Generalised Local Search Machines and Fitness Landscape Characterisation

FIT4012 Advanced topics in computational science

This material is based on the book 'Stochastic Local Search: Foundations and Applications' by Holger H. Hoos and Thomas Stützle (Morgan Kaufmann, 2004) - see www.sls-book.net for further information.

August 26, 2014

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

The Basic GLSM Model

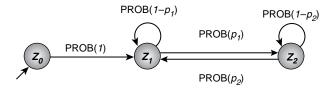
Many high-performance SLS methods are based on combinations of *simple (pure) search strategies (e.g.*, ILS, MA).

These hybrid SLS methods operate on two levels:

- Iower level: execution of underlying simple search strategies
- higher level: activation of and transition between lower-level search strategies.

Key idea: Explicitly represent higher-level search control mechanism in the form of a *finite state machine*.

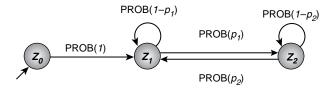
Example: Simple 3-state GLSM



 States z₀, z₁, z₂ represent simple search strategies, such as Random Picking (for initialisation), Iterative Best Improvement and Uninformed Random Walk.

 PROB(p) refers to a probabilistic state transition with probability p after each search step.

Example: Simple 3-state GLSM



- States z₀, z₁, z₂ represent simple search strategies, such as Random Picking (for initialisation), Iterative Best Improvement and Uninformed Random Walk.
- PROB(p) refers to a probabilistic state transition with probability p after each search step.

Generalised Local Search Machines (GLSMs)

- States \cong simple search strategies.
- State transitions \cong search control.
- GLSM \mathcal{M} starts in initial state.
- In each iteration:
 - ► M executes one search step associated with its current state z;
 - ▶ *M* selects a new state (which may be the same as *z*) in a nondeterministic manner.

 \blacktriangleright ${\cal M}$ terminates when a given termination criterion is satisfied.

Generalised Local Search Machines (GLSMs)

- States \cong simple search strategies.
- State transitions \cong search control.
- ▶ GLSM *M* starts in initial state.
- In each iteration:
 - ► *M* executes one search step associated with its current state *z*;
 - ► *M* selects a new state (which may be the same as *z*) in a nondeterministic manner.

• \mathcal{M} terminates when a given termination criterion is satisfied.

Generalised Local Search Machines (GLSMs)

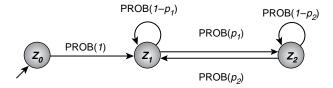
- States \cong simple search strategies.
- State transitions \cong search control.
- ▶ GLSM *M* starts in initial state.
- In each iteration:
 - ► *M* executes one search step associated with its current state *z*;
 - ▶ *M* selects a new state (which may be the same as *z*) in a nondeterministic manner.
- \blacktriangleright ${\cal M}$ terminates when a given termination criterion is satisfied.

- Z is a set of states;
- $z_0 \in Z$ is the *initial state*;
- M is a set of memory states (as in SLS definition)
- ▶ *m*⁰ is the *initial memory state* (as in SLS definition);
- $\Delta \subseteq Z \times Z$ is the *transition relation*;
- σ_Z and σ_Δ are sets of *state types* and *transition types*;
- ▶ $\tau_Z : Z \mapsto \sigma_Z$ and $\tau_\Delta : \Delta \mapsto \sigma_\Delta$ associate every state zand transition (z, z') with a state type $\sigma_Z(z)$ and transition type $\tau_\Delta((z, z'))$, respectively.

- Z is a set of states;
- $z_0 \in Z$ is the *initial state*;
- M is a set of memory states (as in SLS definition)
- ▶ *m*⁰ is the *initial memory state* (as in SLS definition);
- $\Delta \subseteq Z \times Z$ is the *transition relation*;
- σ_Z and σ_Δ are sets of *state types* and *transition types*;
- ▶ $\tau_Z : Z \mapsto \sigma_Z$ and $\tau_\Delta : \Delta \mapsto \sigma_\Delta$ associate every state zand transition (z, z') with a state type $\sigma_Z(z)$ and transition type $\tau_\Delta((z, z'))$, respectively.

- Z is a set of states;
- $z_0 \in Z$ is the *initial state*;
- M is a set of memory states (as in SLS definition)
- ▶ *m*⁰ is the *initial memory state* (as in SLS definition);
- $\Delta \subseteq Z \times Z$ is the *transition relation*;
- σ_Z and σ_{Δ} are sets of *state types* and *transition types*;
- ▶ $\tau_Z : Z \mapsto \sigma_Z$ and $\tau_\Delta : \Delta \mapsto \sigma_\Delta$ associate every state zand transition (z, z') with a state type $\sigma_Z(z)$ and transition type $\tau_\Delta((z, z'))$, respectively.

- Z is a set of states;
- $z_0 \in Z$ is the *initial state*;
- M is a set of memory states (as in SLS definition)
- ▶ *m*⁰ is the *initial memory state* (as in SLS definition);
- $\Delta \subseteq Z \times Z$ is the *transition relation*;
- σ_Z and σ_Δ are sets of *state types* and *transition types*;
- ► $\tau_Z : Z \mapsto \sigma_Z$ and $\tau_\Delta : \Delta \mapsto \sigma_\Delta$ associate every state zand transition (z, z') with a state type $\sigma_Z(z)$ and transition type $\tau_\Delta((z, z'))$, respectively.

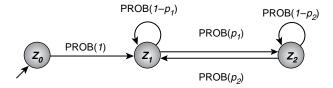


• $Z := \{z_0, z_1, z_2\}; z_0 =$ initial machine state

- ▶ no memory $(M := \{m_0\}; m_0 = \text{initial } \& \text{ only memory state})$
- $\blacktriangleright \Delta := \{ (z_0, z_1), (z_1, z_2), (z_1, z_1), (z_2, z_1), (z_2, z_2) \}$

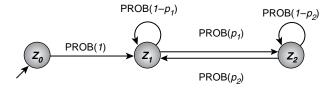
•
$$\sigma_Z := \{z_0, z_1, z_2\}$$

- $\sigma_{\Delta} := \{ \mathsf{PROB}(p) \mid p \in \{1, p_1, p_2, 1 p_1, 1 p_2 \} \}$
- ▶ $\tau_Z(z_i) := z_i, \quad i \in \{0, 1, 2\}$
- ► $\tau_{\Delta}((z_0, z_1)) := \mathsf{PROB}(1), \ \tau_{\Delta}((z_1, z_2)) := \mathsf{PROB}(p_1), \ \dots$



► Z := {z₀, z₁, z₂}; z₀ = initial machine state

- no memory $(M := \{m_0\}; m_0 = \text{initial } \& \text{ only memory state})$
- $\blacktriangleright \Delta := \{ (z_0, z_1), (z_1, z_2), (z_1, z_1), (z_2, z_1), (z_2, z_2) \}$
- $\sigma_Z := \{z_0, z_1, z_2\}$
- $\sigma_{\Delta} := \{ \mathsf{PROB}(p) \mid p \in \{1, p_1, p_2, 1 p_1, 1 p_2 \} \}$
- ▶ $\tau_Z(z_i) := z_i, \quad i \in \{0, 1, 2\}$
- ► $\tau_{\Delta}((z_0, z_1)) := \mathsf{PROB}(1), \ \tau_{\Delta}((z_1, z_2)) := \mathsf{PROB}(p_1), \ \dots$



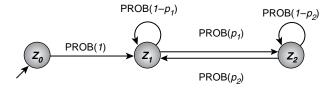
• $Z := \{z_0, z_1, z_2\}$; $z_0 = initial machine state$

• no memory $(M := \{m_0\}; m_0 = \text{initial } \& \text{ only memory state})$

•
$$\Delta := \{(z_0, z_1), (z_1, z_2), (z_1, z_1), (z_2, z_1), (z_2, z_2)\}$$

•
$$\sigma_Z := \{z_0, z_1, z_2\}$$

- $\sigma_{\Delta} := \{ \mathsf{PROB}(p) \mid p \in \{1, p_1, p_2, 1 p_1, 1 p_2 \} \}$
- ▶ $\tau_Z(z_i) := z_i, \quad i \in \{0, 1, 2\}$
- ► $\tau_{\Delta}((z_0, z_1)) := \mathsf{PROB}(1), \ \tau_{\Delta}((z_1, z_2)) := \mathsf{PROB}(p_1), \ \dots$

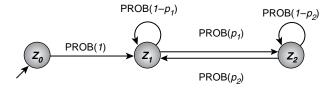


• $Z := \{z_0, z_1, z_2\}$; $z_0 = initial machine state$

- no memory $(M := \{m_0\}; m_0 = \text{initial } \& \text{ only memory state})$
- $\Delta := \{(z_0, z_1), (z_1, z_2), (z_1, z_1), (z_2, z_1), (z_2, z_2)\}$

•
$$\sigma_Z := \{z_0, z_1, z_2\}$$

- $\sigma_{\Delta} := \{ \mathsf{PROB}(p) \mid p \in \{1, p_1, p_2, 1 p_1, 1 p_2 \} \}$
- ▶ $\tau_Z(z_i) := z_i, \quad i \in \{0, 1, 2\}$
- ► $\tau_{\Delta}((z_0, z_1)) := \mathsf{PROB}(1), \ \tau_{\Delta}((z_1, z_2)) := \mathsf{PROB}(p_1), \ \dots$



• $Z := \{z_0, z_1, z_2\}$; $z_0 = initial machine state$

- no memory $(M := \{m_0\}; m_0 = \text{initial } \& \text{ only memory state})$
- $\Delta := \{(z_0, z_1), (z_1, z_2), (z_1, z_1), (z_2, z_1), (z_2, z_2)\}$

•
$$\sigma_Z := \{z_0, z_1, z_2\}$$

• $\sigma_{\Delta} := \{ \mathsf{PROB}(p) \mid p \in \{1, p_1, p_2, 1 - p_1, 1 - p_2 \} \}$

►
$$\tau_Z(z_i) := z_i, \quad i \in \{0, 1, 2\}$$

► $\tau_{\Delta}((z_0, z_1)) := \mathsf{PROB}(1), \ \tau_{\Delta}((z_1, z_2)) := \mathsf{PROB}(p_1), \ \dots$

- States types formally represent (subsidiary) search strategies, whose definition is not part of the GLSM definition.
- Transition types formally represent mechanisms used for switching between GLSM states.
- ► σ_Z, σ_Δ should include only state and transition types that are actually used in given GLSM ('no junk').
- ▶ Not all states in Z may actually be reachable when running a given GLSM.
- Termination condition is not explicitly captured in GLSM model, but considered part of the execution environment.

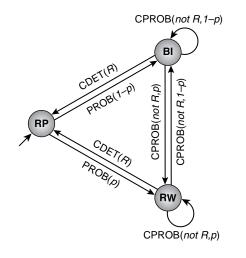
- States types formally represent (subsidiary) search strategies, whose definition is not part of the GLSM definition.
- Transition types formally represent mechanisms used for switching between GLSM states.
- ► σ_Z, σ_Δ should include only state and transition types that are actually used in given GLSM ('no junk').
- ▶ Not all states in Z may actually be reachable when running a given GLSM.
- Termination condition is not explicitly captured in GLSM model, but considered part of the execution environment.

- States types formally represent (subsidiary) search strategies, whose definition is not part of the GLSM definition.
- Transition types formally represent mechanisms used for switching between GLSM states.
- σ_Z, σ_Δ should include only state and transition types that are actually used in given GLSM ('no junk').
- Not all states in Z may actually be reachable when running a given GLSM.
- Termination condition is not explicitly captured in GLSM model, but considered part of the execution environment.

- States types formally represent (subsidiary) search strategies, whose definition is not part of the GLSM definition.
- Transition types formally represent mechanisms used for switching between GLSM states.
- σ_Z, σ_Δ should include only state and transition types that are actually used in given GLSM ('no junk').
- Not all states in Z may actually be reachable when running a given GLSM.
- Termination condition is not explicitly captured in GLSM model, but considered part of the execution environment.

- States types formally represent (subsidiary) search strategies, whose definition is not part of the GLSM definition.
- Transition types formally represent mechanisms used for switching between GLSM states.
- σ_Z, σ_Δ should include only state and transition types that are actually used in given GLSM ('no junk').
- Not all states in Z may actually be reachable when running a given GLSM.
- Termination condition is not explicitly captured in GLSM model, but considered part of the execution environment.

Example: Randomised Iterative Best Improvement with Random Restart



GLSM Semantics

Behaviour of a GLSM is specified by *machine definition* + *run-time environment* comprising specifications of

- state types,
- transition types;
- problem instance to be solved,
- search space,
- solution set,
- neighbourhood relations for subsidiary SLS algorithms;
- termination predicate for overall search process.

GLSM Semantics

Behaviour of a GLSM is specified by *machine definition* + *run-time environment* comprising specifications of

- state types,
- transition types;
- problem instance to be solved,
- search space,
- solution set,
- neighbourhood relations for subsidiary SLS algorithms;
- termination predicate for overall search process.

Run GLSM \mathcal{M} :

set *current machine state* to z_0 ; set *current memory state* to m_0 ; While *termination criterion* is not satisfied:

perform *search step* according to type of current machine state; this results in a new *search position*

select *new machine state* according to *types of transitions* from *current machine state*, possibly depending on *search position* and *current memory state*; this may change the *current memory state*

Run GLSM \mathcal{M} :

set *current machine state* to z_0 ; set *current memory state* to m_0 ;

While termination criterion is not satisfied:

perform *search step* according to type of current machine state; this results in a new *search position*

select *new machine state* according to *types of transitions* from *current machine state*, possibly depending on *search position* and *current memory state*; this may change the *current memory state*

- The current search position is only changed by the subsidiary search strategies associated with states, not as side-effect of machine state transitions.
- The machine state and memory state are only changed by state-transitions, not as side-effect of search steps. (Memory state is viewed as part of higher-level search control.)
- ▶ The operation of *M* is uniquely characterised by the evolution of *machine state*, *memory state* and *search position* over time.

- The current search position is only changed by the subsidiary search strategies associated with states, not as side-effect of machine state transitions.
- The machine state and memory state are only changed by state-transitions, not as side-effect of search steps. (Memory state is viewed as part of higher-level search control.)
- ▶ The operation of *M* is uniquely characterised by the evolution of *machine state*, *memory state* and *search position* over time.

- The current search position is only changed by the subsidiary search strategies associated with states, not as side-effect of machine state transitions.
- The machine state and memory state are only changed by state-transitions, not as side-effect of search steps. (Memory state is viewed as part of higher-level search control.)
- ► The operation of *M* is uniquely characterised by the evolution of *machine state*, *memory state* and *search position* over time.

- GLSM represents the way in which *initialisation* and *step* function of a hybrid SLS method are composed from respective functions of subsidiary component SLS methods.
- When modelling hybrid SLS methods using GLSMs, subsidiary SLS methods should be as simple and pure as possible, leaving search control to be represented explicitly at the GLSM level.
- Initialisation is modelled using GLSM states (advantage: simplicity and uniformity of model).
- Termination of subsidiary search strategies are often reflected in conditional transitions leaving respective GLSM states.

- GLSM represents the way in which *initialisation* and *step* function of a hybrid SLS method are composed from respective functions of subsidiary component SLS methods.
- When modelling hybrid SLS methods using GLSMs, subsidiary SLS methods should be as simple and pure as possible, leaving search control to be represented explicitly at the GLSM level.
- Initialisation is modelled using GLSM states (advantage: simplicity and uniformity of model).
- Termination of subsidiary search strategies are often reflected in conditional transitions leaving respective GLSM states.

- GLSM represents the way in which *initialisation* and *step* function of a hybrid SLS method are composed from respective functions of *subsidiary component SLS methods*.
- When modelling hybrid SLS methods using GLSMs, subsidiary SLS methods should be as simple and pure as possible, leaving search control to be represented explicitly at the GLSM level.
- Initialisation is modelled using GLSM states (advantage: simplicity and uniformity of model).
- Termination of subsidiary search strategies are often reflected in conditional transitions leaving respective GLSM states.

- GLSM represents the way in which *initialisation* and *step* function of a hybrid SLS method are composed from respective functions of *subsidiary component SLS methods*.
- When modelling hybrid SLS methods using GLSMs, subsidiary SLS methods should be as simple and pure as possible, leaving search control to be represented explicitly at the GLSM level.
- Initialisation is modelled using GLSM states (advantage: simplicity and uniformity of model).
- Termination of subsidiary search strategies are often reflected in conditional transitions leaving respective GLSM states.

State, Transition and Machine Types

In order to completely specify the search method represented by a given GLSM, we need to define:

- ▶ the GLSM model (states, transitions, ...);
- the search method associated with each state type, i.e., step functions for the respective subsidiary SLS methods;
- the semantics of each transition type, i.e., under which conditions respective transitions are executed, and how they effect the memory state.

State, Transition and Machine Types

In order to completely specify the search method represented by a given GLSM, we need to define:

- the GLSM model (states, transitions, ...);
- the search method associated with each state type, i.e., step functions for the respective subsidiary SLS methods;
- the semantics of each transition type, i.e., under which conditions respective transitions are executed, and how they effect the memory state.

State, Transition and Machine Types

In order to completely specify the search method represented by a given GLSM, we need to define:

- the GLSM model (states, transitions, ...);
- the search method associated with each state type, i.e., step functions for the respective subsidiary SLS methods;
- the semantics of each transition type, i.e., under which conditions respective transitions are executed, and how they effect the memory state.

State types

 State type semantics are often most conveniently specified procedurally.

 initialising state type = state type τ for which search position after one τ step is independent of search position before step.
 initialising state = state of initialising type.

parametric state type = state type \(\tau\) whose semantics depends on memory state.
 parametric state = state of parametric type.

State types

 State type semantics are often most conveniently specified procedurally.

initialising state type = state type τ for which search position after one τ step is independent of search position before step.

initialising state = state of initialising type.

parametric state type = state type τ whose semantics depends on memory state.
 parametric state = state of parametric type.

State types

 State type semantics are often most conveniently specified procedurally.

initialising state type = state type τ for which search position after one τ step is independent of search position before step.

14 / 46

initialising state = state of initialising type.

 parametric state type = state type τ whose semantics depends on memory state.
 parametric state = state of parametric type.

Transitions types

- ► Unconditional deterministic transitions type DET:
 - executed always and independently of memory state or search position;
 - every GLSM state can have at most one outgoing DET transition;
 - frequently used for leaving initialising states.
- Conditional probabilistic transitions type PROB(p):
 - executed with probability p, independently of memory state or search position;
 - probabilities of PROB transitions leaving any given state must sum to one.

Transitions types

- ► Unconditional deterministic transitions type DET:
 - executed always and independently of memory state or search position;
 - every GLSM state can have at most one outgoing DET transition;
 - frequently used for leaving initialising states.
- Conditional probabilistic transitions type PROB(p):
 - executed with probability p, independently of memory state or search position;
 - probabilities of PROB transitions leaving any given state must sum to one.

▶ DET transitions are a special case of PROB transitions.

- For a GLSM *M* any state that can be reached from initial state z₀ by following a chain of PROB(p) transitions with p > 0 will eventually be reached with arbitrarily high probability in any sufficiently long run of *M*.
- In any state z with a PROB(p) self-transition (z, z) with p > 0, the number of GLSM steps before leaving z is distributed geometrically with mean and variance 1/p.

- DET transitions are a special case of PROB transitions.
- ► For a GLSM *M* any state that can be reached from initial state z₀ by following a chain of PROB(p) transitions with p > 0 will eventually be reached with arbitrarily high probability in any sufficiently long run of *M*.
- In any state z with a PROB(p) self-transition (z, z) with p > 0, the number of GLSM steps before leaving z is distributed geometrically with mean and variance 1/p.

- DET transitions are a special case of PROB transitions.
- ► For a GLSM *M* any state that can be reached from initial state z₀ by following a chain of PROB(p) transitions with p > 0 will eventually be reached with arbitrarily high probability in any sufficiently long run of *M*.
- In any state z with a PROB(p) self-transition (z, z) with p > 0, the number of GLSM steps before leaving z is distributed geometrically with mean and variance 1/p.

Transitions types

- ► Conditional probabilistic transitions type CPROB(C, p):
 - executed with probability proportional to p iff condition predicate C is satisfied;
 - all CPROB transitions from the current GLSM state whose condition predicates are not satisfied are *blocked*, *i.e.*, cannot be executed.
- ▶ Special cases of CPROB(*C*, *p*) transitions:
 - PROB(p) transitions;
 - conditional deterministic transitions, type CDET(C).
- Condition predicates should be efficiently computable (ideally: linear time w.r.t. size of given problem instance).

Transitions types

- ► Conditional probabilistic transitions type CPROB(C, p):
 - executed with probability proportional to p iff condition predicate C is satisfied;
 - all CPROB transitions from the current GLSM state whose condition predicates are not satisfied are *blocked*, *i.e.*, cannot be executed.
- ► Special cases of CPROB(*C*, *p*) transitions:
 - PROB(p) transitions;
 - conditional deterministic transitions, type CDET(C).
- Condition predicates should be efficiently computable (ideally: < linear time w.r.t. size of given problem instance).</p>

Commonly used simple condition predicates

⊤ always true

$\operatorname{count}(k)$ $\operatorname{countm}(k)$	total number of GLSM steps $\geq k$ total number of GLSM steps modulo $k=0$	
<pre>scount(k) scountm(k)</pre>	number of GLSM steps in current state $\geq k$ number of GLSM steps in current state modulo $k = 0$	
Imin	current candidate solution is a local minimum w.r.t. the given neighbourhood relation	
evalf(y)	current evaluation function value $\leq y$	
noimpr(k)	incumbent candidate solution has not been improved within the last k steps	

All based on local information; can also be used in negated form.

Commonly used simple condition predicates

\top always true

$\operatorname{count}(k)$ $\operatorname{countm}(k)$	total number of GLSM steps $\geq k$ total number of GLSM steps modulo $k=0$	
<pre>scount(k) scountm(k)</pre>	number of GLSM steps in current state $\geq k$ number of GLSM steps in current state modulo $k = 0$	
lmin	current candidate solution is a local minimum w.r.t. the given neighbourhood relation	
evalf(y)	current evaluation function value $\leq y$	
noimpr(<i>k</i>)	incumbent candidate solution has not been improved within the last k steps	

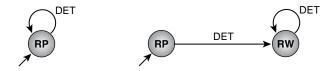
All based on local information; can also be used in negated form.

Transition actions

- Associated with individual transitions; provide mechanism for modifying current memory states.
- Performed whenever GLSM executes respective transition.
- Modify memory state only, *cannot* modify GLSM state or search position.
- Have read-only access to search position and can hence be used to memorise current candidate solution.
- Can be added to any of the previously defined transition types.

Modelling SLS Methods Using GLSMs

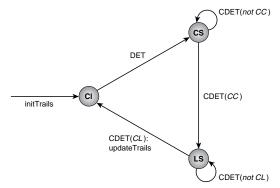
Uninformed Picking and Uninformed Random Walk



procedure step- $RP(\pi, s)$ input: problem instance $\pi \in \Pi$, candidate solution $s \in S(\pi)$ output: candidate solution $s \in S(\pi)$ s' := selectRandom(S); return s'end step-RP

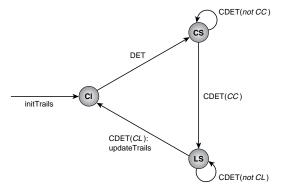
procedure step- $RW(\pi, s)$ input: problem instance $\pi \in \Pi$, candidate solution $s \in S(\pi)$ output: candidate solution $s \in S(\pi)$ s' := selectRandom(N(s));return s'end step-RW

Ant Colony Optimisation



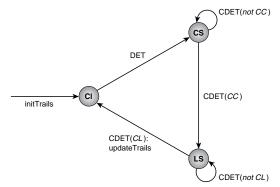
- The condition predicate CC determines the end of the construction phase.
- ▶ The condition predicate *CL* determines the end of the local search phase; in many algorithms, *CL* := lmin.

Ant Colony Optimisation



- The condition predicate CC determines the end of the construction phase.
- ▶ The condition predicate *CL* determines the end of the local search phase; in many algorithms, *CL* := lmin.

Ant Colony Optimisation



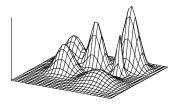
- The condition predicate CC determines the end of the construction phase.
- ► The condition predicate CL determines the end of the local search phase; in many algorithms, CL := Imin.

Fitness Landscape Characterisation

- study the search space
- description of the search space 'geometry'
- to understand what makes problems difficult
- to design effective search algorithms

Fitness landscapes in biology

Origin in biological science: Wright 1932 [45]

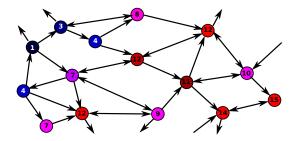


Fitness landscape is a graph (S, N, f)

- ► *S* is the search space
- $N: S \rightarrow 2^S$ is a neighbourhood relation
- $f: S \rightarrow R$ is a objective function

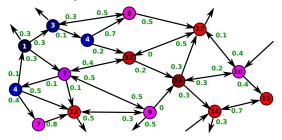
Fitness landscapes are graphs

- nodes are solutions which have a value (fitness),
- edges are defined by the neighbourhood relation.



Fitness landscapes are graphs

Specific local search puts probability transitions on edges according to f and history of the search

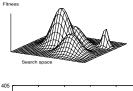


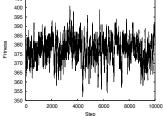
How does fitness landscape characterisation work?

- sample the neighbourhood to have information on local features of the search space
- from local information: deduce some global features like general shape of search space, 'difficulty', etc.
- study of the geometry of the landscape allows to study the difficulty, and design a good optimisation algorithm

What makes a problem difficult to optimise?

Number and size of attractive basins (Garnier et al [10])

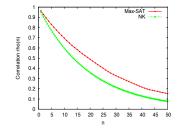




Ruggedness

Autocorrelation of time series of fitnesses $(f(s_1), f(s_2), ...)$ along a random walk $(s_1, s_2, ...)$ [37] :

$$\rho(n) = \frac{E[(f(s_i) - \overline{f})(f(s_{i+n}) - \overline{f})]}{var(f(s_i))}$$
(1)



Results

Problem	parameter	$\rho(1)$
symmetric TSP	<i>n</i> number of towns	$1 - \frac{4}{n}$
anti-symmetric TSP	n number of towns	$1 - \frac{4}{n-1}$
Graph Coloring Problem	<i>n</i> number of nodes	$1 - \frac{2\alpha}{(\alpha - 1)n}$
	lpha number of colors	()
NK landscapes	N number of proteins	$1 - \frac{K+1}{N}$
	K number of epistasis links	

Fitness Distance Correlation (FDC) (Jones 95 [15])

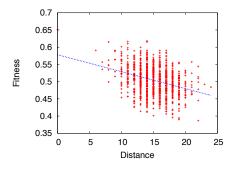
Correlation between distance to global optimum and fitness

- given a set $F = f_1, f_2, ..., f_n$ of solution fitnesses
- ▶ with corresponding D = d₁, d₂, ..., d₃ Hamming distances to the nearest global optimum

$$fdc = \frac{(f_i - \overline{f})(d_i - \overline{d})}{n} \sum_{i=1}^{n}$$
(2)
$$r = \frac{fdc}{\sigma_F \sigma_D}$$
(3)

where σ_F and σ_D are the standard deviations of F and D.

FDC



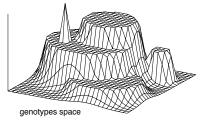
Classification based on experimental studies:

- $ho < 0.15 \rightarrow$ easy optimization
- $\rho > 0.15 \rightarrow hard optimization$
- 0.15 <
 ho < 0.15
 ightarrow undecided zone

Neutral Fitness Landscapes

Neutral sets: set of solutions with the same fitness Neutral networks: includes neighbourhood information

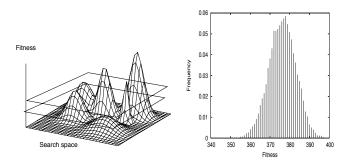
- ▶ Redundant problem (symmetries, ...) (Goldberg 87 [12])
- Problem 'not well' defined or dynamic environment (Torres 04 [14])



Neutrality and difficulty

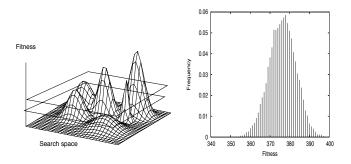
- there is no definitive answer about neutrality / problem hardness
- certainly, it is dependent on the 'nature' of neutrality
- no information is better than bad information : Hard trap functions are more difficult than needle-in-a-haystack functions

Measuring neutrality: Density Of States



Tail of the distribution is an indicator of difficulty: the faster the decay, the harder the problem

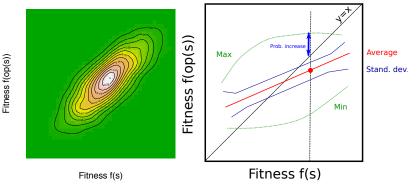
Measuring neutrality: Density Of States



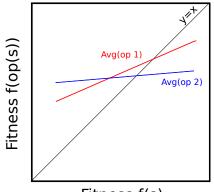
Tail of the distribution is an indicator of difficulty: the faster the decay, the harder the problem

Measuring evolvability: Fitness Cloud [Verel et al. 2003]

Ability to evolve: fitness in the neighbourhood compared to the fitness of the solution



Evolvability as an indication of problem difficulty

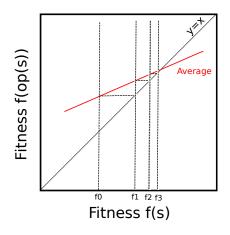


Fitness f(s)

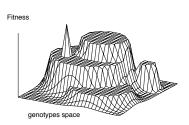
・ロ ・ < 合 ・ < 言 ・ < 言 ・ 言 の へ で 37 / 46

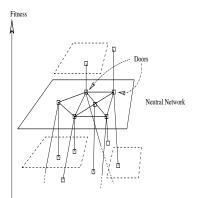
Predicting fitness using fitness clouds

- Approximation of the fitness value after few steps of local operator
- Indication on the quality of the operator



Neutral networks (Schuster 1994 [27])

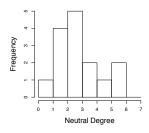




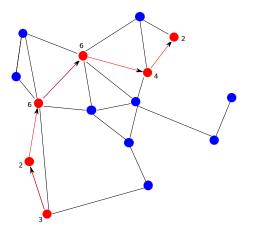
・ロ ・ ・ 一部 ・ く 言 ・ く 言 ・ 「言 の へ (?) 39 / 46

Metrics of neutral networks

- Size of NN: number of nodes of NN,
- Neutral degree distribution



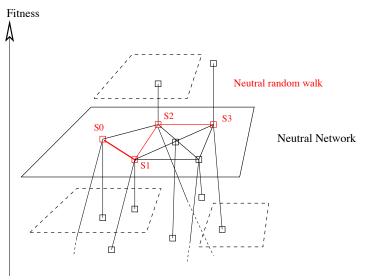
Autocorrelation of neutral degree (Bastolla 03 [3])



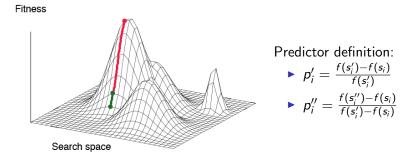
- random walk on NN
- autocorrelation of degrees

Rate of innovation (Huynen 96 [13])

The number of new accessible structures (fitness) per mutation

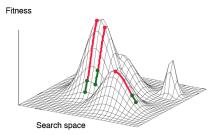


Predictors



イロン イヨン イヨン イヨン 三日

Predictive Local Search



Learning phase

- Predictor pool
- $\{(p'_1, p''_1), (p'_2, p''_2), \cdots, (p'_n, p''_n)\}$
 - Similarity measure

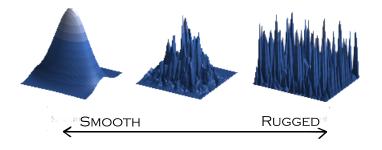
$$C = \frac{|p'_i - p'_j|}{|p'_i| + |p'_j|} + \frac{|p''_i - p''_j|}{|p''_i| + |p''_j|}$$

Predictive Local Search (continued)

Testing phase

- 1. Create a random solution
- 2. Calculate its fitness
- 3. Perform a local search (hill climbing) for a certain number of function evaluations
- 4. Calculate the fitness of the improved solution
- 5. Select the predictor that best matches the improvement in the first step
- 6. Perform a local search to the local optimum
- 7. Calculate the fitness of the local optimum
- 8. Calculate the error in prediction

How hard is an optimisation problem?



So what?

- The nature of the search-space is the key factor determining the performance of the optimisation algorithm,
- Define/characterize the search-space,
- Analyse what makes problems difficult,
- Guide the optimisation process
 - Select the right search strategy

