A Generalised Local Search Machine is defined as a tuple
M := (Z , z0,M,m0,∆, σZ , σ∆, τZ , τ∆) where:

I Z is a set of states;

I z0 ∈ Z is the initial state;

I M is a set of memory states (as in SLS definition)

I m0 is the initial memory state (as in SLS definition);

I ∆ ⊆ Z × Z is the transition relation;

I σZ and σ∆ are sets of state types and transition types;

I τZ : Z 7→ σZ and τ∆ : ∆ 7→ σ∆ associate every state z
and transition (z , z ′) with a state type σZ (z) and
transition type τ∆((z , z ′)), respectively.

5 / 46

Example: Simple 3-state GLSM (formal definition)

Z2Z0 Z1
PROB(1)

PROB(1–p1) PROB(1–p2)

PROB(p1)

PROB(p2)

I Z := {z0, z1, z2}; z0 = initial machine state

I no memory (M := {m0}; m0 = initial & only memory state)

I ∆ := {(z0, z1), (z1, z2), (z1, z1), (z2, z1), (z2, z2)}
I σZ := {z0, z1, z2}
I σ∆ := {PROB(p) | p ∈ {1, p1, p2, 1− p1, 1− p2}}
I τZ (zi) := zi , i ∈ {0, 1, 2}
I τ∆((z0, z1)) := PROB(1), τ∆((z1, z2)) := PROB(p1), . . .

6 / 46

Example: Simple 3-state GLSM (formal definition)

Z2Z0 Z1
PROB(1)

PROB(1–p1) PROB(1–p2)

PROB(p1)

PROB(p2)

I Z := {z0, z1, z2}; z0 = initial machine state

I no memory (M := {m0}; m0 = initial & only memory state)

I ∆ := {(z0, z1), (z1, z2), (z1, z1), (z2, z1), (z2, z2)}
I σZ := {z0, z1, z2}
I σ∆ := {PROB(p) | p ∈ {1, p1, p2, 1− p1, 1− p2}}
I τZ (zi) := zi , i ∈ {0, 1, 2}
I τ∆((z0, z1)) := PROB(1), τ∆((z1, z2)) := PROB(p1), . . .

6 / 46

Example: Simple 3-state GLSM (formal definition)

Z2Z0 Z1
PROB(1)

PROB(1–p1) PROB(1–p2)

PROB(p1)

PROB(p2)

I Z := {z0, z1, z2}; z0 = initial machine state

I no memory (M := {m0}; m0 = initial & only memory state)

I ∆ := {(z0, z1), (z1, z2), (z1, z1), (z2, z1), (z2, z2)}
I σZ := {z0, z1, z2}
I σ∆ := {PROB(p) | p ∈ {1, p1, p2, 1− p1, 1− p2}}
I τZ (zi) := zi , i ∈ {0, 1, 2}
I τ∆((z0, z1)) := PROB(1), τ∆((z1, z2)) := PROB(p1), . . .

6 / 46

Example: Simple 3-state GLSM (formal definition)

Z2Z0 Z1
PROB(1)

PROB(1–p1) PROB(1–p2)

PROB(p1)

PROB(p2)

I Z := {z0, z1, z2}; z0 = initial machine state

I no memory (M := {m0}; m0 = initial & only memory state)

I ∆ := {(z0, z1), (z1, z2), (z1, z1), (z2, z1), (z2, z2)}
I σZ := {z0, z1, z2}
I σ∆ := {PROB(p) | p ∈ {1, p1, p2, 1− p1, 1− p2}}
I τZ (zi) := zi , i ∈ {0, 1, 2}
I τ∆((z0, z1)) := PROB(1), τ∆((z1, z2)) := PROB(p1), . . .

6 / 46

Example: Simple 3-state GLSM (formal definition)

Z2Z0 Z1
PROB(1)

PROB(1–p1) PROB(1–p2)

PROB(p1)

PROB(p2)

I Z := {z0, z1, z2}; z0 = initial machine state

I no memory (M := {m0}; m0 = initial & only memory state)

I ∆ := {(z0, z1), (z1, z2), (z1, z1), (z2, z1), (z2, z2)}
I σZ := {z0, z1, z2}
I σ∆ := {PROB(p) | p ∈ {1, p1, p2, 1− p1, 1− p2}}
I τZ (zi) := zi , i ∈ {0, 1, 2}
I τ∆((z0, z1)) := PROB(1), τ∆((z1, z2)) := PROB(p1), . . .

6 / 46

I States types formally represent (subsidiary) search strategies,
whose definition is not part of the GLSM definition.

I Transition types formally represent mechanisms used for
switching between GLSM states.

I σZ , σ∆ should include only state and transition types that are
actually used in given GLSM (‘no junk’).

I Not all states in Z may actually be reachable when running a
given GLSM.

I Termination condition is not explicitly captured in GLSM
model, but considered part of the execution environment.

7 / 46

I States types formally represent (subsidiary) search strategies,
whose definition is not part of the GLSM definition.

I Transition types formally represent mechanisms used for
switching between GLSM states.

I σZ , σ∆ should include only state and transition types that are
actually used in given GLSM (‘no junk’).

I Not all states in Z may actually be reachable when running a
given GLSM.

I Termination condition is not explicitly captured in GLSM
model, but considered part of the execution environment.

7 / 46

I States types formally represent (subsidiary) search strategies,
whose definition is not part of the GLSM definition.

I Transition types formally represent mechanisms used for
switching between GLSM states.

I σZ , σ∆ should include only state and transition types that are
actually used in given GLSM (‘no junk’).

I Not all states in Z may actually be reachable when running a
given GLSM.

I Termination condition is not explicitly captured in GLSM
model, but considered part of the execution environment.

7 / 46

I States types formally represent (subsidiary) search strategies,
whose definition is not part of the GLSM definition.

I Transition types formally represent mechanisms used for
switching between GLSM states.

I σZ , σ∆ should include only state and transition types that are
actually used in given GLSM (‘no junk’).

I Not all states in Z may actually be reachable when running a
given GLSM.

I Termination condition is not explicitly captured in GLSM
model, but considered part of the execution environment.

7 / 46

I States types formally represent (subsidiary) search strategies,
whose definition is not part of the GLSM definition.

I Transition types formally represent mechanisms used for
switching between GLSM states.

I σZ , σ∆ should include only state and transition types that are
actually used in given GLSM (‘no junk’).

I Not all states in Z may actually be reachable when running a
given GLSM.

I Termination condition is not explicitly captured in GLSM
model, but considered part of the execution environment.

7 / 46

Example: Randomised Iterative Best Improvement with
Random Restart

BI

RW

PROB(1–p)CDET(R)

PROB(p)

CDET(R)

CPROB(not R,1–p)

C
P

R
O

B
(n

ot
 R

,p
)

CPROB(not R,p)

C
P

R
O

B
(n

ot
 R

,1
–p

)

RP

8 / 46

GLSM Semantics

Behaviour of a GLSM is specified by machine definition + run-time
environment comprising specifications of

I state types,

I transition types;

I problem instance to be solved,

I search space,

I solution set,

I neighbourhood relations for subsidiary SLS algorithms;

I termination predicate for overall search process.

9 / 46

GLSM Semantics

Behaviour of a GLSM is specified by machine definition + run-time
environment comprising specifications of

I state types,

I transition types;

I problem instance to be solved,

I search space,

I solution set,

I neighbourhood relations for subsidiary SLS algorithms;

I termination predicate for overall search process.

9 / 46

Run GLSM M:

set current machine state to z0; set current memory state to m0;

While termination criterion is not satisfied:

|| perform search step according to type of current machine state;
|| this results in a new search position
|||| select new machine state according to types of transitions
|| from current machine state, possibly depending on
|| search position and current memory state; this may
b change the current memory state

10 / 46

Run GLSM M:

set current machine state to z0; set current memory state to m0;

While termination criterion is not satisfied:

|| perform search step according to type of current machine state;
|| this results in a new search position
|||| select new machine state according to types of transitions
|| from current machine state, possibly depending on
|| search position and current memory state; this may
b change the current memory state

10 / 46

I The current search position is only changed by the subsidiary
search strategies associated with states, not as side-effect of
machine state transitions.

I The machine state and memory state are only changed by
state-transitions, not as side-effect of search steps. (Memory
state is viewed as part of higher-level search control.)

I The operation of M is uniquely characterised by the evolution
of machine state, memory state and search position over time.

11 / 46

I The current search position is only changed by the subsidiary
search strategies associated with states, not as side-effect of
machine state transitions.

I The machine state and memory state are only changed by
state-transitions, not as side-effect of search steps. (Memory
state is viewed as part of higher-level search control.)

I The operation of M is uniquely characterised by the evolution
of machine state, memory state and search position over time.

11 / 46

I The current search position is only changed by the subsidiary
search strategies associated with states, not as side-effect of
machine state transitions.

I The machine state and memory state are only changed by
state-transitions, not as side-effect of search steps. (Memory
state is viewed as part of higher-level search control.)

I The operation of M is uniquely characterised by the evolution
of machine state, memory state and search position over time.

11 / 46

GLSMs are factored representations of SLS strategies

I GLSM represents the way in which initialisation and step
function of a hybrid SLS method are composed from
respective functions of subsidiary component SLS methods.

I When modelling hybrid SLS methods using GLSMs, subsidiary
SLS methods should be as simple and pure as possible, leaving
search control to be represented explicitly at the GLSM level.

I Initialisation is modelled using GLSM states (advantage:
simplicity and uniformity of model).

I Termination of subsidiary search strategies are often reflected
in conditional transitions leaving respective GLSM states.

12 / 46

GLSMs are factored representations of SLS strategies

I GLSM represents the way in which initialisation and step
function of a hybrid SLS method are composed from
respective functions of subsidiary component SLS methods.

I When modelling hybrid SLS methods using GLSMs, subsidiary
SLS methods should be as simple and pure as possible, leaving
search control to be represented explicitly at the GLSM level.

I Initialisation is modelled using GLSM states (advantage:
simplicity and uniformity of model).

I Termination of subsidiary search strategies are often reflected
in conditional transitions leaving respective GLSM states.

12 / 46

GLSMs are factored representations of SLS strategies

I GLSM represents the way in which initialisation and step
function of a hybrid SLS method are composed from
respective functions of subsidiary component SLS methods.

I When modelling hybrid SLS methods using GLSMs, subsidiary
SLS methods should be as simple and pure as possible, leaving
search control to be represented explicitly at the GLSM level.

I Initialisation is modelled using GLSM states (advantage:
simplicity and uniformity of model).

I Termination of subsidiary search strategies are often reflected
in conditional transitions leaving respective GLSM states.

12 / 46

GLSMs are factored representations of SLS strategies

I GLSM represents the way in which initialisation and step
function of a hybrid SLS method are composed from
respective functions of subsidiary component SLS methods.

I When modelling hybrid SLS methods using GLSMs, subsidiary
SLS methods should be as simple and pure as possible, leaving
search control to be represented explicitly at the GLSM level.

I Initialisation is modelled using GLSM states (advantage:
simplicity and uniformity of model).

I Termination of subsidiary search strategies are often reflected
in conditional transitions leaving respective GLSM states.

12 / 46

State, Transition and Machine Types

In order to completely specify the search method represented by a
given GLSM, we need to define:

I the GLSM model (states, transitions, . . .);

I the search method associated with each state type, i.e., step
functions for the respective subsidiary SLS methods;

I the semantics of each transition type, i.e., under which
conditions respective transitions are executed, and how they
effect the memory state.

13 / 46

State, Transition and Machine Types

In order to completely specify the search method represented by a
given GLSM, we need to define:

I the GLSM model (states, transitions, . . .);

I the search method associated with each state type, i.e., step
functions for the respective subsidiary SLS methods;

I the semantics of each transition type, i.e., under which
conditions respective transitions are executed, and how they
effect the memory state.

13 / 46

State, Transition and Machine Types

In order to completely specify the search method represented by a
given GLSM, we need to define:

I the GLSM model (states, transitions, . . .);

I the search method associated with each state type, i.e., step
functions for the respective subsidiary SLS methods;

I the semantics of each transition type, i.e., under which
conditions respective transitions are executed, and how they
effect the memory state.

13 / 46

State types

I State type semantics are often most conveniently specified
procedurally.

I initialising state type = state type τ for which search position
after one τ step is independent of search position before step.

initialising state = state of initialising type.

I parametric state type = state type τ whose semantics
depends on memory state.
parametric state = state of parametric type.

14 / 46

State types

I State type semantics are often most conveniently specified
procedurally.

I initialising state type = state type τ for which search position
after one τ step is independent of search position before step.

initialising state = state of initialising type.

I parametric state type = state type τ whose semantics
depends on memory state.
parametric state = state of parametric type.

14 / 46

State types

I State type semantics are often most conveniently specified
procedurally.

I initialising state type = state type τ for which search position
after one τ step is independent of search position before step.

initialising state = state of initialising type.

I parametric state type = state type τ whose semantics
depends on memory state.
parametric state = state of parametric type.

14 / 46

Transitions types

I Unconditional deterministic transitions – type DET:

I executed always and independently of memory state or search
position;

I every GLSM state can have at most one outgoing DET
transition;

I frequently used for leaving initialising states.

I Conditional probabilistic transitions – type PROB(p):

I executed with probability p, independently of memory state or
search position;

I probabilities of PROB transitions leaving any given state must
sum to one.

15 / 46

Transitions types

I Unconditional deterministic transitions – type DET:

I executed always and independently of memory state or search
position;

I every GLSM state can have at most one outgoing DET
transition;

I frequently used for leaving initialising states.

I Conditional probabilistic transitions – type PROB(p):

I executed with probability p, independently of memory state or
search position;

I probabilities of PROB transitions leaving any given state must
sum to one.

15 / 46

I DET transitions are a special case of PROB transitions.

I For a GLSM M any state that can be reached from initial
state z0 by following a chain of PROB(p) transitions with
p > 0 will eventually be reached with arbitrarily high
probability in any sufficiently long run of M.

I In any state z with a PROB(p) self-transition (z , z) with
p > 0, the number of GLSM steps before leaving z is
distributed geometrically with mean and variance 1/p.

16 / 46

I DET transitions are a special case of PROB transitions.

I For a GLSM M any state that can be reached from initial
state z0 by following a chain of PROB(p) transitions with
p > 0 will eventually be reached with arbitrarily high
probability in any sufficiently long run of M.

I In any state z with a PROB(p) self-transition (z , z) with
p > 0, the number of GLSM steps before leaving z is
distributed geometrically with mean and variance 1/p.

16 / 46

I DET transitions are a special case of PROB transitions.

I For a GLSM M any state that can be reached from initial
state z0 by following a chain of PROB(p) transitions with
p > 0 will eventually be reached with arbitrarily high
probability in any sufficiently long run of M.

I In any state z with a PROB(p) self-transition (z , z) with
p > 0, the number of GLSM steps before leaving z is
distributed geometrically with mean and variance 1/p.

16 / 46

Transitions types

I Conditional probabilistic transitions – type CPROB(C , p):

I executed with probability proportional to p iff condition
predicate C is satisfied;

I all CPROB transitions from the current GLSM state whose
condition predicates are not satisfied are blocked, i.e., cannot
be executed.

I Special cases of CPROB(C , p) transitions:

I PROB(p) transitions;
I conditional deterministic transitions, type CDET(C).

I Condition predicates should be efficiently computable (ideally:
≤ linear time w.r.t. size of given problem instance).

17 / 46

Transitions types

I Conditional probabilistic transitions – type CPROB(C , p):

I executed with probability proportional to p iff condition
predicate C is satisfied;

I all CPROB transitions from the current GLSM state whose
condition predicates are not satisfied are blocked, i.e., cannot
be executed.

I Special cases of CPROB(C , p) transitions:

I PROB(p) transitions;
I conditional deterministic transitions, type CDET(C).

I Condition predicates should be efficiently computable (ideally:
≤ linear time w.r.t. size of given problem instance).

17 / 46

Commonly used simple condition predicates

> always true

count(k) total number of GLSM steps ≥ k
countm(k) total number of GLSM steps modulo k = 0

scount(k) number of GLSM steps in current state ≥ k
scountm(k) number of GLSM steps in current state modulo k = 0

lmin current candidate solution is a local minimum w.r.t.
the given neighbourhood relation

evalf(y) current evaluation function value ≤ y

noimpr(k) incumbent candidate solution has not been improved
within the last k steps

All based on local information; can also be used in negated form.

18 / 46

Commonly used simple condition predicates

> always true

count(k) total number of GLSM steps ≥ k
countm(k) total number of GLSM steps modulo k = 0

scount(k) number of GLSM steps in current state ≥ k
scountm(k) number of GLSM steps in current state modulo k = 0

lmin current candidate solution is a local minimum w.r.t.
the given neighbourhood relation

evalf(y) current evaluation function value ≤ y

noimpr(k) incumbent candidate solution has not been improved
within the last k steps

All based on local information; can also be used in negated form.

18 / 46

Transition actions

I Associated with individual transitions; provide mechanism for
modifying current memory states.

I Performed whenever GLSM executes respective transition.

I Modify memory state only, cannot modify GLSM state or
search position.

I Have read-only access to search position and can hence be
used to memorise current candidate solution.

I Can be added to any of the previously defined transition types.

19 / 46

Modelling SLS Methods Using GLSMs

Uninformed Picking and Uninformed Random Walk

RP

DET

RP RW
DET

DET

procedure step-RP(π, s)
input: problem instance π ∈ Π,

candidate solution s ∈ S(π)
output: candidate solution s ∈ S(π)

s ′ := selectRandom(S);
return s ′

end step-RP

procedure step-RW(π, s)
input: problem instance π ∈ Π,

candidate solution s ∈ S(π)
output: candidate solution s ∈ S(π)

s ′ := selectRandom(N(s));
return s ′

end step-RW

21 / 46

Ant Colony Optimisation

CS

Cl

LS

CDET(CC)

DET

CDET(not CL)

CDET(CL):
updateTrails

initTrails

CDET(not CC)

I The condition predicate CC determines the end of the
construction phase.

I The condition predicate CL determines the end of the local
search phase; in many algorithms, CL := lmin.

22 / 46

Ant Colony Optimisation

CS

Cl

LS

CDET(CC)

DET

CDET(not CL)

CDET(CL):
updateTrails

initTrails

CDET(not CC)

I The condition predicate CC determines the end of the
construction phase.

I The condition predicate CL determines the end of the local
search phase; in many algorithms, CL := lmin.

22 / 46

Ant Colony Optimisation

CS

Cl

LS

CDET(CC)

DET

CDET(not CL)

CDET(CL):
updateTrails

initTrails

CDET(not CC)

I The condition predicate CC determines the end of the
construction phase.

I The condition predicate CL determines the end of the local
search phase; in many algorithms, CL := lmin.

22 / 46

Fitness Landscape Characterisation

I study the search space

I description of the search space ‘geometry’

I to understand what makes problems difficult

I to design effective search algorithms

23 / 46

Fitness landscapes in biology

Origin in biological science: Wright 1932 [45]

Definition of fitness landscape
Multimodal, rugged and neutral fitness landscapes

Local Optima Networks

Fitness landscapes in biology

Origin in biological science :
Wright 1932 [45]

Biological evolution :

Metaphorical uphill struggle
across a ”fitness landscape”

mountain peaks represent
high ”fitness” (ability to
survive),
valleys represent low fitness.

Evolution proceeds : population
of organisms performs an
”adaptive walk”

S. Verel Fitness landscapes and graphs

Fitness landscape is a graph (S, N , f)

I S is the search space

I N : S → 2S is a neighbourhood relation

I f : S → R is a objective function

24 / 46

Fitness landscapes are graphs

I nodes are solutions which have a value (fitness),

I edges are defined by the neighbourhood relation.

Definition of fitness landscape
Multimodal, rugged and neutral fitness landscapes

Local Optima Networks

Fitness landscape is a graph

Fitness landscape is a (oriented) graph (S,N) with valuated
nodes given by f

Model of the search space, point of view of local search

Non specific to a particular local search

�

�

�

�

�

��

��

��

�

��

	

��

��

��

�

S. Verel Fitness landscapes and graphs

25 / 46

Fitness landscapes are graphs

Specific local search puts probability transitions on edges according
to f and history of the search

Definition of fitness landscape
Multimodal, rugged and neutral fitness landscapes

Local Optima Networks

Fitness landscape is a graph

Fitness landscape is a (oriented) graph (S,N) with valuated
nodes given by f

Model of the search space, point of view of local search

Non specific to a particular local search

�

�

�

�

�

��

��

��

�

��

	

��

��

��

�

�
�

�
�

�
�

�
�
�
�

�
�
�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

� �
�

�
�

�
�

�
�

�
�

�
�

�
�

Specific local search puts probability transitions on edges

according to f and history of the search

S. Verel Fitness landscapes and graphs

26 / 46

How does fitness landscape characterisation work?

I sample the neighbourhood to have information on local
features of the search space

I from local information: deduce some global features like
general shape of search space, ‘difficulty’, etc.

I study of the geometry of the landscape allows to study the
difficulty, and design a good optimisation algorithm

27 / 46

What makes a problem difficult to optimise?

Number and size of attractive basins (Garnier et al [10])

Definition of fitness landscape
Multimodal, rugged and neutral fitness landscapes

Local Optima Networks

Multimodal and rugged fitness landscapes
Neutral fitness landscapes

Walking on fitness landscapes

Search space

Fitness

 350
 355
 360
 365
 370
 375
 380
 385
 390
 395
 400
 405

 0 2000 4000 6000 8000 10000

Fi
tn

es
s

Step

fitness vs. step of a random walk
(example of max-SAT problem)

Random walk : (s1, s2, . . .)
such that si+1 2 N (si) and
equiprobability on N (si)

Fitness seems to be very
”chaotic”

Analysis the fitness during
the random walk as a signal

S. Verel Fitness landscapes and graphs
28 / 46

Ruggedness

Autocorrelation of time series of fitnesses (f (s1), f (s2), ...) along a
random walk (s1, s2, ...) [37] :

ρ(n) =
E [(f (si)− f)(f (si+n)− f)]

var(f (si))
(1)

Definition of fitness landscape
Multimodal, rugged and neutral fitness landscapes

Local Optima Networks

Multimodal and rugged fitness landscapes
Neutral fitness landscapes

Rugged/smooth fitness landscapes

 350
 355
 360
 365
 370
 375
 380
 385
 390
 395
 400
 405

 0 2000 4000 6000 8000 10000
Fi

tn
es

s
Step

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50

C
or

re
la

tio
n

rh
o(

n)

n

Max-SAT
NK

Autocorrelation of time series of
fitnesses (f (s1), f (s2), . . .) along
a random walk (s1, s2, . . .) [37] :

⇢(n) =
E [(f (si)� f̄)(f (si+n)� f̄)]

var(f (si))

autocorrelation length ⌧ = 1
⇢(1)

small ⌧ : rugged landscape

long ⌧ : smooth landscape

S. Verel Fitness landscapes and graphs

29 / 46

Results

Definition of fitness landscape
Multimodal, rugged and neutral fitness landscapes

Local Optima Networks

Multimodal and rugged fitness landscapes
Neutral fitness landscapes

Results on rugged fitness landscapes (Stadler 96 [28])

Ruggedness decreases with the size of thoses problems :
small variation has less e↵ect on the fitness values

Problem parameter ⇢(1)

symmetric TSP n number of towns 1� 4
n

anti-symmetric TSP n number of towns 1� 4
n�1

Graph Coloring Problem n number of nodes 1� 2↵
(↵�1)n

↵ number of colors

NK landscapes N number of proteins 1� K+1
N

K number of epistasis links

Works of Stadler, tutorial of D. Withley, A. Sutton,... et al.

Related to Laplacian graph, elementary landscapes

S. Verel Fitness landscapes and graphs

30 / 46

Fitness Distance Correlation (FDC) (Jones 95 [15])

Correlation between distance to global optimum and fitness

I given a set F = f1, f2, ..., fn of solution fitnesses

I with corresponding D = d1, d2, ..., d3 Hamming distances to
the nearest global optimum

fdc =
(fi − f)(di − d)

n

n∑
i=1

(2)

r =
fdc

σFσD
(3)

where σF and σD are the standard deviations of F and D.

31 / 46

FDC

Definition of fitness landscape
Multimodal, rugged and neutral fitness landscapes

Local Optima Networks

Multimodal and rugged fitness landscapes
Neutral fitness landscapes

Fitness Distance Correlation (FDC) (Jones 95 [15])
Correlation between distance to global optimum and fitness

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0 5 10 15 20 25

Fi
tn

es
s

Distance

Classification based on experimental studies :

⇢ < �0.15, easy optimization

⇢ > 0.15, hard optimization

�0.15 < ⇢ < 0.15, undecided zone

S. Verel Fitness landscapes and graphs

Classification based on experimental studies:

I ρ < 0.15→ easy optimization

I ρ > 0.15→ hard optimization

I 0.15 < ρ < 0.15→ undecided zone

32 / 46

Neutral Fitness Landscapes

Neutral sets: set of solutions with the same fitness
Neutral networks: includes neighbourhood information

I Redundant problem (symmetries, ...) (Goldberg 87 [12])

I Problem ‘not well’ defined or dynamic environment (Torres 04
[14])

Definition of fitness landscape
Multimodal, rugged and neutral fitness landscapes

Local Optima Networks

Multimodal and rugged fitness landscapes
Neutral fitness landscapes

Neutral Fitness Landscapes

Neutral theory (Kimura ⇡ 1960 [17])

Theory of mutation and random drift

A considerable number of mutations have no e↵ects on fitness
values

genotypes space

Fitness

plateaus

neutral degree

neutral networks
[Schuster 1994 [27],
RNA folding]

S. Verel Fitness landscapes and graphs

33 / 46

Neutrality and difficulty

I there is no definitive answer about neutrality / problem
hardness

I certainly, it is dependent on the ‘nature’ of neutrality

I no information is better than bad information : Hard trap
functions are more difficult than needle-in-a-haystack functions

34 / 46

Measuring neutrality: Density Of States

Definition of fitness landscape
Multimodal, rugged and neutral fitness landscapes

Local Optima Networks

Multimodal and rugged fitness landscapes
Neutral fitness landscapes

Neutral sets : Density Of States

Search space

Fitness

Set of solutions with fitness value

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 340 350 360 370 380 390 400

F
re

q
u

e
n

c
y

Fitness

Density of states (D.O.S.)

Introduce in physics
(Rosé 1996 [26])

Optimization
(Belaidouni, Hao 00 [4])

S. Verel Fitness landscapes and graphs

Definition of fitness landscape
Multimodal, rugged and neutral fitness landscapes

Local Optima Networks

Multimodal and rugged fitness landscapes
Neutral fitness landscapes

Neutral sets : Density Of States

Search space

Fitness

Set of solutions with fitness value

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 340 350 360 370 380 390 400
F

re
q

u
e

n
c
y

Fitness

Density of states (D.O.S.)

Introduce in physics
(Rosé 1996 [26])

Optimization
(Belaidouni, Hao 00 [4])

S. Verel Fitness landscapes and graphs

Tail of the distribution is an indicator of difficulty: the faster the
decay, the harder the problem

35 / 46

Measuring neutrality: Density Of States

Definition of fitness landscape
Multimodal, rugged and neutral fitness landscapes

Local Optima Networks

Multimodal and rugged fitness landscapes
Neutral fitness landscapes

Neutral sets : Density Of States

Search space

Fitness

Set of solutions with fitness value

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 340 350 360 370 380 390 400

F
re

q
u

e
n

c
y

Fitness

Density of states (D.O.S.)

Introduce in physics
(Rosé 1996 [26])

Optimization
(Belaidouni, Hao 00 [4])

S. Verel Fitness landscapes and graphs

Definition of fitness landscape
Multimodal, rugged and neutral fitness landscapes

Local Optima Networks

Multimodal and rugged fitness landscapes
Neutral fitness landscapes

Neutral sets : Density Of States

Search space

Fitness

Set of solutions with fitness value

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 340 350 360 370 380 390 400
F

re
q

u
e

n
c
y

Fitness

Density of states (D.O.S.)

Introduce in physics
(Rosé 1996 [26])

Optimization
(Belaidouni, Hao 00 [4])

S. Verel Fitness landscapes and graphs

Tail of the distribution is an indicator of difficulty: the faster the
decay, the harder the problem

35 / 46

Measuring evolvability: Fitness Cloud [Verel et al. 2003]

Ability to evolve: fitness in the neighbourhood compared to the
fitness of the solution

Definition of fitness landscape
Multimodal, rugged and neutral fitness landscapes

Local Optima Networks

Multimodal and rugged fitness landscapes
Neutral fitness landscapes

Neutral sets : Fitness Cloud [Verel et al. 2003]

Fitness f(s)

Fi
tn

es
s

f(o
p(

s)
)

Fitness f(s)

Fi
tn

es
s

f(o
p(

s)
)

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

(S,F , IP) : probability space

op : S ! S stochastic
operator of the local search

X (s) = f (s)

Y (s) = f (op(s))

Fitness Cloud of op

Conditional probability density
function of Y given X

S. Verel Fitness landscapes and graphs

Definition of fitness landscape
Multimodal, rugged and neutral fitness landscapes

Local Optima Networks

Multimodal and rugged fitness landscapes
Neutral fitness landscapes

Fitness cloud : Measure of evolvability

Fitness f(s)

Fi
tn

e
ss

 f
(o

p
(s

))

y=
x

Average

Stand. dev.

Min

Max
Prob. increase

Evolvability

Ability to evolve : fitness
in the neighborhood
compared to the fitness of
the solution

Probability of finding
better solutions

Average fitness of
better neighbor
solutions

Average and standard
deviation of fitnesses

S. Verel Fitness landscapes and graphs

36 / 46

Evolvability as an indication of problem difficulty

Definition of fitness landscape
Multimodal, rugged and neutral fitness landscapes

Local Optima Networks

Multimodal and rugged fitness landscapes
Neutral fitness landscapes

Fitness cloud : Comparison of di�culty

Fitness f(s)

Fi
tn

e
ss

 f
(o

p
(s

))

y=
x

Avg(op 1)

Avg(op 2)

Operator 1 > Operator 2

Because Average 1 more
correlated to fitness

Linked to autocorrelation

Average is often a line :

See works on Elementary
Landscapes (D. Wihtley,
F. Chicano and others)
See the idea of Negative
Slope Coe�cient (NSC)

S. Verel Fitness landscapes and graphs

37 / 46

Predicting fitness using fitness clouds

I Approximation of the fitness value after few steps of local
operator

I Indication on the quality of the operator

Definition of fitness landscape
Multimodal, rugged and neutral fitness landscapes

Local Optima Networks

Multimodal and rugged fitness landscapes
Neutral fitness landscapes

Fitness cloud
Prediction of fitness

Fitness f(s)

Fi
tn

e
ss

 f
(o

p
(s

))

y=
x

Average

f0 f1 f2 f3

Approximation (only
approximation) of the
fitness value after few
steps of local operator

Indication on the quality
of the operator

S. Verel Fitness landscapes and graphs 38 / 46

Neutral networks (Schuster 1994 [27])Definition of fitness landscape
Multimodal, rugged and neutral fitness landscapes

Local Optima Networks

Multimodal and rugged fitness landscapes
Neutral fitness landscapes

Neutral networks (Schuster 1994 [27])

genotypes space

Fitness

Fitness

Neutral Network

Doors

Basic definition of Neutral Network

Node = solution with same fitness value
Edge = neighborhood relation

S. Verel Fitness landscapes and graphs

39 / 46

Metrics of neutral networks

I Size of NN: number of nodes of NN,

I Neutral degree distribution

Definition of fitness landscape
Multimodal, rugged and neutral fitness landscapes

Local Optima Networks

Multimodal and rugged fitness landscapes
Neutral fitness landscapes

Neutral Networks : Inside Metrics

Size : 15 solutions
Distribution of size
overall landscapes

Neutral degree
distribution

Neutral Degree

Fr
eq

ue
nc

y

0 1 2 3 4 5 6 7

0
1

2
3

4
5

Autocorrelation of
neutral degree :

random walk on NN
autocorrelation of
degrees

S. Verel Fitness landscapes and graphs

40 / 46

Autocorrelation of neutral degree (Bastolla 03 [3])

Definition of fitness landscape
Multimodal, rugged and neutral fitness landscapes

Local Optima Networks

Multimodal and rugged fitness landscapes
Neutral fitness landscapes

Neutral Networks : Inside Metrics

3

2

6

6

4

2
Size : 15 solutions
Distribution of size
overall landscapes

Neutral degree
distribution

Autocorrelation of
neutral degree :

random walk on NN
autocorrelation of
degrees

S. Verel Fitness landscapes and graphs

I random walk on NN

I autocorrelation of degrees

41 / 46

Rate of innovation (Huynen 96 [13])
The number of new accessible structures (fitness) per mutation

Definition of fitness landscape
Multimodal, rugged and neutral fitness landscapes

Local Optima Networks

Multimodal and rugged fitness landscapes
Neutral fitness landscapes

Neutral Networks : Outside Metrics

Neutral Network

Fitness

Neutral random walk

S0
S3S2

S1

1 Rate of innovation
(Huynen 96 [13]) :
The number of new
accessible structures
(fitness) per mutation

2 Autocorrelation of
evolvability [34] :
autocorrelation of the
sequence
(evol(s0), evol(s1), . . .).

S. Verel Fitness landscapes and graphs

42 / 46

Predictors

Predictor definition:

I p′i =
f (s′i)−f (si)

f (s′i)

I p′′i =
f (s′′i)−f (si)

f (s′i)−f (si)

43 / 46

Predictive Local Search

Learning phase

I Predictor pool

{(p′1, p′′1), (p′2, p
′′
2), · · · , (p′n, p′′n)}

I Similarity measure

C =
|p′i−p′j |
|p′i |+|p′j |

+
|p′′i −p′′j |
|p′′i |+|p′′j |

44 / 46

Predictive Local Search (continued)

Testing phase

1. Create a random solution

2. Calculate its fitness

3. Perform a local search (hill climbing) for a certain number of
function evaluations

4. Calculate the fitness of the improved solution

5. Select the predictor that best matches the improvement in the
first step

6. Perform a local search to the local optimum

7. Calculate the fitness of the local optimum

8. Calculate the error in prediction

45 / 46

How hard is an optimisation problem?

Smooth Rugged

46 / 46

So what?

I The nature of the search-space is the key factor determining
the performance of the optimisation algorithm,

I Define/characterize the search-space,

I Analyse what makes problems difficult,
I Guide the optimisation process

I Select the right search strategy

47 / 46

	State, Transition and Machine Types
	Modelling SLS Methods Using GLSMs

