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ABSTRACT. We give theorems which establish the existence of a dominated

splitting and further properties, such as partial hyperbolicity.

1. SPLITTINGS AND INEQUALITIES

Many concepts in dynamical systems are defined by an invariant splitting

with one or more inequalities related to the splitting. In many cases, the inequal-

ities need only be verified on the non-wandering set of the system. The results in

this section are similar in nature to those established in [Cao03] for hyperbolic

systems and earlier work referenced therein. Here, however, we consider gener-

alizations of hyperbolicity, including dominated splittings, weak/strong/point-

wise/absolute partial hyperbolicity, center bunching, and other properties.

Throughout this section assume f is a homeomorphism of a compact metric

space M . Let NW ( f ) denote its non-wandering set.

Proposition 1.1. If U is a neighborhood of NW ( f ), there is a uniform bound N

such that any orbit { f n(x) : n ∈Z} has at most N points lying outside of U .

Proof. Suppose no such N exists. As M \ U is totally bounded, for any k ∈ N,

there is a point xk ∈ M \U and an iterate nk ≥ 1 such that d(xk , f nk (xk )) < 1
k

. The

sequence {xk } accumulates on a non-wandering point outside of U , which gives

a contradiction. �

A cochain for f (in the context of this section) is a collection of continuous

functions αn : X →R for n ∈Z. The cochain is additive if

αn+m(x) =αn( f m(x))+αm(x)

for all n,m ∈Z and x ∈ X . It is superadditive if

αn+m(x) ≥αn( f m(x))+αm(x)

for all n,m ∈ Z and x ∈ X . It is eventually positive if there is n0 such that αn is

positive for all n > n0. Note that any positive linear combination of superaddi-

tive cochains is again superadditive.

Proposition 1.2. If α is a superadditive cochain, the following are equivalent:

(1) α is eventually positive;

(2) there is n ≥ 1 such that αn(x) > 0 for all x ∈ M;

(3) there is n ≥ 1 such that αn(x) > 0 for all x ∈ NW ( f );
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Proof. Clearly (1) implies (2) and (2) implies (3).

Proof of (2) implies (1): Suppose (2) holds for some n. Asαn andα1 are contin-

uous, there are δ> 0 and C > 0 such that αn(x) > δ and α1(x) >−C for all x ∈ M .

Write m ∈Z as m = qn + r with q ∈Z and 0 ≤ r < n. Then αm(x) ≥ qδ−C n. If m

is sufficiently large and positive, then so is qδ−C n.

Proof of (3) implies (2): First, note that ifα is a superadditive cochain for f and

k ≥ 1, then βn =αnk defines a superadditive cochain for f k . Therefore, we may

assumeα1(x) > 0 for all x ∈ NW ( f ). Next, ifγ is the unique additive cochain with

γ1 = α1, then αn ≥ γn for all n ≥ 1. Therefore, we may assume α is additive. Let

ǫ> 0 be small enough that U := {x ∈ M : α1(x) > ǫ} is a neighborhood of NW ( f ).

Let N be the bound in proposition 1.1, and let C be such that α1(x) >−C for all

x ∈ M . Then αm(x) > ǫ(m −N )−C N for all m and x. Thus, for large m, αm is

positive. �

For a linear operator, A, between normed vector spaces, the norm ‖A‖ and

conorm m(A) are defined by

‖A‖ = sup{‖Av‖ : ‖v‖ = 1} and m(A) = inf{‖Av‖ : ‖v‖ = 1}.

If f is a diffeomorphism and E ⊂ T M is a continuous invariant subbundle, then

each of logm(D f n |E(x)) and − log‖D f n
E(x)

‖ defines a superadditive cochain. We

formulate a number of dynamical concepts in terms of linear combinations of

such cochains. Here, all bundles considered are non-zero.

(1) An invariant subbundle E is expanding if

logm(D f n
|E(x))

is eventually positive.

(2) An invariant subbundle E is contracting if

− log‖D f n
E(x)‖

is eventually positive.

(3) An invariant splitting E u ⊕E s is dominated if

logm(D f n
|E u (x))− log‖D f n

|E s (x)‖

is eventually positive. Write E u ⊕> E s to indicate the direction of the

domination.

(4) An invariant splitting E u ⊕E s is absolutely dominated if there is a con-

stant c ∈R such that both

logm(D f n
|E u (x))− cn and cn − log‖D f n

|E s (x)‖

are eventually positive.

(5) A dominated splitting E u ⊕> E s is hyperbolic if E s is contracting and E u

is expanding.

(6) A dominated splitting is weakly partially hyperbolic if it is either of the

form E c ⊕> E s with E s contracting or E u ⊕> E c with E u expanding.
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(7) An invariant splitting E u ⊕E c ⊕E s is strongly partially hyperbolic if both

(E u ⊕E c )⊕> E s and E u ⊕> (E c ⊕E s) are dominated splittings, E s is con-

tracting, and E u is expanding.

(8) For r ≥ 1, a strongly partially hyperbolic splitting is r -partially hyperbolic

if both

logm(D f n
|E u (x))− r log‖D f n

|E c (x)‖

and

r logm(D f n
|E c (x))− log‖D f n

|E s (x)‖

are eventually positive.

Sometimes, one also requires that f is a C r diffeomorphism [HPS77].

(9) A strongly partially hyperbolic splitting is center bunched if both

logm(D f n
|E u (x))− log‖D f n

|E c (x)‖+ logm(D f n
|E c (x))

and

− log‖D f n
|E c (x)‖+ logm(D f n

|E c (x))− log‖D f n
|E s (x)‖

are eventually positive.

Corollary 1.3. Let f be a diffeomorphism on a compact manifold. For an invari-

ant splitting, any of the properties listed above holds on all of M if and only if the

property holds on the non-wandering set.

Since the log of the Jacobian of D f n |E(x) defines an additive cochain, one could

also establish similar results for volume partial hyperbolicity as studied in [BDP03].

Further, the techniques in [Cao03] show that all of these properties hold uni-

formly if and only if they hold in a non-uniform sense on all invariant measures.

2. SPLITTINGS FROM SEQUENCES

We now present what are hopefully “user-friendly” techniques to prove the

existence of a dominated splitting. The techniques here have some similarities

with results developed by Mañé to study quasi-Anosov systems [Mañ77, Lemma

1.9], by Hirsch, Pugh, Shub in regards to normally hyperbolicity [HPS77, The-

orem 2.17], and by Franks and Williams in constructing non-transitive Anosov

flows [FW80, Theorem 1.2]. Here, however, we consider the general case of dom-

inated splittings, and use Conley’s Fundamental Theorem of Dynamical Systems

to extend a splitting on the chain recurrent set to the entire phase space.

This section uses E u and E s to denote the bundles of a dominated splitting,

even though the splitting may not necessarily be uniformly hyperbolic. It is far

easier, at least for the author, to remember that E u dominates E s than to remem-

ber which of, say, E 1 and E 2 dominates the other.

Notation. For a non-zero vector v ∈ T M and n ∈Z, let vn denote the unit vector

vn
=

D f n v

‖D f n v‖
.
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This notation depends on the dynamics f : M → M being specified in advance.

Theorem 2.1. Suppose f is a diffeomorphism of a closed manifold M and Z is an

invariant subset which contains all chain-recurrent points and has a dominated

splitting

TZ M = E u
⊕E s

with d = dimE u . Suppose that for every x ∈ M \ Z , there is a point y in the orbit

of x and a subspace Vy of dimension d such that for any non-zero v ∈ Vy , each

of the sequences vn and v−n accumulates on E u as n →∞. Then, the dominated

splitting on Z extends to a dominated splitting on all of M.

A key step in proving the theorem is the following

Proposition 2.2. Let f : M → M be a diffeomorphism, Λ a compact invariant

subset, and let U ⊂Λ be open in the topology ofΛ such that

(1) f (U ) is compactly contained in U ,

(2) each of
⋂

n>0

f n(U ) and
⋂

n>0

Λ\ f −n(U )

has a dominated splitting with d = dimE u , and

(3) for each x ∈U \ f (U ) there is a d-dimensional subspace Vx such that for

all 0 6= v ∈Vx , both vn and v−n accumulate on E u as n →∞.

Then, there is a dominated splitting on all ofΛ.

From the proof, it will be evident that if x ∈U \ f (U ), then E u(x) = Vx in the

resulting dominated splitting on M . Therefore, it is not immediately clear how

applying theorem 2.1 or proposition 2.2 would compare favorably to construct-

ing a dominated splitting directly. Still, there are a number of advantages. First,

only E u needs to be known, not E s , and only on a single fundamental domain

where, depending on f , it may be easy to define. Next, to verify the hypotheses,

one need only consider individual convergent subsequences rather than an en-

tire cone field or splitting. Finally, as long as one already knows that the original

splitting on Z is dominated, there are no further inequalities to verify.

While cone fields do not appear in the statement of proposition 2.2, they are

needed for its proof. We follow the conventions given in [CP15, Section 2]. If

Λ⊂ M and C ⊂ TΛM is a cone field, then for each x ∈Λ, the cone C (x) at x is of

the form

C (x) = {v ∈ Tx M : Qx (v) ≥ 0}.

where Qx is a non-positive, non-zero quadratic form which depends continu-

ously on x ∈Λ. The interior of C (x) is

intC (x) := {0}∪ {v ∈ Tx M : Qx (v) > 0}

and the dual cone is

C
∗(x) := {v ∈ Tx M : −Qx (v) ≥ 0}.
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Lemma 2.3. Let Λ ⊂ M be an invariant set with a dominated splitting TΛM =

E u ⊕E s . Then there is a neighborhood U of Λ and a cone field C defined on U

such that

(1) if a sequence {vk } of unit vectors in TM converges to v ∈ E u ,

then vk ∈C for all large positive k;

(2) if x, f (x) ∈U , then D f (C (x)) ⊂ intC ( f (x));

(3) if x ∈ M and N ∈Z are such that f −n(x) ∈U for all n > N , then
⋂

n>N

D f n
(

C ( f −n(x))
)

is a subspace of Tx M with the same dimension as E u ;

(4) if x ∈ M and N ∈Z are such that f n(x) ∈U for all n > N , then
⋂

n>N

D f −n
(

C
∗( f n(x))

)

is a subspace of Tx M with the same dimension as E s .

(5) the subspaces given by (3) and (4) define an extension of the dominated

splitting to all of
⋂

n∈Z f n(U ).

The proof of lemma 2.3 uses the same techniques as in [CP15, Section 2] and

is left to the reader.

Lemma 2.4. In the setting of proposition 2.2, if there are cone fields B defined on

Λ\ f (U ) and C defined on U such that d = dimB = dimC and

D f (B(x)) ⊂ intB( f (x)) if x ∈ M \U ,

D f (C (x)) ⊂ intC ( f (x)) if x ∈ f (U ),

B(x) ⊂C (x) if x ∈U \ f (U ),

then there is a dominated splitting of dimension d defined on all ofΛ.

Proof. Let α : Λ→ [0,1] be a continuous function such that α(M \U ) = {0} and

α( f (U )) = {1}. If Px is the continuous family of quadratic forms defining B and

Qx is the family defining C , then

(1−α(x))Px +α(x)Qx

defines a cone field A on Λ such that D f (A (x)) ⊂ intA ( f (x)) for all x ∈Λ. This

inclusion implies the existence of a dominated splitting. �

Proof of proposition 2.2. Let ΛC and ΛB denote the two intersections respec-

tively in item (2) of the proposition. By lemma 2.3, there is a cone field C0 de-

fined on a neighborhood UC of ΛC . For n ∈Z, define a cone field Cn on f n(UC )

by Cn(x) = D f n(C0( f −n(x))). Similarly, define a cone field B0 on a neighbor-

hood UB ofΛB and for each n ∈Zdefine the cone field Bn(x) = D f n(B0( f −n(x))).

We claim here that
⋂

m Bm(x) =Vx for all x ∈U \ f (U ) where the intersection

is over all m ∈ Z for which Bm(x) is defined and Vx is the subspace given in
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the statement of the proposition. Indeed, if v ∈ Vx is non-zero, then there is a

sequence n j →∞ such that v−n j converges to a vector in E u . Hence, v−n j ∈B0

for all large j . Equivalently, v ∈ Bn j
for all large j . Since the sequence Bn is

nested,
⋂

j

Bn j
(x) =

⋂

n
Bn(x).

This shows that Vx ⊂
⋂

n Bn(x). Since both sets are d-dimensional subspaces of

Tx M , they must be equal. This proves the claim

If, for some m,n ∈ Z, the cone fields Bm and Cn satisfied the conditions of

lemma 2.4, then the desired dominated splitting would exist. Hence, we may

assume that for every m, n ∈Z, the open set

{x : Bm(x) ⊂ intCn(x)}

does not cover all of U \ f (U ). By compactness, there is y ∈U \ f (U ) such that

Bm(y) \ intCn(y)

is non-empty for all m, n ∈ Z. By compactness of the unit sphere in Ty M , the

intersection
⋂

m,n
Bm(y) \ intCn(y)

is non-empty. Let u be a unit vector in this intersection. Since u ∈
⋂

m Bm(y),

the above claim shows that u ∈ Vy . Therefore, there is n j → ∞ such that un j

converges to a vector in E u . Then un j ∈ C0 for all large j , and therefore u ∈

C−n j
⊂ intC−n j−1 for all large j as well. This gives a contradiction. �

Proof of theorem 2.1. By the so-called “Fundamental Theorem of Dynamical Sys-

tems” due to Conley [Nor95], there is a continuous function ℓ : M →R such that

ℓ( f (x)) ≤ ℓ(x) with equality if and only if x is in the set R( f ) of chain-recurrent

points. Further, ℓ(R( f )) is a compact, nowhere dense subset of R.

Let C be a cone field defined on a neighborhood U of R( f ) as in lemma 2.3.

Then, there is δ> 0 such that ℓ(x)−ℓ( f (x)) > δ for all x ∉U . Define

a1 < b1 < a2 < b2 < ·· · < aq < bq

such that bi − ai < δ for all i and the union of closed intervals [ai ,bi ] covers

ℓ(R( f )). For a,b ∈R define

Λ[a,b] :=
{

x ∈ M : ℓ( f n(x)) ∈ [a,b] for all n ∈Z
}

If x ∈ Λ[ai ,bi ], then bi − ai < δ implies that f n(x) ∈ U for all n. Therefore, the

dominated splitting may be extended to each Λ[ai ,bi ]. By the inductive hy-

pothesis, assume the dominated splitting has been extended to all of Λ[a1,bk ].

Choose tk ∈ (bk , ak+1) and use

Λ=Λ[ai ,bk+1] and U = {x ∈Λ : ℓ(x) < tk }



TECHNIQUES FOR ESTABLISHING DOMINATED SPLITTINGS 7

in proposition 2.2 to extend the dominated splitting to all ofΛ. By induction, the

dominated splitting extends to all ofΛ[a1,bq ] = M . �

When applying theorem 2.1, it may be a hassle to show directly that vn ac-

cumulates on E u . Suppose instead we know that there is a sequence {n j } with

lim j n j =+∞ such that vn j converges to a unit vector w ∈ TZ M which does not

lie in E s . As with v , we use the notation

w m
=

D f m(w)

‖D f m(w)‖
.

The properties of the dominated splitting on Z imply that there is a sequence

{m j } tending to +∞ such that lim j w m j exists and lies in E u . By replacing {n j }

with a further subsequence, one may establish that lim j vn j+m j = lim j w m j . This

reasoning shows that if vn accumulates on a vector in TZ M \E s , it also accumu-

lates on a vector in E u .

Iterating in the opposite direction, suppose there is a sequence {n j } tending

to +∞ such that {v−n j } converges to w ∈ TZ M \ E s . Then there is a sequence

{m j } tending to +∞ such that lim j w m j exists and lies in E u . By replacing {n j }

with a subsequence, one may establish both that lim j (−n j + m j ) = −∞ and

lim j v−n j+m j = lim j w m j . Hence, if v−n accumulates on a vector in TZ M \ E s ,

it also accumulates on a vector in E u .

With these observations in mind, we now state a slightly generalized version

of theorem 2.1. The proof is highly similar and is left to the reader.

Theorem 2.5. Suppose f is a diffeomorphism of a manifold M, and Y and Z are

compact invariant subsets such that

(1) all chain recurrent points of f |Y lie in Z ,

(2) Z has a dominated splitting TZ M = E u ⊕E s with d = dimE u , and

(3) for every x ∈ Y \ Z , there is a point y in the orbit of x and a subspace Vy of

dimension d such that for any non-zero v ∈ Vy , each of the sequences vn

and v−n accumulates on a vector in TZ M \ E s as n →+∞.

Then the dominated splitting on Z extends to a dominated splitting on Y ∪Z .
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