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If a partially hyperbolic diffeomorphism on a torus of dimension d ≥ 3 has stable and un-

stable foliations which are quasi-isometric on the universal cover, and its center direction

is one-dimensional, then the diffeomorphism is leaf conjugate to a linear toral automor-

phism. In other words, the hyperbolic structure of the diffeomorphism is exactly that of a

linear, and thus simple to understand, example. In particular, every partially hyperbolic

diffeomorphism on the 3-torus is leaf conjugate to a linear toral automorphism.
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Chapter 1

Introduction

For the latter half of the twentieth century, much of the study of dynamical systems

focused on hyperbolic systems. Also called Anosov systems, these diffeomorphisms split

the tangent bundle of a manifold into stable and unstable subbundles, corresponding

to directions of strong contraction and expansion, respectively. They are the simplest

dynamical systems which exhibit chaotic behaviour, but also occur regularly in real-world

examples of dynamical systems, both in mathematics and in other disciplines.

Much of the early analysis of hyperbolic systems was advanced by S. Smale [18] and

independently by D. V. Anosov [2]. Anosov showed that these systems are structurally

stable, that is, if f is hyperbolic, then any small perturbation of f is also hyperbolic

and there is a homeomorphism h conjugating the dynamics of f to the dynamics of its

perturbation.

The simplest examples of hyperbolic systems are those on the torus. An invertible

d × d matrix with integer entries yields an automorphism on T
d = R

d/Zd, and if none

of the eigenvalues has modulus one, the resulting system is hyperbolic. J. Franks and

A. Manning showed that, up to topological conjugacy, all hyperbolic systems on tori are

of this form [12, 11, 16]. In fact, Franks and Manning give a classification for hyperbolic

systems on infranilmanifolds, a class containing tori as the simplest examples.

1



Chapter 1. Introduction 2

Many examples of dynamical systems exhibit some hyperbolic behaviour, while not

satisfying the definition of Anosov. In a partially hyperbolic system, the stable and unsta-

ble directions dominate a center direction. While the dynamics can expand and contract

the center direction to some degree, this action is bounded by the strong expansion and

contraction on the unstable and stable bundles.

This thesis develops a partially hyperbolic analogue to the results of Franks and Man-

ning, showing that, modulo the center direction, every partially hyperbolic diffeomor-

phism on the three-dimensional torus is conjugate to a linear toral automorphism. The

hyperbolic structure of the system is, therefore, exactly that of an easy-to-understand,

linear example. This result also holds under additional assumptions for higher dimen-

sional tori.

A diffeomorphism f of a compact Riemannian manifold M is called partially hyper-

bolic1 if there are constants λ < γ̂ < 1 < γ < µ and C > 1 and a Tf -invariant splitting

of TM such that for every x ∈M , TxM = Eu(x) ⊕ Ec(x) ⊕ Es(x) where

1

C
µn‖v‖ <‖Tfnv‖ for v ∈ Eu(x) \ {0},

1

C
γ̂n‖v‖ <‖Tfnv‖ < Cγn‖v‖ for v ∈ Ec(x) \ {0},

‖Tfnv‖ < Cλn‖v‖ for v ∈ Es(x) \ {0}.

Roughly speaking, vectors in the stable bundle Es are contracted by f , vectors in the

unstable bundle Eu are expanded, and vectors in the center bundle Ec may be contracted

or expanded, but this action is dominated by the contraction and expansion in the strong

bundles, Es and Eu.

In a partially hyperbolic system, it is known that the subbundles Eu, Ec, and Es

are Hölder continuous and that there are unique Hölder continuous foliations W u and

1This definition of partial hyperbolicity is sometimes called absolute partial hyperbolicity, in contrast
to relative partial hyperbolicity, where the values λ < γ̂ < 1 < γ < µ are not true constants, but may
vary depending on the point x ∈ M .
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W s tangent to Eu and Es respectively [7, 15, 17]. In general, Ec, Ecu = Ec ⊕ Eu, and

Ecs = Ec ⊕ Es do not integrate to foliations, but when they are uniquely integrable,

the system is said to be dynamically coherent [4, 9]. Recently, Brin, Burago, and Ivanov

have shown that every partially hyperbolic system on the 3-torus is dynamically coherent

[6, 8, 5].

Every diffeomorphism of the torus f : T
d → T

d induces an automorphism of the

fundamental group f∗ : π1(T
d) → π1(T

d), and there is a unique linear diffeomorphism

g : T
d → T

d that has the same effect on π1(T
d). That is, f∗ = g∗. We refer to g as the

linearization of f . In the case of the 3-torus, T
3, if f is partially hyperbolic, then so is

its linearization [6].

Franks and Manning prove that if f is a hyperbolic diffeomorphism of the torus then

f is topologically conjugate to its linearization. Our main result is a similar assertion in

the partially hyperbolic case.

Theorem 1.1. Every partially hyperbolic diffeomorphism of the 3-torus is leaf conjugate

to its linearization.

By a (center) leaf conjugacy, we mean a homeomorphism h of the torus to itself that

carries the center leaves of f to the center leaves of its linearization g and satisfies

h(f(L)) = g(h(L))

for every center leaf L of f . As h is invertible, the definition is symmetric with respect

to f and g. With further hypothesis, we get a result that extends to higher dimensional

tori.

Theorem 1.2. A partially hyperbolic diffeomorphism of the d-torus, d ≥ 3, is leaf conju-

gate to its linearization provided that the center bundle is one dimensional and the strong

stable and strong unstable foliations, lifted to the universal cover of the torus, are quasi-

isometric.
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The universal cover of the d-torus is d-space R
d. The diffeomorphism and its invariant

foliations easily lift to the universal cover. Quasi-isometry of a foliation W of R
d means

that the leaves do not fold back on themselves much. There are positive constants a, b

such that for all x, y in a common leaf of W we have

dW (x, y) ≤ a‖x− y‖ + b

where dW refers to distance along the leaf and ‖ · ‖ is the ordinary distance in R
d [10].

Remark. It is unreasonable to expect that a partially hyperbolic diffeomorphism is

topologically conjugate to its linearization. For example, suppose h : M → M is a

hyperbolic map with a fixed point x0, and consider the product f = h × id : M ×

S1 → M × S1. f is partially hyperbolic, with the center direction tangent to the fibers

{x} × S1. We may perturb the system along these fibers to introduce all manner of

strange dynamics on the invariant submanifold {x0} × S1 destroying the possibility of a

topological conjugacy with f .

Instead, we attempt to conjugate only the hyperbolic part of one system with another.

By mapping center leaves to center leaves, a leaf conjugacy ignores any “unhyperbolic”

dynamics that can occur along the leaves.

Remark. Theorem 1.1 should be viewed as a classification result. Partially hyperbolic

diffeomorphisms of the 3-torus are classified up to their center foliations. A similar remark

holds for Theorem 1.2.

Perturbation results were first proved for hyperbolic systems by Anosov and for par-

tially hyperbolic systems by Brin and Pesin and Hirsch, Pugh, and Shub. Under suitable

hypotheses, a small perturbation of a partially hyperbolic system is partially hyperbolic

and there is a leaf conjugacy from the system to its perturbation. A key ingredient is

“plaque expansiveness.” See [2, 7, 15] and Appendix A.

In this thesis we are not dealing with small perturbations. The partially hyperbolic

diffeomorphism can be very far from its linearization. It is merely the case that the
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diffeomorphism and its linearization have the same effect on the fundamental group.

In showing that every partially hyperbolic system on the 3-torus is dynamically co-

herent, Brin, Burago, and Ivanov establish that the stable and unstable foliations are

quasi-isometric on the universal cover [5]. Since each of the stable, center, and unstable

bundles of such a system must be one-dimensional, Theorem 1.1 is a consequence of

Theorem 1.2 and we proceed to prove the latter.

Notation. In the following, we denote the partially hyperbolic diffeomorphism of the

torus as f0 and its lift to the universal cover as f . The reason is that most of the work

will be done in the universal cover, and although standard notation would put a bar or

tilde over each instance of the lifted map’s name, this would soon become cumbersome.

Similarly, we denote the linearization of f0 as g0 and its lift to the universal cover as g.

The proof splits into five parts:

• Establish “nice” properties for the invariant manifolds. Using quasi-isometry, the

foliations of f can readily be compared to the flat foliations of its linearization

g. The leaves of f lie close to their linear counterparts, and from this, existence

and uniqueness properties hold for intersections between the stable, center, and

unstable leaves.

• Adapting the conjugacy proof of Franks [12], construct a conjugacy H between Cg,

the space of center leaves of g, and Cf , the space of center leaves of f .

• Construct a section σ∗, a continuous submanifold of R
d which intersects each center

leaf of f exactly once, with the additional properties that σ∗ is uniformly continuous

and bounded in the Ec
g direction.

• Using H and σ∗, construct a leaf conjugacy on R
d, a homeomorphism h0 : R

d → R
d

such that h0(g(L)) = f(h0(L)) for every center leaf L of g.
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• By averaging h0 over all possible translations by the lattice Z
d, find a leaf conjugacy

h on R
d which descends to a leaf conjugacy on the torus T

d.



Chapter 2

Nice properties of the invariant

manifolds

For this chapter, assume f0 : T
d → T

d is partially hyperbolic and satisfies the hypotheses

of Theorem 1.2. Choose a lifting of f0 to the universal cover f : R
d → R

d. Then f is also

partially hyperbolic, with the splitting of f0 lifting to a splitting TR
d = Eu

f ⊕ Ec
f ⊕ Es

f .

With respect to the standard metric on R
d, there are constants 0 < λ < γ̂ < 1 < γ < µ

and Cph > 1 such that for x ∈ R
d

1

Cph

µn‖v‖ <‖Tfnv‖ for v ∈ Eu
f (x) \ {0},

1

Cph

γ̂n‖v‖ <‖Tfnv‖ < Cphγ
n‖v‖ for v ∈ Ec

f (x) \ {0},

‖Tfnv‖ < Cphλ
n‖v‖ for v ∈ Es

f (x) \ {0}.

If P : R
d → T

d is the covering map over T
d, regard the fundamental group π1(T

d)

as the set of deck transformations of the cover, i.e., if τ is in π1(T
d), then τ is a homeo-

morphism R
d → R

d such that P = P ◦ τ . In the case of the torus, every such τ will be

a translation of the form x 7→ x + v where v ∈ Z
d. The induced group homomorphism

f0∗ : π1(T
d) → π1(T

d) is defined by f0∗(τ) = f ◦ τ ◦ f−1.

The action f0∗ defines a homomorphism Z
d → Z

d which can be extended to a linear

7
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map g : R
d → R

d. Note that g is the unique linear map R
d → R

d that descends to a

map g0 : T
d → T

d such that the induced actions of f0 and g0 on π1(T
d) are the same:

f0∗ = g0∗. We call g and g0 the linearizations of f and f0 respectively. Our goal is to

show that there is a conjugacy mapping the space of center leaves of f to the space of

center leaves of g, so we must first define a partially hyperbolic splitting for g.

Note that if γ < γ̃ < µ̃ < µ then

1

Cph

µ̃n‖v‖ <
1

Cph

µn‖v‖ < ‖Tfnv‖ for v ∈ Eu
f (x) \ {0}, and

‖Tfnv‖ <Cphγ
n‖v‖ < Cphγ̃

n‖v‖ for v ∈ Ec
f (x) \ {0}.

so that the equations of partial hyperbolicity hold just as well with γ̃ and µ̃ as with

the original constants γ and µ, i.e., without loss of generality the interval [γ, µ] can

be replaced by any subinterval [γ̃, µ̃] ⊂ [γ, µ]. Since g is a finite-dimensional linear

map, it has a finite number of (possibly complex) eigenvalues. Replacing [γ, µ] by a

small subinterval if necessary, we can assume that none of the eigenvalues lie in the

annulus {z ∈ C : γ ≤ ‖z‖ ≤ µ}, and similarly that none of them lie in the annulus

{z ∈ C : λ ≤ ‖z‖ ≤ γ̂}.

Considered as a linear map on C
d, g has eigenvalues λ1, . . . , λℓ with generalized

eigenspaces EC

λ1
, . . . , EC

λℓ
. Let

EC,u
g = ⊕µ<|λi|E

C

λi
, EC,c

g = ⊕γ̂<|λi|<γE
C

λi
, and EC,s

g = ⊕|λi|<λE
C

λi
.

Since conjugate eigenvalues have been grouped together, the subspaces EC,u
g , EC,u

g , and

EC,u
g are just complexifications of real subspaces Eu

g , Ec
g, and Es

g .

With respect to the splitting R
d = Eu

g ⊕ Ec
g ⊕ Es

g , g is partially hyperbolic with the

possible caveat that at least one of Eu
g , Ec

g, or Es
g may be zero. In fact, we will later

prove that

dimEu
f = dimEu

g , dimEc
f = dimEc

g, and dimEs
f = dimEs

g ,
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so that g is truly partially hyperbolic and its splitting depends only on the splitting of f

and not on the particular choices of λ, γ̂, γ, and µ.

As with f , define Ecu
g = Ec

g ⊕ Eu
g and Ecs

g = Ec
g ⊕ Es

g . Also, define linear projections

πu
g , π

c
g, π

s
g, π

cs
g , π

cu
g , π

us
g with respect to the splitting. For example πu

g (v) = vu if v =

vu + vcs ∈ Eu
g ⊕ Ecs

g = R
d.

In general, the subspaces Eu
g ,Ec

g, and Es
g are not orthogonal with respect to the

standard metric on R
d. One could adapt the metric so that they were orthogonal, just as

for f one could adapt, point-by-point, the metric on the tangent bundle of R
d so that at

each point the splitting Eu
f (x)⊕Ec

f (x)⊕Es
f (x) is orthogonal, and further to assume that

Cph = 1. The point of this paper, however, is to compare f to g, a task made difficult if

we cannot compare distances related to one of the diffeomorphisms with distances related

to the other. Therefore, the only metric ever used on points and vectors in R
d will be the

standard one. As a side-effect, one must keep in mind that there may be vectors v ∈ R
d

such that ‖πu
g (v)‖ > ‖v‖ and similarly for the other projections.

We now show that at large scales, f and g act in roughly the same way, which will

allow us to relate the invariant manifolds of f to those of g.

Proposition 2.1. For each k ∈ Z,

‖fk − gk‖0 = sup
x∈Rd

‖fk(x) − gk(x)‖ <∞.

Proof. This is a purely topological result that follows from the fact that f0∗ = g0∗.

Let K ⊂ R
d be a compact fundamental domain of the covering R

d over T
d. For any

point x ∈ R
d, there is a deck transformation τ ∈ π1(T

d) and a point y ∈ K such that

x = τ(y). Then,

‖fk(x) − gk(x)‖ = ‖fk(τ(y)) − gk(τ(y))‖

= ‖fk
0 ∗(τ)f

k(y) − gk
0 ∗(τ)g

k(y)‖

= ‖fk
0 ∗(τ)

(

fk(y) − gk(y)
)

‖

= ‖fk(y) − gk(y)‖
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where the last equality holds as the deck transformation fk
0 ∗(τ) is an isometry. As a

result,

sup
x∈Rd

‖fk(x) − gk(x)‖ = sup
y∈K

‖fk(y) − fk(y)‖ <∞.

Of course, we are not saying there is a uniform bound on ‖fk − gk‖0 independent of

k ∈ Z. In almost all cases, there will in fact be x ∈ R
d such that ‖fk(x) − gk(x)‖ → ∞

as k → ∞.

Note that since,

‖fk(x) − fk(y)‖ < ‖gk(x) − gk(y)‖ + 2‖fk − gk‖0

and

‖gk(x) − gk(y)‖ < ‖fk(x) − fk(y)‖ + 2‖fk − gk‖0

we can prove the following:

Corollary 2.2.

‖fk(x) − fk(y)‖ ∼ ‖gk(x) − gk(y)‖ as ‖x− y‖ → ∞.

More precisely, for each k ∈ Z and C > 1 there is an M > 0 such that for x, y ∈ R
d,

‖x− y‖ > M ⇒
1

C
<

‖fk(x) − fk(y)‖

‖gk(x) − gk(y)‖
< C.

More generally, for each k ∈ Z, C > 1, and linear map π : R
d → R

d there is an

M > 0 such that for x, y ∈ R
d,

‖π(x− y)‖ > M ⇒
1

C
<

‖π(fk(x) − fk(y))‖

‖π(gk(x) − gk(y))‖
< C.

The subbundles Eu
f and Es

f integrate to foliations W u
f and W s

f on R
d which, by

hypothesis, are quasi-isometric. For the unstable foliation, this means there are constants

a, b > 0 such that

du(x, y) ≤ a · ‖x− y‖ + b
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for all x ∈ R
d, y ∈W u

f (x). Here, du is the distance measured along the unstable leaf.

The foliation W u
f is tangent to the uniformly continuous distribution Eu

f , so the ratio

du(x, y)/‖x− y‖ converges uniformly to one as du(x, y) → 0. One can show, therefore,

that by replacing a by a larger constant Q, the constant b can be eliminated altogether.

Let Q > 0 be such that

du(x, y) < Q · ‖x− y‖

for all x ∈ R
d, y ∈W u

f (x) and

ds(x, y) < Q · ‖x− y‖

for all x ∈ R
d, y ∈W s

f (x).

It follows from the work of Brin that f is dynamically coherent [4]; there are unique

foliations W cu
f , W cs

f , and W c
f tangent to Ecu

f , Ecs
f , and Ec

f respectively. Since g is a linear

map, it also possesses (flat) foliations W u
g , W s

g , W cu
g , W cs

g , and W c
g .

The foliations W u
f , W s

f , and W c
f are tangent to the distributions Eu

f , Es
f , and Ec

f at

an infinitesimal scale. That is, if x ∈ R
d and {yn} is a sequence of points on the stable

leaf W s
f (x) where the distance between x and yn tends to zero in the limit, then, as unit

vectors in R
d, the sequence

x− yn

‖x− yn‖

approaches the subspace Es
f (x). What if instead we look at a sequence where the distance

between x and yn approaches infinity in the limit? As f0 and g0 have the same action on

the fundamental group, at large scales, their lifts f and g are nearly indistinguishable.

Therefore, at these scales, the invariant manifolds of f should closely resemble those of

g. Indeed, if the sequence {yn} lies on the leaf W s
f (x) and ‖x−yn‖ tends to infinity, then

the sequence

x− yn

‖x− yn‖

approaches the subspace Es
g . There is a “tangency” at large scales between W s

f and Es
g ,

and similarly for the unstable and center directions.
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Eu
f (x)

Es
f(x)

Ec
f (x)

x
W u

f (x)

W s
f (x)

W c
f (x)

Eu
g

Es
g

Ec
g

Figure 2.1: The leaves of f drawn at three scales. At the microscopic level, the leaves are

tangent to the partially hyperbolic splitting of f . At intermediate scales, the leaves may

be pathological in nature. At the macroscopic level, however, the leaves closely resemble

those of the linearization g.

Proposition 2.3. If ‖x− y‖ → ∞ where y ∈W s
f (x) then x−y

‖x−y‖
→ Es

g uniformly.

More precisely, for ǫ > 0 there exists M > 0 such that if x ∈ R
d, y ∈ W s

f (x), and

‖x− y‖ > M then

‖πcu
g (x− y)‖ < ǫ‖πs

g(x− y)‖.

Proof. Note that the spectrum of g|Es
g

lies below λ and the spectrum of g|Ecu
g

lies above

γ̂. Therefore, there is k0 ∈ Z such that if v ∈ R
d, k > k0 and

‖gk(v)‖ < γ̂k‖v‖

then

‖πcu
g (v)‖ < ǫ‖πs

g(v)‖.

Choose k1 > k0 large enough that 2CphQλ
k1 < γ̂k1 . Then, by Corollary 2.2, there is

M > 0 (depending on k1) such that

‖x− y‖ > M ⇒ ‖gk1(x) − gk1(y)‖ < 2‖fk1(x) − fk1(y)‖.
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Now if y ∈ W s
f (x) and ‖x− y‖ > M then

ds(f
k1(x), fk1(y)) < Cphλ

k1ds(x, y) ⇒

‖fk1(x) − fk1(y)‖ < CphQλ
k1‖x− y‖ ⇒

‖gk1(x) − gk1(y)‖ < 2CphQλ
k1‖x− y‖ ⇒

‖gk1(x− y)‖ < γ̂k1‖x− y‖

and so ‖πcu
g (x− y)‖ < ǫ‖πs

g(x− y)‖.

Remark. As with most of the results proved in this chapter, the above proposition has

an analogous statement where the roles of the stable and unstable directions are reversed,

proved by exchanging the roles of f and f−1. In many cases, we will make use of such

analogues without explicitly stating or proving them.

Corollary 2.4. If {xn} and {yn} are sequences in R
d and yn ∈ W s

f (xn) for all n, then

the following are equivalent:

• ds(xn, yn) → ∞,

• ‖xn − yn‖ → ∞,

• ‖πs
g(xn − yn)‖ → ∞.

For a subset X of R
d and R > 0, let BR(X) denote the neighbourhood

BR(X) = {y ∈ R
d : ‖x− y‖ < R for some x ∈ X}.

Proposition 2.5. There is a constant Rc such that for all x ∈ R
d,

• W cs
f (x) ⊂ BRc

(W cs
g (x)),

• W cu
f (x) ⊂ BRc

(W cu
g (x)), and

• W c
f (x) ⊂ BRc

(W c
g (x)).
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x

BRc
(W c

g (x))

W
c
f (x)

W
c
g (x)

Figure 2.2: A center leaf contained inside a cylinder.

Proof. We will show this for W cs
f (x). The case for W cu

f (x) is similar and then since

W c
f (x) ⊂ W cu

f (x) ∩ W cs
f (x) and W c

g (x) = W cs
g (x) ∩ W cu

g (x), the case for center leaves

follows.

It is enough to show that ‖πu
g (x− y)‖ is uniformly bounded when x and y lie on the

same cs-leaf. Let C > 1 be such that ‖gk(v)‖ > µk

C
‖v‖ for all k > 0 and v ∈ Eu

g ⊂ R
d.

Fix a number β ∈ (γ, µ) and an integer k > 0 such that µk

Cβk > 1. By Corollary 2.2, there

is M > 0 such that

‖πu
g (x− y)‖ > M ⇒ ‖πu

g (fk(x) − fk(y))‖ > βk C

µk
‖πu

g (gk(x) − gk(y))‖

> βk‖πu
g (x− y)‖

> βkM.

Since βkM > M we can continue by induction to show

‖πu
g (fnk(x) − fnk(y))‖ > βnkM for n > 0.

Then, for some constant a > 0,

‖fnk(x) − fnk(y)‖ > aβknM.
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In particular, if ‖πu
g (x− y)‖ > M then ‖fnk(x)− fnk(y)‖ grows at a rate faster than γnk

as k → ∞, so x and y cannot lie on the same center-stable leaf.

Remark. Unfortunately, this proof does not carry over to the foliations W u
f and W s

f

since we need the condition β > 1. This is a rare occasion where we actually know more

about the weak foliation W c
f than the strong ones.

Question. Under the given hypotheses for f , is there necessarily a constant Ru such

that W u
f (x) ⊂ BRu

(W u
g (x))?

Corollary 2.6. If ‖x − y‖ → ∞ where y ∈ W c
f (x) then x−y

‖x−y‖
→ Ec

g uniformly, in the

same sense as in Proposition 2.3.

Proposition 2.7. In the universal cover, R
d, a cs-leaf of f can intersect a u-leaf of f

at most once. A cu-leaf of f can intersect an s-leaf of f at most once.

We later show that these leaves, in fact, intersect exactly once.

Proof. This is a consequence of quasi-isometry. If x and y lie on the same cs-leaf then

dcs(f
n(x), fn(y)) < Cphγ

ndcs(x, y) ⇒

‖fn(x) − fn(y)‖ < Cphγ
ndcs(x, y)

whereas if they lie on the same u-leaf then

du(f
n(x), fn(y)) >

1

Cph

µndu(x, y) ⇒

‖fn(x) − fn(y)‖ >
1

QCph

µndu(x, y)

and 1
QCph

µndu(x, y) > Cphγ
ndcs(x, y) for large n.

Since g is linear it is straightforward to define a foliation W us
g tangent to Es

g ⊕ Eu
g .

For generic f , however, Es
f ⊕Eu

f is not integrable [14], so it does not make sense to talk

of us-leaves of f . Instead, define the us-pseudoleaf of f at x as

W us
f (x) =

⋃

y∈W u
f

(x)

W s
f (y).
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x

y

z

Figure 2.3: The us-pseudoleaf W us
f (x) consists of all points z ∈ R

d where z ∈ W s
f (y) for

some y ∈W u
f (x).

If x1 and x2 lie on the same unstable leaf then W us
f (x1) = W us

f (x2). If, however, x1

and x2 lie on different unstable leaves, then W us
f (x1) and W us

f (x2) may be disjoint, may

coincide, or may intersect each other in some horribly pathological manner. We use the

term pseudoleaf to emphasize the fact that these sets do not naturally yield a foliation.

The choice of defining the pseudoleaf by ranging first along the unstable direction

and then along the stable direction is arbitrary, but it is a convention we will maintain

through the rest of the thesis.

Proposition 2.8. W us
f (x) is a properly embedded topological hyperplane.

Proof. For y, y′ ∈ W u
f (x), y 6= y′, the stable leaves W s

f (y) and W s
f (y′) are disjoint.

W u
f (x) is homeomorphic to R

u where u = dimEu
f . W s

f (y) depends continuously on y

and is homeomorphic to R
s where s = dimEs

f . Therefore W us
f (x) is homeomorphic to a

bundle of R
s-fibers over R

u so is homeomorphic to R
u+s.

To show the embedding is proper, suppose instead that there is a sequence {zn} on
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W us
f (x) that goes to infinity on the pseudoleaf but is bounded in R

d. In other words,

there are sequences yn ∈W u
f (x), zn ∈ W s

f (yn) where either

du(yn, x) → ∞ or ds(yn, zn) → ∞

while ‖zn − x‖ stays bounded.

Then, by Corollary 2.4, either

‖yn − x‖ → ∞ or ‖yn − zn‖ → ∞.

Note, however, that as (x− yn) + (yn − zn) = x− zn is bounded, it must be that both

‖yn − x‖ → ∞ and ‖yn − zn‖ → ∞.

By replacing {yn} and {zn} by subsequences, we may assume without loss of generality

that each of

yn − x

‖yn − x‖
and

yn − zn

‖yn − zn‖

converges to a limit. It is not hard to show that these two sequences in fact converge to

the same limit, say v ∈ R
d, ‖v‖ = 1. Then, by Proposition 2.3, v ∈ Eu

g as a limit of the

first sequence and v ∈ Es
g as a limit of the second, a contradiction.

Corollary 2.9. If ‖x − z‖ → ∞ and z ∈ W us
f (x) then x−z

‖x−z‖
→ Eu

g ⊕ Es
g uniformly, in

the same sense as in Proposition 2.3.

To prove this, apply Proposition 2.3 twice, once for the stable direction, and once for

the unstable.

Proposition 2.10. A center leaf of f intersects a us-pseudoleaf of f in at most one

point.

Again, we later show they intersect exactly once.

Proof. Suppose z, z′ both lie on W us
f (x) and z′ ∈ W c

f (z). Then, there are y, y′ ∈ W u
f (x)

such that z ∈W s
f (y) and z′ ∈W s

f (y′). By following a path y
s
 z

c
 z′

s
 y′, we see that

y and y′ are on the same cs-leaf and the same u-leaf, contradicting Proposition 2.7.
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x

W c
f (x)

W us
f (x)

Figure 2.4: The us-pseudoleaf of x cutting through the cylinder which contains the center

leaf of x.

We now make use of the assumption that dimEc
f = 1.

Proposition 2.11. For x ∈ R
d, W c

f (x) is a properly embedded line.

Proof. Fix x ∈ R
d. W us

f (x) is not everywhere differentiable in general, but the tangent

space of W us
f (x) at the point x is Eu

f (x) ⊕ Es
f (x). This fact is somewhat intuitive, but a

rigorous proof of this is annoyingly technical and so has been left to Appendix B.

As W us
f (x) is a properly embedded hyperplane, it cuts R

d into two half-spaces. Since

Ec
f (x) is transverse to Eu

f (x) ⊕ Es
f (x), W

c
f (x) cuts through W us

f (x) at x, moving from

one half-space to the other. If W c
f (x) were a circle, it would have to intersect W us

f (x)

a second time to return to the half-space in which it started, contradicting Proposition

2.10. Thus, it must be a line.

As a leaf of a foliation, if W c
f (x) is not properly embedded, it must accumulate on a

point y ∈ R
d. Then, W c

f (x) would intersect W us
f (y) an infinite number of times. To see

this rigorously, let U and V be the two components of R
d\W us

f (y), and let γ : [−ǫ, ǫ] → R
d

be a small segment of the curve W c
f (y) centered about y so that γ(−ǫ) ∈ U and γ(ǫ) ∈ V .

Then, as W c
f (x) accumulates on W c

f (y), there are distinct segments γn of the curve W c
f (x)
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which converge uniformly to γ. Then for large n, γn(−ǫ) ∈ U and γn(ǫ) ∈ V showing

that γn must intersect W us
f (y) at some point.

Theorem 2.12.

dimEu
f = dimEu

g , dimEc
f = dimEc

g, and dimEs
f = dimEs

g .

Proof. We will show that

dimEu
f ≤ dimEu

g , dimEc
f ≤ dimEc

g, and dimEs
f ≤ dimEs

g .

Then, since the dimensions for the splittings of f and g must each sum up to d = dim R
d,

equality follows.

Take any center leafW c
f (x). Since it is a properly embedded line, there are yn ∈ W c

f (x)

such that ‖x− yn‖ → ∞. By Corollary 2.6, x−yn

‖x−yn‖
→ Ec

g. In particular, Ec
g is non-zero,

so dimEc
g ≥ 1 = dimEc

f .

If d = 3, we may similarly show dimEu
g ≥ 1 = dimEu

f and dimEs
g ≥ 1 = dimEs

f to

complete the proof. If d > 3, however, the proof is more involved.

Suppose dimEu
g < u where u = dimEu

f . Fix a point p ∈ R
d and embed a (u − 1)-

dimensional sphere into the unstable leaf at p by a map i : Su−1 → W u
f (p). As i is an

embedding, antipodal points x,−x ∈ Su−1 are separated by a uniform distance δ > 0:

du(i(x), i(−x)) > δ for all x ∈ Su−1.

Consider the composition πu
g ◦ f

n ◦ i : Su−1 → Eu
g for n > 0. Since dimEu

g ≤ u− 1 by

assumption, Eu
g is homeomorphic to a subset of R

u−1. Apply the Borsuk-Ulam theorem

to find xn ∈ Su−1 such that

πu
g ◦ fn ◦ i(xn) = πu

g ◦ fn ◦ i(−xn).

That is,

fn ◦ i(xn) − fn ◦ i(−xn) ∈ Ecs
g .
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Let yn = fn ◦ i(xn) and zn = fn ◦ i(−xn). Then since i(xn), i(−xn) ∈ W u
f (p),

du(i(xn), i(−xn)) > δ ⇒ du(yn, zn) >
δ

Cph

µn.

Therefore, ‖yn − zn‖ → ∞ and for each n > 0, yn and zn lie on the same unstable leaf.

By Proposition 2.3, yn−zn

‖yn−zn‖
→ Eu

g . This contradicts the fact that yn and zn were chosen

so that yn − zn ∈ Ecs
g for all n > 0.

Recall that there is a constant Rc such that for all x ∈ R
d,

W c
f (x) ⊂ BRc

(W c
g (x)).

Lemma 2.13. There is a constant Mc > 0 such that for all x ∈ R
d,

BRc
(W c

g (x)) ∩W us
f (x) ⊂ BMc

(x).

Proof. Suppose not. Then, there are xn ∈ R
d and zn ∈ BRc

(W c
g (xn)) ∩W us

f (xn) such

that ‖xn − zn‖ → ∞. Since zn ∈ BRc
(W c

g (xn)), it follows that

xn − zn

‖xn − zn‖
→ Ec

g,

but since zn ∈W us
f (xn), by Corollary 2.9

xn − zn

‖xn − zn‖
→ Eu

g ⊕ Es
g

which cannot also be true.

The set W c
f (x)\{x} consists of two unbounded connected components. As the center

leaf cuts transversely through the us-pseudoleaf, these two components lie in distinct

components of the set R
d \W us

f (x) and so they must also lie in two distinct unbounded

components of BRc
(W c

g (x)) \W us
f (x). This shows that W us

f (x) cuts completely through

the cylinder BRc
(W c

g (x)).

By Lemma 2.13,

BRc
(W c

g (x)) \BMc
(x) ⊂ BRc

(W c
g (x)) \W us

f (x).
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Mc

Mc

x

W
us
f (x)

W
c
f (x)

BRc
(W c

g (x))

Figure 2.5: The us-pseudoleaf (now shown as one-dimensional for simplicity), dividing

the cylinder into components.

The smaller of these sets has at most two unbounded components, so the larger set must

have at most two unbounded components as well. This shows that BRc
(W c

g (x)) \W us
f (x)

has exactly two unbounded components, and these are the components containing the

two halves of W c
f (x)\{x}. Additional bounded components may result from the “jagged”

us-pseudoleaf leaving and re-entering the cylinder, as illustrated in Figure 2.5, but these

other components are of no consequence.

In essence, Lemma 2.13 says that the us-pseudoleaf of f at x cuts the cylinder

BRc
(W c

g (x)) into two pieces, and does so within a bounded distance from x. By possibly

increasing the value of the constant Mc, we may also assume it satisfies the property

πc
g

(

BRc
(W c

g (x)) ∩W us
f (x)

)

⊂ BMc
(πc

g(x))

for x ∈ R
d. That is, the intersection of the us-pseudoleaf of f and the cylinder containing

the c-leaf of f is of a bounded size when measured either in absolute terms or along the

Ec
g direction.

Each center leaf of f is homeomorphic to the real line. If x and y lie on the same

center leaf, let [x, y]c denote the line segment along the leaf from x to y.



Chapter 2. Nice properties of the invariant manifolds 22

Mc

Mc

x

y

z

W us
f (z)

W c
f (x)

BRc
(W c

g (z))

Figure 2.6: A depiction of the impossible situation considered in the proof of Proposition

2.14.

Proposition 2.14. If y ∈W c
f (x) and z ∈ [x, y]c then

πc
g(z) ∈ BMc

(

[πc
g(x), π

c
g(y)]

)

where [πc
g(x), π

c
g(y)] is the line segment in Ec

g
∼= R between πc

g(x) and πc
g(y).

In other words, W c
f (x) extends from one extreme of the cylinder BRc

(W c
g (x)) to the

other, and can only backtrack by a distance at most Mc, measured along the Ec
g direction.

Proof. Suppose z ∈ [x, y]c fails to satisfy the above inclusion. Then W us
f (z) cuts the

cylinder into at least two components, and x and y must be inside the same component

due to their distance from z. This contradicts the fact that W c
f (x) cuts transversally

throughW us
f (z) at the unique point z and so must move permanently from one component

to another.

Proposition 2.15. If x, y ∈ R
d, then the following pairs of sets intersect in a unique

point:

1. W cs
f (x) with W u

f (y),

2. W cu
f (x) with W s

f (y),
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3. W c
f (x) with W u

f (y) if x ∈W cu
f (y),

4. W c
f (x) with W s

f (y) if x ∈ W cs
f (y),

5. W c
f (x) with the pseudoleaf W us

f (y).

Proof. First consider part 1. Uniqueness has already been established so we need only

show existence. First note that the claim is true locally. By uniformity of the partially

hyperbolic splitting, there is ǫ > 0 such that for x, y ∈ R
d, if ‖x − y‖ ≤ ǫ there exists

z ∈ W cs
f (x) ∩W u

f (y).

Let

B0(x) = {y ∈ R
d : dist(y,W cs

f (x)) ≤ ǫ}.

Then the above property restated means that for all y ∈ B0(x), there exists z ∈ W cs
f (x)∩

W u
f (y). For n > 0, let

Bn(x) = fn(B0(f−n(x)).

Since the foliations are invariant under f , if y ∈ Bn(x), then f−n(y) ∈ B0(f−n(x)) so

that there is

z ∈W cs
f (f−n(x)) ∩W u

f (f−n(x)) ⇒ fn(z) ∈ W cs
f (x) ∩W u

f (y).

It is therefore enough to show that any y ∈ R
d lies in Bn(x) for some n > 0.

Instead of proving this directly, we will show that for any M > 0, there is n such that

dist(∂Bn(x),W cs
f (x)) > M.

Then if dist(y,W cs
f (x)) < M , there is a path from W cs

f (x) to y of length less than M

which does not intersect the boundary of Bn(x) and so its endpoint y must be in Bn(x).

Since for any y ∈ R
d, the distance from y to W cs

f (x)) is finite, and so less than some

M > 0, this will complete the proof.
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Suppose n > 0 and y ∈ ∂Bn(x) = fn
(

∂B0(f−n(x))
)

. As Bn(x) is closed, y ∈ Bn(x),

so there is a unique intersection z of W cs
f (x) and W u

f (y). Then,

f−n(y) ∈ ∂B0(f−n(x)) ⇒ ‖f−n(y) − f−n(z)‖ ≥ ǫ

⇒ du(f
−n(y), f−n(z)) ≥ ǫ

⇒ du(y, z) ≥
ǫ

Cph

µn

⇒ ‖y − z‖ ≥
ǫ

QCph

µn.

where Q is the constant of quasi-isometry. Now by Proposition 2.3,

‖πu
g (y − z)‖ ≥ Cµn

for some constant C > 0 and sufficiently large n. Since W cs
f (x) is contained in the

cylinder BRc
(W cs

g (x)), the function πu
g must be bounded on the leaf. It follows that

dist(y,W cs
f (x)) ≥ Cµn −R

for another constant R > 0. (If Ecs
g and Eu

g were orthogonal, we could just take R = Rc.)

Consequently,

dist
(

∂Bn(x),W cs
f (x)

)

≥ Cµn −R.

For any M > 0, there is n large enough that M < Cµn −R, completing the proof.

Parts 2. through 4. of the proposition are proved by the same method.

For part 5, recall that uniqueness was proved in Proposition 2.10. For existence, take

x, y ∈ R
d. Note that from part 1. there is y′ ∈ W cs

f (x) ∩ W u
f (y) and then from part

4. there is z ∈ W c
f (x) ∩W s

f (y′) so that z ∈ W c
f (x) ∩W us

f (y).

With the knowledge that each us-pseudoleaf uniquely intersects each center leaf, we

can show that, like the strong foliations, W c
f is quasi-isometric.

Proposition 2.16. W c
f is quasi-isometric.
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Proof. Fix v ∈ Ec
f such that ‖v‖ > 3Mc. For x ∈ R

d, let φ(x) be the unique intersection

of W c
f (x) with W us

f (x+ v). By Proposition 2.5,

φ(x) ∈ BRc
(W c

g (x)) = BRc
(W c

g (x+ v)),

and by Lemma 2.13,

φ(x) ∈ BRc
(W c

g (x+ v)) ∩W us
f (x+ v) ⇒

∥

∥πc
g

(

φ(x) − (x+ v)
)∥

∥ < Mc ⇒

‖πc
g(φ(x) − x)‖ > ‖v‖ −Mc > 2Mc.

A (c, s, u)-path from z0 ∈ R
d to z3 ∈ R

d can be represented by tuple (z0, z1, z2, z3)

such that z1 ∈ W c
f (z0), z2 ∈ W s

f (z1), and z3 ∈ W u
f (z2). Note that pseudoleaves were

defined so that z1 ∈ W us
f (z3).

As the foliations are transverse and their intersections are unique, there is a unique

(c, s, u)-path from x to x + v which depends continuously on x. As φ(x) is determined

by this path, the function φ : R
d → R

d is continuous. Let

ρ : R
d → R, x 7→ dc

(

φ(x+ v), x
)

be the distance measured along the center leaf from x to φ(x + v). ρ is continuous and

invariant under the action of π1(T
d). Hence, it is bounded above, say by T > 0.

Proposition 2.14 says that, measured in the Ec
g direction, a center leaf cannot back-

track by more than a distance Mc. Say φ(x) lies between x and y ∈ W c
f (x) along the

center leaf, φ(x) ∈ [x, y]c in our notation. If

‖πc
g(y − x)‖ ≤Mc,

then, by Proposition 2.14,

‖πc
g(φ(x) − x)‖ < 2Mc

a contradiction. Therefore, ‖πc
g(y − x)‖ > Mc for all y ∈ W c

f (x) such that φ(x) ∈ [x, y]c.

By the definition of T , ‖πc
g(y − x)‖ > Mc for all y ∈ W c

f (x) where dc(x− y) > T .
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By extension, if y ∈ W c
f (x) and dc(y, x) > nT then ‖πc

g(y − x)‖ > nMc, so for large

values of dc(y, x),

‖πc
g(y − x)‖ >

Mc

2T
dc(y, x)

which is enough to establish quasi-isometry.

Corollary 2.17. If {xn} and {yn} are sequences in R
d and yn ∈W c

f (xn) for all n, then

the following are equivalent:

• dc(xn, yn) → ∞,

• ‖xn − yn‖ → ∞,

• ‖πc
g(xn − yn)‖ → ∞.

Let CSf denote the space of center stable leaves. It is the quotient space derived

from R
d by the equivalence relation x ∼ y if y ∈ W cs

f (x). Define the spaces CUf of

center-unstable leaves and Cf of center leaves in like manner.

Define a metric distu on cs-leaves by

distu(L1,L2) = sup
x∈L1

du(x,W
u
f (x) ∩ L2)

where L1,L2 ∈ CSf are regarded as subsets of R
d. Proposition 2.5 implies that distu(L1,L2)

is finite for any two leaves and one can check that distu satisfies the axioms of a complete

metric on CSf .

Any function which preserves the foliation descends to a map on the quotient space.

In particular, it makes sense to talk of the leaf f(L) or τ(L), τ ∈ π1(T
d) if L ∈ CSf (or

CUf or Cf ). From the definition, distu has the useful property that for L1,L2 ∈ CSf

and n ∈ Z,

1

Cph

µndistu(L1,L2) < distu(f
n(L1), f

n(L2)).

In order to use this metric, however, we must first check that it induces the quotient

topology on CSf .
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Proposition 2.18. distu induces the quotient topology on CSf .

Proof. Fix an unstable leaf W u
f (x0). Then, for L1,L2 ∈ CSf , let yi be the unique

intersection of Li and W u
f (x0). The metric D(L1,L2) = du(y1, y2) induces the quotient

topology on CSf .

By definition, D(L1,L2) ≤ distu(L1,L2), so to show the two metrics are equivalent,

it suffices to show that for ǫ > 0 there is δ > 0 such that

D(L1,L2) < δ ⇒ distu(L1,L2) < ǫ.

Using Propositions 2.3 and 2.5, one can show there are constants A > 0 and b > 0

such that for any L1,L2 ∈ CSf ,

distu(L1,L2) < A ·D(L1,L2) + b.

For ǫ > 0, choose n large enough that ǫ
Cph

µn > b and set

δ =
1

‖Tfn‖ · A
(
ǫ

Cph

µn − b) > 0

where ‖Tfn‖ = sup{‖Txfnv‖
‖v‖

: x ∈ R
d, v ∈ TxR

d}. Then,

D(L1,L2) < δ ⇒

D(fn(L1), f
n(L2)) <

1

A
(
ǫ

Cph

µn − b) ⇒

distu(f
n(L1), f

n(L2)) <
ǫ

Cph

µn ⇒

distu(L1,L2) < ǫ.

As a consequence of Proposition 2.15 any cs-leaf of f meets any cu-leaf in a unique

center leaf of f . The space Cf is therefore canonically homeomorphic to the product

space CSf × CUf . In the linear case, it can be observed directly that Cg
∼= CSg × CUg

where Cg, CSg, and CUg are the corresponding spaces of leaves of g.
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A conjugacy of leaves

Before constructing a leaf conjugacy, we first construct a true conjugacy mapping between

the spaces Cg and Cf of center leaves. Once the center direction has been quotiented

out, the actions of f and g are hyperbolic, and the techniques of Franks [12] to find a

conjugacy apply with only minor modifications.

Lemma 3.1. Let f0 and g0 be partially hyperbolic diffeomorphisms on T
d with liftings f

and g on the universal cover R
d. Suppose that

• the foliations W u
f , W s

f , W u
g , and W s

g are quasi-isometric,

• dimEc
f = 1 = dimEc

g,

• f0∗ = g0∗ as endomorphisms of π1(T
d), and

• there is R > 0 such that for x, y ∈ R
d

y ∈ W cs
g (x) ⇒ distu(W

cs
f (x),W cs

f (y)) < R

and

y ∈W cu
g (x) ⇒ dists(W

cu
f (x),W cu

f (y)) < R.

Then there is a unique continuous map H : Cg → Cf such that

28
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• H(g(L)) = f(H(L)) for L ∈ Cg, and

• H(τ(L)) = τ(H(L)) for τ ∈ π1(T
d) and L ∈ Cg.

In other words, the diagrams

Cg
g

−−−→ Cg




y
H





y
H

Cf
f

−−−→ Cf

and

Cg
τ

−−−→ Cg




y
H





y
H

Cf
τ

−−−→ Cf

commute.

In the previous chapter, we assumed throughout a fixed diffeomorphism f0 with lin-

earization g0. For this lemma, however, all of the assumptions for f0 and g0 are written

out explicitly, as the lemma will be applied in different contexts to construct a full (in-

vertible) conjugacy between Cf and Cg. When reading through the proof, it is easiest to

think of f and g as they are in the last chapter.

Proof. Since Cf
∼= CSf × CUf , we will construct maps Hcs : CSg → CSf and Hcu :

CUg → CUf with analogous properties, and then define H = Hcs ×Hcu.

Let

Hcs = {h ∈ C0(Rd, CSf ) : h ◦ τ = τ ◦ h for τ ∈ π1(T
d)}.

Hcs is a closed subspace of the continuous mappings from R
d to CSf . It is non-empty as

it contains the quotient map x 7→ W cs
f (x). Define a complete metric on Hcs by

D(h1, h2) = sup
x∈Rd

distu(h1(x), h2(x)).

Since hi◦τ = τ ◦hi for τ ∈ π1(T
d), if K is a compact fundamental domain of the covering,

then

D(h1, h2) = sup
x∈K

distu(h1(x), h2(x))

which is finite. The axioms of a metric space are straightforward to check, and complete-

ness follows from the completeness of distu.
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Consider the map F : Hcs → Hcs given by F (h) = f−1 ◦ h ◦ g. This is well-defined,

as f0∗ = g0∗ implies that F (h) ◦ τ = τ ◦ F (h) for τ ∈ π1(T
d). Then for h1, h2 ∈ Hcs and

n > 0

D(F n(h1), F
n(h2)) = sup

x∈Rd

distu(f
−n ◦ h1 ◦ g

n(x), f−n ◦ h2 ◦ g
n(x))

= sup
x∈Rd

distu(f
−n ◦ h1(x), f

−n ◦ h2(x))

≤ Cphµ
−n sup

x∈Rd

distu(h1(x), h2(x))

≤ Cphµ
−nD(h1, h2)

with the constants Cph > 0 and µ > 1 coming from the partially hyperbolic splitting for

f . Therefore, F is a contraction with respect to the metric D and has a unique fixed

point hcs ∈ Hcs. This means that hcs : R
d → CSf is the unique continuous map with the

properties that hcs ◦ g = f ◦ hcs and hcs ◦ τ = τ ◦ hcs for τ ∈ π1(T
d).

We now show that hcs descends to a map Hcs : CSg → CSf . Suppose x, y ∈ R
d and

y ∈W cs
g (x). Then, gn(y) ∈W cs

g (gn(x)) for all n, so

distu

(

W cs
f (gn(x)),W cs

f (gn(y))
)

< R

by the hypotheses of the lemma. Let q : R
d → CSf denote the quotient map x 7→ W cs

f (x).

The above inequality may be restated as

distu(q ◦ g
n(x), q ◦ gn(y)) < R ⇒

distu(F
n(q)(x), F n(q)(y)) = distu(f

−n ◦ q ◦ gn(x), f−n ◦ q ◦ gn(y))

< Cphµ
−nR,

Since F is a contraction, F n(q) tends to the fixed point hcs as n→ ∞. Therefore

distu(h
cs(x), hcs(y)) ≤ lim

n→∞
Cphµ

−nR = 0 ⇒

hcs(x) = hcs(y)
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showing that hcs : R
d → CSf descends to Hcs : CSg → CSf .

By the same reasoning, there is a unique map hcu : R
d → CUf satisfying hcu ◦ g =

f◦hcu and hcu◦τ = τ◦hcu for τ ∈ π1(T
d). This map descends to a mapHcu : CUg → CUf .

Since Cf and Cg are canonically identified with CSf ×CUf and CSg ×CUg respectively,

define H : Cg → Cf by H = Hcs × Hcu. The desired properties of H follow from the

corresponding properties of Hcs and Hcu.

To establish the uniqueness of H, suppose H1 : Cg → Cf also satisfies the conclusions

of the lemma. Define hcs
1 : R

d → CSf by hcs
1 (x) = W cs

f (H1(W
c
g (x))), that is, hcs

1 (x) is the

cs-leaf of f which contains the center leaf H1(W
c
g (x)). One can verify that hcs

1 is in Hcs

and

H1 ◦ g = f ◦H1 ⇒ hcs
1 ◦ g = f ◦ hcs

1

so by uniqueness, hcs
1 = hcs. This means that for L ∈ Cg, the c-leavesH(L) andH1(L) are

subleaves of the same cs-leaf of f . Using the uniqueness of hcu, one shows similarly, that

H(L) and H1(L) are subleaves of the same cu-leaf of f . This implies that H(L) = H1(L)

which establishes that H is unique.

The prototypical candidates for f0 and g0 in the lemma are, of course, the partially

hyperbolic diffeomorphism f0 and its linearization g0 from the previous chapter. If the

roles of f0 and g0 are interchanged, the lemma also applies to produce a unique map

Cf → Cg and it applies to f0 with itself and g0 with itself. These applications combine

to show that the map in the lemma is, in fact, a homeomorphism.

Theorem 3.2. Let f0 : T
d → T

d be partially hyperbolic with lifting f : R
d → R

d such

that W u
f and W s

f are quasi-isometric and dimEc
f = 1. If g : R

d → R
d is the linearization

of f , then there is a unique homeomorphism H : Cg → Cf such that

• H(g(L)) = f(H(L)) for L ∈ Cg, and

• H(τ(L)) = τ(H(L)) for τ ∈ π1(T
d) and L ∈ Cg.
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Proof. By the lemma, there is H : Cg → Cf such that H ◦ g = f ◦H and H ◦ τ = τ ◦H

for τ ∈ π1(T
d). Also by the lemma, there is K : Cf → Cg such that K ◦ f = g ◦K and

K ◦ τ = τ ◦K. Then K ◦H is a map from Cg → Cg and

(K ◦H) ◦ g = g ◦ (K ◦H) and (K ◦H) ◦ τ = τ ◦ (K ◦H).

Of course, the identity map id : Cg → Cg also satisfies

id ◦ g = g ◦ id and id ◦ τ = τ ◦ id.

By the uniqueness claim of the lemma, K ◦ H = id. Similarly, H ◦ K = id on Cf , so

K = H−1 and H is a homeomorphism.

One way of understanding this theorem is to note that the actions of f and g on

the corresponding metric spaces Cf and Cg are Anosov homeomorphisms [1]. Using this

topological form of hyperbolicity, one could construct the conjugacy H by means of a

topological Shadowing Lemma. In fact, H(L) is the unique center leaf of f such that

gn(L) and fn(H(L)) stay within a bounded distance of other for all n ∈ Z.

Since the conjugation H respects deck transformations, it quotients down to a bijec-

tion between center leaves of f0 and those of g0 on T
d. These spaces of leaves, however,

rarely have pleasant topologies. For instance, if the eigenvalues of the linear map g0 are

all irrational, every center leaf of g0 will be dense in T
d and the space of leaves will have

the chaotic topology.

A more useful construction is a leaf conjugacy as defined in [15], a homeomorphism

h : T
d → T

d such that if L is a c-leaf of g then h(L) is a c-leaf of f and

h ◦ g(L) = f ◦ h(L).

The task of the remaining chapters is to construct such a leaf conjugacy from H.



Chapter 4

Leaf sections

Let f0, f , g0, and g be as in Chapter 2. The conjugacy H : Cg → Cf constructed in the

last chapter tells us how to map leaves of g to those of f , so to construct a leaf conjugacy

on R
d, we need only specify how points on one leaf are mapped to points on another. To

define this mapping, we will construct solid slabs in R
d, one for f and one for g, such

that each center leaf intersects the appropriate slab in a compact segment. Then, h0 can

be defined from one slab to the other by mapping each center line segment of g to the

corresponding center line segment of f in the simplest way possible.

For the linear map g, the solid slab is trivial to construct; just take the space between

two flat us-leaves. For f , each of the two boundaries of the slab needs to intersect each

center leaf exactly once. A us-pseudoleaf satisfies this condition, but its pathological

nature makes its use intractable. Instead, we define a section of the center foliation as

a map whose image intersects each leaf exactly once. We then construct two sections so

that the slab between them has the properties we desire.

Since Cf is a quotient space of R
d, define a section of Cf as a map σ : Cf → R

d such

that σ(L) ∈ L ⊂ R
d for every center leaf L ∈ Cf . For any x ∈ R

d, since W us
f (x) intersects

each center leaf exactly once, the map Cf → R
d, L 7→ W us

f (x) ∩ L is an example of a

section. However, it is not a particularly useful section to use in constructing a conjugacy.

33
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For one, we have not established that the us-pseudoleaf W us
f (x) stays a bounded distance

from the flat us-leaf W us
g (x). For another, the section may fail to be uniformly continuous

for any reasonable choice of metric on Cf .

To avoid these issues, we will construct a continuous section σ∗ : Cf → R
d such that

the image of σ∗ lies a bounded distance from the us-leaf of g and so that σ∗ is uniformly

continuous for any metric on Cf that is invariant under the action of π1(T
d).

If σ∗ were defined on a compact domain, it would follow immediately from continuity

that σ∗ is uniformly continuous. Of course, Cf is homeomorphic to R
u+s and so is not

compact. Instead, we establish a “finiteness” property for σ∗ called Axiom F that, for

our purposes, is just as good as having a compact domain.

If X1, X2, Y1, and Y2 are metric spaces, then f1 : X1 → Y1 and f2 : X2 → Y2 are

isometrically equivalent if there are isometries α : X1 → X2 and β : Y1 → Y2 such that

f2 ◦ α = β ◦ f1. That is, with regard to their structure as functions on metric spaces, f1

and f2 cannot be distinguished.

Let X and Y be metric spaces. A continuous map f : X → Y satisfies Axiom F if

• there is a finite collection G = {g1, . . . , gn} of maps on metric spaces gj : Xj → Yj,

• there is a collection {Ki : i ∈ I} of compact subsets of X such that their interiors

form an open cover of X, and

• for each Ki, the restriction f |Ki
is isometrically equivalent to an element of G, that

is, for i ∈ I there are isometries αi and βi such that f |Ki
◦ αi = βi ◦ gj for some

j ∈ {1, . . . , n}.

The index set I could, in principle, be of any cardinality, but in the examples of Axiom

F maps arising in this paper, the index set will be countably infinite.

As a concrete example, the function φ : R → R, x 7→ 3x + sin(2πx) satisfies Axiom

F. Using the cover {Ki}i∈Z where Ki = [i, i + 2] each φ|Ki
is isometrically equivalent to

φ|K0
by the isometries αi(x) = x+ i and βi(x) = x+ 3i.
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In some sense, functions satisfying Axiom F can be thought of as being constructed

by “tiling” together a handful of locally defined functions. This notion of tiling functions,

however, is difficult to define rigorously, difficult to establish for a given function, and

more than is needed.

A continuous function on a compact domain is uniformly continuous and this fact

generalizes to the Axiom F case.

Proposition 4.1. If f : X → Y satisfies Axiom F, it is uniformly continuous.

The converse is not true, as witnessed, for example, by the logarithm function re-

stricted to (1,∞). Here, log is uniformly continuous as its derivative is bounded, but for

a ∈ (1,∞), the limit

lim
x→a

| log(x) − log(a)|

|x− a|
=

1

a

is an invariant up to isometric equivalence. This shows that the restriction of the loga-

rithm function to any subset cannot be isometrically equivalent to its restriction to any

other subset. log |(1,∞) therefore fails to satisfy Axiom F.

The proof of Proposition 4.1 is left to the reader.

Our aim is to construct a continuous section σ∗ : Cf → R
d such that σ∗ stays within

a bounded distance of a linear us-leaf of g and so that σ∗ is uniformly continuous for any

π1(T
d)-invariant metric on Cf . To achieve uniform continuity, we will construct σ∗ in a

way that ensures it satisfies Axiom F.

Theorem 4.2. There is a continuous section σ∗ : Cf → R
d such that

• πc
g ◦ σ

∗ is bounded; equivalently, there is x0 ∈ R
d and M > 0 such that image σ∗ ⊂

BM(W us
g (x0)); and

• for any metric on Cf , invariant under the action of π1(T
d), σ∗ satisfies Axiom F.

From this point on, assume that a π1(T
d)-invariant metric on Cf has been chosen.

One such metric is the Hausdorff distance, the infimum over all r ≥ 0 for which

L2 ⊂ Br(L1) and L1 ⊂ Br(L2)



Chapter 4. Leaf sections 36

where L1,L2 ∈ Cf are considered as subsets of R
d. Since these subsets are not compact,

one has to check using Proposition 2.5 that this distance is always finite.

To construct σ∗, take bounded size plaques of a countable collection of us-pseudoleaves

so that each center leaf of f passes through at least one of these plaques. Then, stitch

these plaques together into a section by averaging them along each center leaf. To

achieve this averaging, note that each center leaf W c
f (x) can be identified with R by a

curve γ : R → W c
f (x) parameterized by arc-length. If xi ∈ W c

f (x) and ai ∈ R,
∑

ai = 1,

define summation along the leaf by

∑c

aixi = γ
(

∑

aiγ
−1(xi)

)

.

This is well-defined regardless of the choice of γ, and shows that W c
f (x) is an affine space.

The space of sections is also an affine space. If σi : Cf → R
d are sections and

∑

ai = 1,

define
∑c

aiσi leafwise by

(

∑c

aiσi

)

(L) =
∑c

aiσi(L) for L ∈ Cf .

Here, the ai may be constants or functions Cf → R.

If Ui ⊂ Cf and αi : Ui → R give a partition of unity for Cf , then continuous local

sections σi : Ui → R
d may be averaged together to give a continuous global section

∑c

αiσi : Cf → R
d. The section σ∗ will be the result of such an averaging.

Let z0 = (0, 0, . . . , 0) denote the origin in R
d.1 Let σ : Cf → R

d be the section

L 7→ W us
f (z0) ∩ L which has the us-pseudoleaf of z0 as its image. For z ∈ Z

d, define

σz : Cf → R
d as σz(L) = σ(L − z) + z. As z is a lattice point, if L is a center leaf of f

then the translation L− z is also a center leaf. Hence, the function σz is well-defined. In

fact, σz is the section with W us
f (z) as its image.

Our desired section σ∗ will be constructed as σΛ, an averaging of sections σz for a

subset Λ of Z
d where the average is weighted by appropriate bump functions αz. Similar

1We use z0 in place of simply 0 in order to distinguish it as a point of the manifold, and also because
the choice of the origin on R

d, the universal cover of T
d, is essentially arbitrary.
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to the translates σz, each αz will be a translate of a carefully constructed bump function

α : Cf → R.

Lemma 4.3. There is RZ > 0 such that every point x ∈ R
d lies in BRZ

(W c
g (z)) for some

z ∈ Z
d ∩BRZ

(W us
g (z0)).

Proof. For the linear map g, there is a symmetry

x ∈ BRZ
(W c

g (z)) ⇔ z ∈ BRZ
(W c

g (x)).

It is enough to show that the intersection

BRZ
(W c

g (x)) ∩BRZ
(W us

g (z0))

contains a lattice point. The intersection of these two cylinders contains a sphere centered

at πus
g (x) ∈ W c

g (x) ∩W us
g (z0) having a radius proportional to RZ. By choosing a large

value of RZ, this sphere can be assumed to have a radius large enough to ensure it contains

a lattice point z ∈ Z
d.

Lemma 4.4. For R > 0, there is a continuous, non-negative function α : Cf → R such

that

• α(L) > 0 for every L ∈ Cf which intersects BR(W c
g (z0)), and

• α has compact support.

Proof. Since Cf is homeomorphic to R
u+s, to create the bump function α it is enough to

show that

A =
{

L ∈ Cf : L ∩BR(W c
g (z0)) 6= ∅

}

is relatively compact.

If x ∈ BR(W c
g (z0)) then ‖πus

g (x)‖ is bounded, say by M . If

L ∩BR(W c
g (z0)) 6= ∅
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and x ∈ L, then by Proposition 2.5, ‖πus
g (x)‖ ≤M +Rc. Let K denote the compact set

{

x ∈ R
d : ‖πus

g (x)‖ ≤M +Rc and πc
g(x) = 0

}

.

Regarded as a quotient map, W c
f : R

d → Cf is continuous, so W c
f (K) is a compact subset

of Cf . For any leaf L in Cf there is at least one x ∈ L such that πc
g(x) = 0, showing that

A ⊂ W c
g (K).

Let α be the bump function given by Lemma 4.4 using the radius RZ given by Lemma

4.3. For z ∈ Z
d define αz : Cf → R by

αz(L) = α(L − z).

Let Γ be a subset of Z
d such that for L ∈ Cf , αz(L) > 0 for only finitely many z ∈ Γ.

Define αΓ : Cf → R as the sum of the bump functions:

αΓ(L) =
∑

z∈Γ

αz(L).

Then on the subset of Cf where αΓ is positive, the functions L 7→ αz(L)
αΓ(L)

give a partition

of unity. Define a (local) section σΓ on the domain

Dom(σΓ) = {L ∈ Cf : αΓ(L) > 0}

by

σΓ =
∑

z∈Γ

cαz

αΓ

σz.

Lemma 4.5. If Γ,Υ ⊂ Z
d and Υ = Γ + w for some w ∈ Z

d then

Dom(σΥ) = Dom(σΓ) + w

and

σΥ(L + w) = σΓ(L) + w

for L ∈ Dom(σΓ).
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Figure 4.1: Here, the grey lines represent the foliation W c
f . The lattice points of Z

d are

drawn as grey dots, save for the points in a subset Γ which are drawn in black. The

squiggle through a point z ∈ Γ is the image of σz restricted to the support of αz.

Figure 4.2: The image of the section σΓ, defined by averaging along center leaves.
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This follows from the definitions of σz and αz as translates of σ and α.

We next show that, in some sense, σΓ(L) in a neighbourhood of L is uniquely deter-

mined by a subset of Γ lying near L.

Lemma 4.6. For K ⊂ Cf compact, there is R > 0 such that if Γ ⊂ Z
d and K ⊂ Dom(σΓ)

then

σΓ|K = σΓ̂|K

where Γ̂ = Γ ∩BR(W c
g (z0)).

Proof. Since K is compact, its image under the continuous section σ : Cf → R
d is

also compact. In particular, πus
g (σ(K)) is bounded. If x ∈ R

d lies on a leaf L, then

πus
g (x − σ(L)) is bounded by the constant given by Proposition 2.5. All together, this

establishes that there is R1 such that ‖πus
g (x)‖ < R1 for all x ∈ L where L ∈ K.

Since the support of α is also a compact subset of Cf , there is R2 such that ‖πus
g (x)‖ <

R2 for all x ∈ L where α(L) > 0.

Suppose z ∈ Γ is such that αz(L) > 0 for some L ∈ K. Then

αz(L) > 0 ⇒

α(L − z) > 0 ⇒

‖πus
g (x− z)‖ < R2

where x ∈ L. Since L ∈ K, ‖πus
g (x)‖ < R1 and by the triangle inequality,

‖πus
g (z)‖ < R1 +R2.

Consequently, for L ∈ K,

σΓ(L) =
∑

z∈Γ

cαz(L)

αΓ(L)
σz(L) =

∑

z∈Γ̂

cαz(L)

αΓ(L)
σz(L)

where Γ̂ = {z ∈ Γ : ‖πus
g (z)‖ < R1 + R2}. To conclude the proof, take R large enough

that

‖πus
g (z)‖ < R1 +R2 ⇒ z ∈ BR(W c

g (z0)).
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Corollary 4.7. For K ⊂ Cf compact, there is R > 0 such that if Γ ⊂ Z
d, w ∈ Z

d, and

K + w ⊂ Dom(σΓ) then

σΓ(L + w) = σΓ̂(L) + w

for all L ∈ K where Γ̂ = (Γ − w) ∩BR(W c
g (z0)).

This is just the combination of the last two lemmas.

Lemma 4.8. Let Λ ⊂ Z
d be such that

• Dom(σΛ) = Cf , and

• πc
g(Λ) is bounded.

Then σΛ : Cf → R
d satisfies Axiom F.

Proof. Let K ⊂ Cf be the support of α. Then Dom(σΛ) = Cf implies that the interiors

of the sets Kz = K + z for z ∈ Λ give an open cover of Cf . Using this K, let R > 0 be

given by Corollary 4.7. Let M be the bound on πc
g(Λ) and define

Z = {z ∈ Z
d ∩BR(W c

g (z0)) : ‖πc
g(z)‖ < 2M}.

Z is a finite set, so the collection Σ = {σΓ : Γ ⊂ Z} is also finite.

Now, if z ∈ Λ, then by Corollary 4.7, σΛ(L + z) = σΓ(L) + z for L ∈ K where

Γ = (Λ − z) ∩BR(W c
g (z0)).

Further, if w ∈ Γ, then

w ∈ Λ − z ⇒ w + z ∈ Λ

⇒ ‖πc
g(w)‖ ≤ ‖πc

g(w + z)‖ + ‖πc
g(z)‖ < 2M

showing that Γ ⊂ Z and so σΛ|Kz
is isometrically equivalent to σΓ ∈ Σ.
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In addition to Axiom F, our desired section σΛ must be bounded in the Ec
g component.

Fortunately, this is even easier to ensure.

Lemma 4.9. If Λ ⊂ Z
d and πc

g(Λ) is bounded, then πc
g ◦ σΛ is bounded.

Proof. First note that πc
g ◦ σ is bounded on the compact support of α. Then, as πc

g(z)

is bounded for z ∈ Λ and the σz are merely translates of σ, it follows that πc
g ◦ σz(L) is

uniformly bounded for z ∈ Λ and L ∈ supp αz. Since each point σΛ(L) is an averaging

of such σz(L), πc
g ◦ σΛ is bounded by Proposition 2.14.

To complete the construction of σΛ, define

Λ = Z
d ∩BRZ

(W us
g (z0))

where RZ is given by Lemma 4.3. For L ∈ Cf take any point x ∈ L and by the same

lemma, there is z ∈ Λ such that x ∈ BRZ
(W c

g (z)). As L−z contains x−z ∈ BRZ
(W c

g (z0)),

by Lemma 4.4, αz(L) = α(L−z) > 0. Therefore, Dom(σΛ) = Cf . Since πc
g(Λ) is bounded,

σΛ : Cf → R
d satisfies Axiom F and πc

g ◦ σΛ is bounded. This completes the proof of

Theorem 4.2.
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A leaf conjugacy on R
d

Let σ0 : Cf → R
d be the uniformly continuous section given by Theorem 4.2 (there

denoted by σ∗). Let z0 denote the origin (0, 0, . . . , 0) ∈ R
d. Fix v ∈ Z

d such that

W us
g (z0) ∩W

us
g (z0 + v) = ∅

and image(σ0) and image(σ0)+v lie a bounded distance away from each other. We know

such a v exists as πc
g ◦ σ0 is bounded.

Define a section σ1 : Cf → R
d so that

σ1(L) = σ0(L − v) + v

or equivalently

image σ1 = image(σ0) + v.

For L ∈ Cf , let [σ0(L), σ1(L)]c denote the segment of the center leaf L between σ0(L)

and σ1(L). The standard metric of R
d induces a metric on the leaf L. Let

ρ(L) = length
(

[σ0(L), σ1(L)]c
)

= dc(σ0(L), σ1(L)).

As σ0 is uniformly continuous, its translate σ1 is uniformly continuous, as is ρ, the

distance between them. As the images of σ0 and σ1 are a bounded distance apart, ρ

is bounded away from zero. ρ is also bounded above, since if there were Ln ∈ Cf such

43
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that the center distance dc(σ0(Ln), σ1(Ln)) diverged to infinity, then by Corollary 2.17,

‖πc
g(σ0(Ln)−σ1(Ln))‖ → ∞, contradicting the fact that πc

g ◦σ0 and πc
g ◦σ1 are bounded.

The next step in establishing a leaf conjugacy on T
d is to first construct one on R

d,

that is, a homeomorphism h0 : R
d → R

d such that

h0 ◦ g(L) = f ◦ h0(L) for L ∈ Cf .

This identity is ensured if h0 is defined so that h0(x) ∈ H(L) for x ∈ L whereH : Cg → Cf

is the homeomorphism between spaces of leaves constructed in Chapter 3.

Define h0 on the linear us-leaf W us
g (z0) by

h0(x) = σ0(H(W c
g (x)))

and on W us
g (z0 + v) by

h0(x) = σ1(H(W c
g (x))).

Let S denote the solid (closed) slab between the hyperplanes W us
g (z0) and W us

g (z0+v)

inclusively. Identifying Ec
g with R, this slab can be written as

S = {x ∈ R
d : πc

g(z0) ≤ πc
g(x) ≤ πc

g(z0 + v)}.

Let v′ ∈ R
d denote the unique intersection of W c

g (z0) with W us
g (z0 + v). Then,

extend h0 to all of S by mapping the segment [x, x + v′]cg ⊂ W c
g (x) to the segment

[h0(x), h0(x+ v′)]cf ⊂ H(W c
g (x)) at a constant speed.

To express h0 in formulas, define t : S → [0, 1] as a function on the solid slab that

takes the value 0 on W us
g (z0), the value 1 on W us

g (z0+v) and interpolates linearly between

them:

t(x) =
‖πc

g(x− z0)‖

‖πc
g(v)‖

.

Since Ec
f is uniquely integrable and one-dimensional, if we give it an orientation, it defines

a flow which progresses at unit speed ϕ : R
d ×R → R

d. Orient Ec
f so that this flow goes

from the image of σ0 to the image of σ1. Note that ρ is defined so that

ϕρ(L)(σ0(L)) = σ1(L)
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Figure 5.1: The map h0.

for L ∈ Cf . Finally, h0 on the domain S is defined as

h0(x) = ϕρ(L)·t(x)(σ0(L))

where L = H(W c
g (x)).

Lemma 5.1. h0 is uniformly continuous on S and uniformly bilipschitz along each center

leaf.

Proof. In essence, h0 is uniformly continuous as it is constructed from uniformly contin-

uous functions.

Equip Cf and Cg with metrics invariant under the action of π1(T
d). As ρ is bounded

both above and away from zero, let 0 < m < M be such that image ρ ⊂ [m,M ].

The functions σ0 : Cf → R
d and ρ : Cf → [m,M ] have been shown to be uniformly

continuous. That H : Cg → Cf is uniformly continuous can be deduced from the relation

H ◦ τ = τ ◦ H for τ ∈ π1(T
d). t : S → [0, 1] and the quotient map W c

g : R
d → Cg are

linear and therefore uniformly continuous.

The multiplication map (a, b) 7→ a · b is not uniformly continuous on R × R, but

in the case of ρ(L) · t(x), ρ(L) takes values in [m,M ], t(x) takes values in [0, 1] and
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multiplication restricted to [m,M ] × [0, 1] is uniformly continuous.

Since, for the center flow, ϕt ◦ τ = τ ◦ ϕt where t ∈ R and τ ∈ π1(T
d), one can show

that ϕ is uniformly continuous on R
d × [0,M ] by looking a fundamental domain of the

covering.

Finally, as a composition of uniformly continuous function, h0 is uniformly continuous.

Since h0 maps center leaves of f , each of length ‖πc
g(v)‖, to center leaves of g, each

of length between m and M , and maps each at a constant speed, h0 is bilipschitz along

center leaves.

Lemma 5.2. h0 : S → R
d is a bounded distance from the identity:

sup
x∈S

‖h0(x) − x‖ <∞.

Proof. Let K ⊂ R
d be a fundamental domain of the covering R

d → T
d. By compactness

of K, there is an R > 0 such that for all x ∈ K

H(W c
g (x)) ⊂ BR(W c

g (x))

where the sets are regarded as subsets of R
d. Then, if τ ∈ π1(T

d),

τ(H(W c
g (x))) ⊂ τ(BR(W c

g (x))) ⇒

H(W c
g (τ(x))) ⊂ BR(W c

g (τ(x)))

since H ◦ τ = τ ◦H, so this inclusion holds for all points in R
d. In particular,

σ0(H(W c
g (x))) ∈ BR(W c

g (x)),

so
∥

∥πus
g

(

σ0(H(W c
g (x))) − x

)∥

∥

is bounded for x ∈ S.

By Theorem 4.2, πc
g◦σ0 is bounded, and by the definition of the solid slab S, ‖πc

g(x)‖ ≤

‖πc
g(v)‖ for x ∈ S, so

∥

∥πc
g

(

σ0(H(W c
g (x))) − x

)∥

∥
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is bounded for x ∈ S implying that

‖σ0(H(W c
g (x))) − x‖

is bounded as well, say by Mσ.

Now h0(x) is defined as ϕρ(L)·t(x)(σ0(L)) where L = H(W c
g (x)). We have established

that ‖σ0(L) − x‖ < Mσ. Recall that ρ(L) · t(x) is bounded by a constant referred to in

the previous proof as M . ϕ is a unit-speed flow, so

‖ϕρ(L)·t(x)(σ0(L)) − σ0(L)‖ < M ⇒

‖h0(x) − x‖ ≤ ‖h0(x) − σ0(L)‖ + ‖σ0(L) − x‖

< M +Mσ

for all x ∈ S.

Extend h0 to all of R
d by requiring h0(x + v) = h0(x) + v. Since for x ∈ R

d, there

is k ∈ Z such that x + kv ∈ S, this uniquely defines h0. If, however, x ∈ W us
g (z0 + kv)

for some k, then x− kv ∈ W us
g (z0) ⊂ S and x− (k − 1)v ∈W us

g (z0 + v) ⊂ S so we must

verify that

h0(x+ v) = h0(x) + v

for x ∈ W us
g (z0) to ensure that this extension of h0 is well-defined. If x ∈ W us

g (z0), then

h0(x+ v) = σ1(H(W c
g (x+ v)))

= σ1(H(W c
g (x)) + v) (by properties of H)

= σ0(H(W c
g (x))) + v (by the definition of σ1)

= h0(x) + v

as desired.

Corollary 5.3. h0 : R
d → R

d is uniformly continuous and uniformly bilipschitz along

center leaves.
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Corollary 5.4. h0 : R
d → R

d is a bounded distance from the identity:

‖h0 − id‖0 := sup
x∈Rd

‖h0(x) − x‖ <∞.

These follow from the corresponding lemmas for h0 as first defined on S ⊂ R
d by use

of the relation h0(x+ v) = h0(x) + v.

We have constructed a leaf conjugacy from g : R
d → R

d to f : R
d → R

d; h0 : R
d → R

d

is a homeomorphism such that h0(g(L)) = f(h0(L)) for each center leaf L of g. Our work

is not done, unfortunately, as our goal is a leaf conjugacy on the closed manifold T
d, and

there is no reason to believe that h0 descends to that space. Instead, we will “average”

shifts of h0 to produce a homeomorphism h that does descend to T
d.



Chapter 6

A leaf conjugacy on T
d

For z ∈ Z
d, let τz : R

d → R
d denote the translation x 7→ x + z and define hz : R

d → R
d

as a shift of h0:

hz = τz ◦ h ◦ τ−1
z = τz ◦ h ◦ τ−z.

As h0 is uniformly continuous, the collection

H0 = {hz : z ∈ Z
d}

is uniformly equicontinuous. Also, since h0 is a bounded distance from the identity, the

functions hz are a bounded distance away from the identity, and from each other:

‖hz − id‖0 = ‖h0 − id‖0 for z ∈ Z
d, and

‖hz − hz′‖0 ≤ 2‖h0 − id‖0 for z, z′ ∈ Z
d.

As with sections, we want to average the functions hz along center leaves. To do so,

all of the functions must map a point x to the same center leaf. Functions h, h′ : R
d → R

d

are c-equivalent (with respect to f) if h′(x) ∈ W c
f (h(x)) for all x ∈ R

d. If h1, . . . , hn are

c-equivalent and a1, . . . , an ∈ R,
∑

ai = 1, define the affine sum
∑c

aihi : R
d → R

d

pointwise by
(

∑c

aihi

)

(x) =
∑c

aihi(x) for x ∈ R
d,

49



Chapter 6. A leaf conjugacy on T
d 50

where
∑c

on the right-hand side is summation along the center leaf as defined at the

start of the subsection.

Note that since each hz maps x ∈ R
d to a point on the leaf H(W c

g (x)), all shifts hz

of h0 are c-equivalent. Let H1 be the set of all (finite) affine combinations of elements of

H0:

H1 =
{

∑c

aihzi
: hzi

∈ H0, ai ∈ R,
∑

ai = 1
}

.

Lemma 6.1. H1 is equicontinuous.

Proof. Fix x ∈ R
d and ǫ > 0. Since all of the functions hz, z ∈ Z

d lie a finite distance from

each other, fix a unit-speed curve γ : [0, T ] → R
d along the center leaf Lx := H(W c

g (x))

such that all points hz(x), z ∈ Z
d lie in the interior of the curve. There is a tubular

neighbourhood of the image of γ such that within this neighbourhood the center foliation

is trivial.

In fact, take a local section σ : D → R
d defined so that D ⊂ Cf is a small topological

closed disk containing Lx in its interior and such that σ(Lx) = γ(0). Define φ : D ×

[0, T ] → R
d by letting φ(L, t) be the result of sliding σ(L) a distance t along the leaf.

Further assume that D is small enough that

‖φ(Lx, t) − φ(L, t)‖ <
ǫ

2

for all L ∈ D and t ∈ [0, T ], which is possible as the foliation W c
f is continuous. φ is

an embedding and K = φ(D × [0, T ]) ⊂ R
d is a tubular neighbourhood of γ([0, T ]) =

φ({Lx} × [0, T ]).

Let ψ : K → R be defined to satisfy the equation ψ(φ(L, t)) = t. For x ∈ K, ψ(x)

gives the distance from x to the image of σ as measured along W c
f (x) and is therefore

continuous.

As K is compact, ψ is uniformly continuous and there exists δ > 0 such that for

y, z ∈ K,

‖y − z‖ < δ ⇒ |ψ(y) − ψ(z)| <
ǫ

2
.
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Now take y ∈ R
d close enough to x that h(y) ∈ K and ‖h(x) − h(y)‖ < δ for all

h ∈ H0. (This is possible due to the equicontinuity of H0.) Let Ly denote H(W c
g (y)).

Take any affine combination
∑c

aihi where hi ∈ H0. Then (using that
∑

ai = 1 and

φ is a unit-speed flow),

‖hi(x) − hi(y)‖ < δ for all i ⇒

|ψ(hi(x)) − ψ(hi(y))| <
ǫ

2
for all i ⇒

∣

∣

∣

∑

ai ψ(hi(x)) −
∑

ai ψ(hi(y))
∣

∣

∣
<
ǫ

2
⇒

∥

∥

∥
φ
(

Lx,
∑

ai ψ(hi(x))
)

− φ
(

Lx,
∑

ai ψ(hi(y))
)∥

∥

∥
<
ǫ

2
.

Also,
∥

∥

∥φ
(

Lx,
∑

ai ψ(hi(y))
)

− φ
(

Ly,
∑

ai ψ(hi(y))
)∥

∥

∥ <
ǫ

2

from the choice of D ⊂ Cf . Thus

∥

∥

∥

∑c

aihi(x) −
∑c

aihi(y)
∥

∥

∥ < ǫ

since, by the definition of the affine summation
∑c

,

∑c

aihi(x) = φ
(

Lx,
∑

ai ψ(hi(x))
)

and
∑c

aihi(y) = φ
(

Ly,
∑

ai ψ(hi(y))
)

.

As the estimates for continuity did not depend on the particular choice of affine

combination
∑c

aihi, this shows that H1 is equicontinuous.

Now for n > 0, define

Cn =
{

(k1, . . . , kd) ∈ Z
d : max{|k1|, . . . , |kd|} ≤ n

}

and

hn =
∑

z∈Cn

c 1

(2n+ 1)d
hz.
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When restricted to any compact subset of R
d, the sequence {hn} ⊂ H1 is uniformly

equicontinuous and uniformly bounded, so, by Arzelà-Ascoli, has a uniformly convergent

subsequence. By a diagonalization argument, we find a sequence {hnk
} that converges

uniformly on compact subsets of R
d. Let h be the limit of this sequence.

Lemma 6.2. h is c-equivalent to h0.

Proof. Each hnk
is c-equivalent to h0 by construction. Then for x ∈ R

d,

hnk
(x) ∈ W c

f (h0(x)) ⇒ h(x) = lim
k→∞

hnk
(x) ∈W c

f (h0(x))

since the leaf is a closed subset of R
d.

Then, from the construction of h0,

h(x) ∈ H(W c
g (x)) for x ∈ R

d

so h(g(L)) = f(h(L)) for any center leaf of g.

Lemma 6.3. h is injective.

Proof. Since H is a homeomorphism of leaves, h maps points on distinct center leaves

of g to points on distinct center leaves of f . We need only show that if y ∈ W c
g (x) and

x 6= y then h(x) 6= h(y).

From Corollary 5.3, h0 is bilipschitz on center leaves, so there is r > 0 such that if

y ∈W c
g (x) then

dc
f (h0(x), h0(y)) ≥ r · dc

g(x, y).

Because elements of H0 are simply shifts of h0, the same inequality holds for hz, z ∈ R
d.

Then for an affine combination
∑c

aihzi
,

dc
f

(

∑c

aihzi
(x),

∑c

aihzi
(y)
)

=
∑

ai d
c
f (hzi

(x), hzi
(y))

≥ r · dc
g(x, y)
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where instead of a triangle inequality, we have a true equality as h0 and its shifts hzi

preserve the orientation of the leaves.

Since hnk
→ h,

dc
f (hnk

(x), hnk
(y)) ≥ r · dc

g(x, y) ⇒

dc
f (h(x), h(y)) ≥ r · dc

g(x, y),

so x 6= y ⇒ h(x) 6= h(y).

Lemma 6.4. h(x+ z) = h(x) + z for all z ∈ Z
d.

Proof. We show h(x+w) = h(x)+w for w = (1, 0, 0, . . . , 0) ∈ Z
d. The other coordinates

are proved similarly and the result follows. Recall that τz denotes the translation x 7→

x+ z. We want to show that τw ◦ h ◦ τ−w = h.

Fix x ∈ R
d. Let L = h(W c

g (x)) and let ϕ be an isometry mapping L to R. Then

ϕ(hn(x)) = ϕ

(

∑

z∈Cn

c 1

(2n+ 1)d
hz(x)

)

=
1

(2n+ 1)d

∑

z∈Cn

ϕ(hz(x))

whereas

ϕ(τw ◦ hn ◦ τ−w(x)) = ϕ

(

∑

z∈Cn

c 1

(2n+ 1)d
τw ◦ hz ◦ τ−w(x)

)

=
1

(2n+ 1)d

∑

z∈Cn

ϕ(hz+w(x)).

Then

ϕ(τw ◦ hn ◦ τ−w(x)) − ϕ(hn(x))

=
1

(2n+ 1)d





∑

z∈C+
n

ϕ(hz(x)) −
∑

z∈C−

n

ϕ(hz(x))





where

C+
n =

{

(n+ 1, k2, k3, . . . , kd) ∈ Z
d : max{|k2|, . . . , |kd|} ≤ n

}
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and

C−
n =

{

(0, k2, k3, . . . , kd) ∈ Z
d : max{|k2|, . . . , |kd|} ≤ n

}

C+
n and C−

n each have exactly (2n + 1)d−1 elements. Note, also, that the collection

{ϕ(hz(x)) : z ∈ Z
d} is bounded, since the functions hz are all at most a uniform distance

away from each other. Say |ϕ(hz(x))| < M for z ∈ Z
d. Then

∣

∣ϕ
(

τw ◦ hnk
◦ τ−w(x)

)

− ϕ
(

hnk
(x)
)∣

∣

≤
1

(2nk + 1)d





∑

z∈C+
nk

|ϕ(hz(x))| +
∑

z∈C−

nk

|ϕ(hz(x))|





≤
1

(2nk + 1)d
2 (2nk + 1)d−1 M =

2M

2nk + 1

which tends to zero as k → ∞ showing that

ϕ(τw ◦ h ◦ τ−w(x)) = ϕ(h(x))

and therefore τw ◦ h ◦ τ−w = h.

Now that this invariance is established, h : R
d → R

d descends to a map h̃ : T
d → T

d

and this map is the leaf conjugacy between f0 : T
d → T

d and its linearization g0 : T
d →

T
d. As h is injective and h ◦ τ = τ ◦ h for τ ∈ π1(T

d), h̃ is injective and homotopic

to the identity map to T
d, showing that it is a homeomorphism. Finally, the relation

h(g(L)) = f(h(L)) for any center leaf of g, implies that h̃(g0(L)) = f0(h̃(L)) for any

center leaf of g0.
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Further Questions

In the preceding proof, we assumed that the center foliation was one-dimensional, largely

for technical reasons, and made use of this simplification in several places. Is this a

necessary assumption, or can the proof be generalized for higher dimensional center

foliations? The most difficult concept to extend may be the “averaging” along center

leaves used in the construction of the section in Chapter 4. In higher dimensions, center-

of-mass constructions exist for weighted averages on manifolds, but these make use of the

exponential map and are only defined when averaging points in a small neighbourhood.

It is unclear if this concept can be applied as a replacement for the method of averaging

along center leaves.

The assumption of quasi-isometry of the stable and unstable foliations is fundamental

to the proof, allowing us to compare the leaves of the diffeomorphism with its lineariza-

tion. While I see no reason to believe it, one could also ask if Theorem 1.2 holds without

the assumption of quasi-isometry. There are examples of partially hyperbolic systems

whose strong foliations are not quasi-isometric, but we know of no such examples on

higher dimensional tori. If, indeed, all partially hyperbolic systems on tori enjoy this

property of quasi-isometry, then its supposition in the theorem is redundant.

In his thesis, Franks first studied tori as the simplest spaces on which to establish
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conjugacies. With the work of Manning, the proof was extended to all nilmanifolds and

infranilmanifolds. While R
d is mentioned throughout this thesis, many of the properties

proved hold just as well for the universal cover of any nilmanifold. The main result,

therefore, likely has an analogue which describes partially hyperbolic systems on these

spaces.

C. Bonatti and A. Wilkinson examined transitive partially hyperbolic systems on

3-manifolds, giving strong evidence that all such systems have already been discovered

[3]. Brin, Burago, and Ivanov showed that there are no partially hyperbolic systems on

either S
3 or S

2×S
1, as their fundamental groups are too simple to support these systems

[6, 5]. Hopefully, this thesis is a link in a chain of reasoning that will lead eventually to

the description of all partially hyperbolic systems on three-dimensional manifolds.



Appendix A

Quasi-isometry implies plaque

expansiveness

An ǫ-pseudo orbit of f : M → M that respects an invariant foliation W is a bi-infinite

sequence {xn} in M such that for all n ∈ Z, f(xn−1) and xn lie on the same leaf of W

and dW (f(xn−1), xn) < ǫ. The diffeomorphism f is plaque expansive with respect to W

if for every ǫ0 > 0 there exists ǫ > 0 such that the following holds:

If {xn} and {yn} are ǫ-pseudo orbits of f that respect W and d(xn, yn) < ǫ

for all n ∈ Z then x0 and y0 lie on the same leaf of W and dW (x0, y0) < ǫ0.

Theorem A.1. Let f be a partially hyperbolic diffeomorphism of a compact Riemannian

manifold M . Suppose the stable W s and unstable W u foliations of f are quasi-isometric

in the universal cover M̃ . Then the distributions Ec, Ecs and Ecu integrate uniquely to

plaque expansive foliations.

Remark. This theorem is inspired by the proof of dynamical coherence under the same

hypotheses due to Brin [4]. One great advantage of establishing plaque expansiveness

for a partially hyperbolic diffeomorphism f is that perturbations of f are also plaque

expansive and therefore dynamically coherent. In this case, however, one can show that

the hypothesis of quasi-isometry is stable under perturbation, so plaque expansiveness is

57
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not needed to establish stable dynamical coherence. The result is still useful, though, in

establishing that f is leaf conjugate to its neighbors, and engenders hope of answering

the open question of whether all dynamically coherent, partially hyperbolic systems are

plaque expansive.

This result will also appear as a self-contained note [13].

Proof. That the distributions are uniquely integrable is shown by Brin [4]. We will prove

that W cs is plaque expansive. The case for W cu is similar, and then it follows from the

definition that the intersection W c of the foliations W cs and W cu is also plaque expansive.

Given ǫ > 0 small, let {xn} and {yn} be ǫ-pseudo orbits respecting W cs such that for

all n ∈ Z, d(xn, yn) < ǫ. There exist paths αn, βn : [0, 1] → M of length at most ǫ and

tangent to Ecs such that

αn(0) = f(xn−1), αn(1) = xn,

βn(0) = f(yn−1), βn(1) = yn.

Because x0 and y0 are close together, by sliding y0 along its W cs leaf, we may assume,

without loss of generality, that x0 and y0 lie on the same local unstable leaf.1 To establish

plaque expansiveness, we can then show that x0 = y0.

The diffeomorphism f lifts from M to its universal cover M̃ where, by abuse of

notation, we still call it f . Lift x0 and y0 to x̃0, ỹ0 ∈ M̃ so that the two points still lie

close together. Then inductively for n > 0, lift the paths αn, βn on M to paths α̃n, β̃n

on M̃ such that α̃n(0) = f(x̃n−1) and β̃n(0) = f(ỹn−1) and define x̃n := α̃n(1) and

ỹn := β̃n(1). Because the lengths of αn and βn are small and M̃ is locally identified with

M , it follows that d(x̃n, ỹn) = d(xn, yn) < ǫ.

1Because W cs and Wu are uniformly transverse, there is a constant 0 < c < 1

2
such that if d(x0, y0) <

cǫ then there is a point z0 on the unstable leaf of x0 and the center-stable leaf of y0 and du(x0, z0),
dcs(y0, z0), and dcs(f(y0), f(z0)) are each less than ǫ/2. Therefore, a cǫ-pseudo orbit is turned into an
ǫ-pseudo orbit by replacing y0 with z0.
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As f is partially hyperbolic (on both M and M̃), there are constants 1 < γ < µ and

C ≥ 1 such that

‖dfn(x)vcs‖ ≤ Cγn‖vcs‖ for vcs ∈ Ecs
x and n > 0,

and

C−1µn‖vu‖ ≤ ‖dfn(x)vu‖ for vu ∈ Eu
x and n > 0.

Consequently, as the α̃n are tangent to Ecs,

length(fk ◦ α̃n) ≤ Cγk length(α̃n)

so

d
(

fk(f(x̃n)), fk(x̃n+1)
)

< Cγkǫ

and

d(fn(x̃0), x̃n) ≤
n−1
∑

k=0

d(fk+1(x̃n−k−1), f
k(x̃n−k))

<
n−1
∑

k=0

Cγkǫ = C
γn − 1

γ − 1
ǫ.

Similarly, d(fn(ỹ0), ỹn) < C γn−1
γ−1

ǫ, so

d(fn(x̃0), f
n(ỹ0)) ≤ d(fn(x̃0), x̃n) + d(x̃n, ỹn) + d(ỹn, f

n(ỹ0))

<

(

2C
γn − 1

γ − 1
+ 1

)

ǫ.

On the other hand, x̃0 and ỹ0 lie on the same unstable leaf, so

du(f
n(x̃0), f

n(ỹ0)) ≥ C−1µndu(x̃0, ỹ0)

where du is distance measured along the unstable leaf. By quasi-isometry

du(f
n(x̃0), f

n(ỹ0)) ≤ a · d(fn(x̃0), f
n(ỹ0)) + b ⇒

d(fn(x̃0), f
n(ỹ0)) ≥ (du(f

n(x̃0), f
n(ỹ0)) − b)/a ≥ (C−1µndu(x̃0, ỹ0) − b)/a.

Since γ < µ, these two estimates are irreconcilable for large n > 0 unless du(x̃0, ỹ0) =

0. This means that x̃0 = ỹ0, so x0 = y0 and plaque expansiveness is proved.
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W u

W cs

W cs

x̃3

ỹ3

f(x̃2)

f(ỹ2)

f 2(x̃1)

f 2(ỹ1)

f 3(x̃0)

f 3(ỹ0)

Figure A.1: The invariant manifolds through fn(x̃0) and fn(ỹ0) for n = 3.

Brin, Burago, and Ivanov have shown that all partially hyperbolic diffeomorphisms

on the 3-torus are dynamically coherent [6, 8, 5]. Since this is proved by establishing

quasi-isometry as in the hypotheses of the preceeding theorem, it yields the following.

Corollary A.2. All partially hyperbolic systems on the 3-torus are plaque expansive.



Appendix B

Wus
f (p) is differentiable at p

Lemma B.1. W us
f (p) is (once) differentiable at p ∈ R

d and the tangent space of W us
f (p)

at p is Eu
f (p) ⊕ Es

f (p).

Proof. Fix p ∈ R
d. Let u = dimEu

f and s = dimEs
f . W

u
f (p) is a C1-leaf, so there is a

neighbourhood 0 ∈ U ⊂ R
u and a C1-embedding φ : U → W u

f (p) such that φ(0) = p.

As W s
f is a continuous foliation with C1-leaves tangent to a continuous distribution Es

f ,

there is a neighbourhood 0 ∈ V ⊂ R
s and a continuous function ψ : U → C1(V,Rd) so

that for each x ∈ U , ψ(x)(0) = φ(x) and φ(x) is a C1-embedding of V into W s
f (ψ(x)).

By abuse of notation, write ψ(x, y) = ψ(x)(y). Then we can consider ψ as a map

U × V → W us
f (p) and show it is differentiable at (0, 0).

For (x, y) ∈ U × V and v ∈ R
s, let Dvψ(x, y) denote the directional derivative

Dvψ(x, y) = lim
t→0

1

t
(ψ(x, y + tv) − ψ(x, y)) ∈ R

d.

By construction of ψ, Duψ(x, y) is a continuous function of u, x, and y. Let V1 ⊂ R
s

be open such that 0 ∈ V1 ⊂ V1 ⊂ V . Then

lim
x→0

sup{Duψ(x, y) −Duψ(0, y) : y ∈ V1, u ∈ R
s, ‖u‖ = 1} = 0

for otherwise, there are sequences {xn} in U , {yn} in V1 and {un} in R
s where

xn → 0, yn → y ∈ V1, and un → u ∈ R
s,
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but Dun
ψ(xn, yn) −Dun

(0, yn) does not converge to zero, a contradiction.

By the Fundamental Theorem of Calculus,

ψ(x, y) − ψ(x, 0) =

∫ 1

0

Duψ(x, ty)dt · ‖y‖

where u = y

‖y‖
, so if (x, y) → (0, 0) then

‖ψ(x, y) − ψ(x, 0) − ψ(0, y) + ψ(0, 0)‖

‖y‖
=

∥

∥

∥

∥

∫ 1

0

Duψ(x, ty)dt−

∫ 1

0

Duψ(0, ty)dt

∥

∥

∥

∥

≤

∫ 1

0

‖Duψ(x, ty) −Duψ(0, ty)‖dt→ 0.

Since ψ(·, 0) = φ is C1, there is a linear map A : R
u → R

d such that

lim
x→0

‖ψ(x, 0) − ψ(0, 0) − Ax‖

‖x‖
= 0

and since ψ(0, ·) is C1, there is a linear map B : R
s → R

d such that

lim
y→0

‖ψ(0, y) − ψ(0, 0) −By‖

‖y‖
= 0.

Then, if x 6= 0 and y 6= 0,

‖ψ(x, y) − ψ(0, 0) − Ax−By‖

‖(x, y)‖
≤

‖ψ(x, y) − ψ(x, 0) − ψ(0, y) + ψ(0, 0)‖

‖(x, y)‖

+
‖ψ(x, 0) − ψ(0, 0) − Ax‖

‖(x, y)‖

+
‖ψ(0, y) − ψ(0, 0) −By‖

‖(x, y)‖

≤
‖ψ(x, y) − ψ(x, 0) − ψ(0, y) + ψ(0, 0)‖

‖y‖

+
‖ψ(x, 0) − ψ(0, 0) − Ax‖

‖x‖

+
‖ψ(0, y) − ψ(0, 0) −By‖

‖y‖

and each of these terms tends to zero as (x, y) → (0, 0). The cases where x = 0 and

y = 0 need to be proved separately, but follow by the same logic. Then, ψ : U ×V → R
d

is differentiable at (0, 0) with derivative (x, y) 7→ Ax+By.

Finally, ψ(U × {0}) ⊂ W u
f (p) so imageA = Eu

f (p) and ψ({0} × V ) ⊂ W s
f (p) so

imageB = Es
f (p) showing the tangent plane of W us

f (p) at p is Eu
f (p) ⊕ Es

f (p).
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